1
|
Hnin HM, Tun T, Loftsson T, Jansook P. A recent update of water-soluble polymers in cyclodextrin-based formulations for mucosal drug delivery. Carbohydr Polym 2025; 358:123539. [PMID: 40383595 DOI: 10.1016/j.carbpol.2025.123539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 01/22/2025] [Accepted: 03/25/2025] [Indexed: 05/20/2025]
Abstract
Cyclodextrins (CDs) play a crucial role in pharmaceutical formulations due to their unique ability to form inclusion complexes with a wide range of lipophilic drugs. Ternary complexes comprising CD, water-soluble polymer, and drug molecule have emerged as promising multicomponent to the challenges associated with poorly water-soluble drugs. The addition of water-soluble polymer as a ternary component often reduces the amount of CD required to form an inclusion complex thereby decreasing formulation bulk and toxicity. This review outlines the physicochemical properties of CDs and the formation of their inclusion complexes, as well as methods to enhance the complexation efficiency of drug/CD complexes. Additionally, it explores the classification and mucoadhesive properties of water-soluble polymers, and their mechanisms of mucoadhesion on mucosal membranes. The presence of small amounts of water-soluble polymers has been demonstrated to synergistically improve the complexation efficiency of drug/CD complexes. Recent advancements in modified CD-polymer conjugates and the use of water-soluble polymers in CD-based formulations, and their applications across various routes of administration are discussed, highlighting the potential of these ternary complexes as innovative platforms for drug delivery and therapeutic applications.
Collapse
Affiliation(s)
- Hay Marn Hnin
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phyathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Theingi Tun
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phyathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Thorsteinn Loftsson
- Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavik, Iceland
| | - Phatsawee Jansook
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phyathai Road, Pathumwan, Bangkok 10330, Thailand; Cyclodextrin Application and Nanotechnology-based Delivery Systems Research Unit, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
2
|
Awad HA, Fetouh MI, Sultan AA, El Maghraby GM. Combined eutexia and amorphization for simultaneous enhancement of dissolution rate of triamterene and hydrochlorothiazide: preparation of orodispersible tablets. Drug Dev Ind Pharm 2024; 50:306-319. [PMID: 38400841 DOI: 10.1080/03639045.2024.2323996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 02/22/2024] [Indexed: 02/26/2024]
Abstract
BACKGROUND Triamterene is an oral antihypertensive drug with dissolution-limited poor bioavailability. It can be used as monotherapy or in fixed dose combination with hydrochlorothiazide which also suffers from poor dissolution. Moreover, co-processing of drugs in fixed dose combination can alter their properties. Accordingly, pre-formulation studies should investigate the effect of co-processing and optimize the dissolution of drugs before and after fixed dose combination. This is expected to avoid deleterious interaction (if any) and to hasten the biopharmaceutical properties. OBJECTIVE Accordingly, the aim of this work was to optimize the dissolution rate of triamterene alone and after fixed dose combination with hydrochlorothiazide. METHODOLOGY Triamterene was subjected to dry co-grinding with xylitol, HPMC-E5 or their combination. The effect of co-grinding with hydrochlorothiazide was also tested in absence and presence of xylitol and HPMC-E5. The products were assessed using Fourier-transform infrared (FTIR), differential scanning calorimetry, X-ray powder diffraction (XRPD), in addition to dissolution studies. Optimum formulations were fabricated as oral disintegrating tablets (ODT).Results: Co-processing of triamterene with xylitol formed eutectic system which hastened dissolution rate. HPMC-E5 resulted in partial amorphization and improved triamterene dissolution. Co-grinding with both materials combined their effects. Co-processing of triamterene with hydrochlorothiazide resulted in eutexia but the product was slowly dissolving due to aggregation. This problem was vanished in presence of HPMC-E5 and xylitol. Compression of the optimum formulation into ODT underwent fast disintegration and liberated acceptable amounts of both drugs. CONCLUSION The study introduced simple co-processing with traditional excipients for development of ODT of triamterene and hydrochlorothiazide.
Collapse
Affiliation(s)
- Hend A Awad
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Egyptian Russian University, Badr city, Egypt
| | - Mohamed I Fetouh
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Egyptian Russian University, Badr city, Egypt
| | - Amal A Sultan
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al-Batin, Hafr Al-Batin, Saudi Arabia
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Gamal M El Maghraby
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
3
|
Wassif RK, Elkheshen SA, Shamma RN, Amer MS, Elhelw R, El-Kayal M. Injectable systems of chitosan in situ forming composite gel incorporating linezolid-loaded biodegradable nanoparticles for long-term treatment of bone infections. Drug Deliv Transl Res 2024; 14:80-102. [PMID: 37542190 PMCID: PMC10746766 DOI: 10.1007/s13346-023-01384-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2023] [Indexed: 08/06/2023]
Abstract
The objective of the current study was to create an efficient, minimally invasive combined system comprising in situ forming hydrogel loaded with both spray-dried polymeric nanoparticles encapsulating linezolid and nanohydroxyapatite for local injection to bones or their close vicinity. The developed system was designed for a dual function namely releasing the drug in a sustained manner for long-term treatment of bone infections and supporting bone proliferation and new tissues generation. To achieve these objectives, two release sustainment systems for linezolid were optimized namely a composite in situ forming chitosan hydrogel and spray-dried PLGA/PLA solid nanoparticles. The composite, in situ forming hydrogel of chitosan was prepared using two different gelling agents namely glycerophosphate (GP) and sodium bicarbonate (NaHCO3) at 3 different concentrations each. The spray-dried linezolid-loaded PLGA/PLA nanoparticles were developed using a water-soluble carrier (PVP K30) and a lipid soluble one (cetyl alcohol) along with 3 types of DL-lactide and/or DL-lactide-co-glycolide copolymer using nano-spray-drying technique. Finally, the optimized spray-dried linezolid nanoparticles were incorporated into the optimized composite hydrogel containing nanohydroxy apatite (nHA). The combined hydrogel/nanoparticle systems displayed reasonable injectability with excellent gelation time at 37 °C. The optimum formulae sustained the release of linezolid for 7-10 days, which reveals its ability to reduce the frequency of injection during the course of treatment of bones infections and increase the patients' compliance. They succeeded to alleviate the bone infections and the associated clinical, biochemical, radiological, and histopathological changes within 2-4 weeks of injection. As to the state of art in this study and to the best of our knowledge, no such complete and systematic study on this type of combined in situ forming hydrogel loaded with spray-dried nanoparticles of linezolid is available yet in literatures.
Collapse
Affiliation(s)
- Reem Khaled Wassif
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Seham A Elkheshen
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr Elini Street, Cairo, 11562, Egypt.
| | - Rehab Nabil Shamma
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr Elini Street, Cairo, 11562, Egypt
| | - Mohammed S Amer
- Department of Surgery, Anaesthesiology and Radiology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Rehab Elhelw
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Maha El-Kayal
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| |
Collapse
|
4
|
Jin C, Wu F, Hong Y, Shen L, Lin X, Zhao L, Feng Y. Updates on applications of low-viscosity grade Hydroxypropyl methylcellulose in coprocessing for improvement of physical properties of pharmaceutical powders. Carbohydr Polym 2023; 311:120731. [PMID: 37028868 DOI: 10.1016/j.carbpol.2023.120731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/05/2023] [Accepted: 02/17/2023] [Indexed: 03/03/2023]
Abstract
Hydroxypropyl methylcellulose (HPMC) is an important polymeric excipient. Its versatility in terms of molecular weights and viscosity grades is the basis for its wide and successful application in the pharmaceutical industry. Low viscosity grades of HPMC (like E3 and E5) have been used as physical modifiers for pharmaceutical powders in recent years due to their unique physicochemical and biological properties (e.g., low surface tension, high Tg, strong hydrogen bonding ability, etc.). Such modification is the co-processing of HPMC with a drug/excipient to create composite particles (CPs) for the purpose of providing synergistic effects of functional improvement as well as of masking undesirable properties of the powder (e.g., flowability, compressibility, compactibility, solubility, stability, etc.). Therefore, given its irreplaceability and tremendous opportunities for future developments, this review summarized and updated studies on improving the functional properties of drugs and/or excipients by forming CPs with low-viscosity HPMC, analyzed and exploited the improvement mechanisms (e.g., improved surface properties, increased polarity, hydrogen bonding, etc.) for the further development of novel co-processed pharmaceutical powders containing HPMC. It also provides an outlook on the future applications of HPMC, aiming to provide a reference on the crucial role of HPMC in various areas for interested readers.
Collapse
|
5
|
Cyclodextrin Inclusion Complexes with Antibiotics and Antibacterial Agents as Drug-Delivery Systems—A Pharmaceutical Perspective. Pharmaceutics 2022; 14:pharmaceutics14071389. [PMID: 35890285 PMCID: PMC9323747 DOI: 10.3390/pharmaceutics14071389] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 02/06/2023] Open
Abstract
Cyclodextrins (CDs) are a family of cyclic oligosaccharides, consisting of a macrocyclic ring of glucose subunits linked by α-1,4 glycosidic bonds. The shape of CD molecules is similar to a truncated cone with a hydrophobic inner cavity and a hydrophilic surface, which allows the formation of inclusion complexes with various molecules. This review article summarises over 200 reports published by the end of 2021 that discuss the complexation of CDs with antibiotics and antibacterial agents, including beta-lactams, tetracyclines, quinolones, macrolides, aminoglycosides, glycopeptides, polypeptides, nitroimidazoles, and oxazolidinones. The review focuses on drug-delivery applications such as improving solubility, modifying the drug-release profile, slowing down the degradation of the drug, improving biological membrane permeability, and enhancing antimicrobial activity. In addition to simple drug/CD combinations, ternary systems with additional auxiliary substances have been described, as well as more sophisticated drug-delivery systems including nanosponges, nanofibres, nanoparticles, microparticles, liposomes, hydrogels, and macromolecules. Depending on the desired properties of the drug product, an accelerated or prolonged dissolution profile can be achieved when combining CD with antibiotics or antimicrobial agents.
Collapse
|
6
|
Lopalco A, Manni A, Keeley A, Haider S, Li W, Lopedota A, Altomare CD, Denora N, Tuleu C. In Vivo Investigation of (2-Hydroxypropyl)-β-cyclodextrin-Based Formulation of Spironolactone in Aqueous Solution for Paediatric Use. Pharmaceutics 2022; 14:pharmaceutics14040780. [PMID: 35456614 PMCID: PMC9029429 DOI: 10.3390/pharmaceutics14040780] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/16/2022] [Accepted: 03/30/2022] [Indexed: 02/05/2023] Open
Abstract
Spironolactone (SPL), a potent anti-aldosterone steroidal drug used to treat several diseases in paediatric patients (e.g., hypertension, primary aldosteronism, Bartter’s syndrome, and congestive heart failure), is not available in child-friendly dosage forms, and spironolactone liquids have been reported to be unpalatable. Aiming to enhance SPL solubility in aqueous solution and overcome palatability, herein, the effects of (2-hydroxypropyl)-β-cyclodextrin (HP-β-CyD) were thoroughly investigated on solubilisation in water and on masking the unpleasant taste of SPL in vivo. Although the complexation of SPL with HP-β-CyD was demonstrated through phase solubility studies, Job’s plot, NMR and computational docking studies, our in vivo tests did not show significant effects on taste aversion. Our findings, on the one hand, suggest that the formation of an inclusion complex of SPL with HP-β-CyD itself is not necessarily a good indicator for an acceptable degree of palatability, whereas, on the other hand, they constitute the basis for investigating other cyclodextrin-based formulations of the poorly water-soluble steroidal drug, including solid dosage forms, such as spray-dried powders and orodispersible tablets.
Collapse
Affiliation(s)
- Antonio Lopalco
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (A.L.); (A.L.); (C.D.A.)
| | - Annachiara Manni
- School of Pharmacy, University College of London, 29/39 Brunswick Square, London WC1N 1AX, UK; (A.M.); (A.K.); (S.H.); (C.T.)
- Food and Drug Department, University of Parma, Parco Area Delle Scienze 27/A, 43124 Parma, Italy
| | - Alexander Keeley
- School of Pharmacy, University College of London, 29/39 Brunswick Square, London WC1N 1AX, UK; (A.M.); (A.K.); (S.H.); (C.T.)
| | - Shozeb Haider
- School of Pharmacy, University College of London, 29/39 Brunswick Square, London WC1N 1AX, UK; (A.M.); (A.K.); (S.H.); (C.T.)
| | - Wenliang Li
- Imperial College London, South Kensington Campus, London SW7 2AZ, UK;
- Cranfield Water Science Institute, School of Water, Environment and Energy, Cranfield University, Cranfield MK43 0AL, UK
| | - Angela Lopedota
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (A.L.); (A.L.); (C.D.A.)
| | - Cosimo Damiano Altomare
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (A.L.); (A.L.); (C.D.A.)
| | - Nunzio Denora
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (A.L.); (A.L.); (C.D.A.)
- Correspondence: ; Tel.: +39-080-544-2767
| | - Catherine Tuleu
- School of Pharmacy, University College of London, 29/39 Brunswick Square, London WC1N 1AX, UK; (A.M.); (A.K.); (S.H.); (C.T.)
| |
Collapse
|