1
|
Mondal S, Karmakar T. Unveiling Interactions of a Peptide-Bound Monolayer-Protected Metal Nanocluster with a Lipid Bilayer. J Phys Chem Lett 2025; 16:3351-3358. [PMID: 40131821 DOI: 10.1021/acs.jpclett.5c00548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Monolayer-protected atomically precise nanoclusters (MPCs) are potential candidates for drug delivery because of their unique, versatile, and tunable physiochemical properties. The rational design of nanosized drug carriers relies on a deep understanding of their molecular-level interactions with cell membranes and other biological entities. In this work, we applied coarse-grained molecular dynamics and umbrella sampling simulations to investigate the interactions between the magainin 2 (MG2)-loaded Au144(MPA)60 (MPA = 5-mercaptopentanoic acid) nanocluster (MG2-MPC) and a model anionic tumor cell membrane. Electrostatic interactions between MPC ligands and MG2's positively charged residues with the polar headgroups of lipids play a crucial role in the adhesion of the MG2-MPC complex to the membrane surface. Furthermore, MG2-MPCs self-assemble in the linear trimeric supramolecular aggregate on the bilayer surface, indicating a possible mechanism of MPC's action in peptide delivery to the membrane.
Collapse
Affiliation(s)
- Soumya Mondal
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
| | - Tarak Karmakar
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
2
|
Meng K, Tu X, Sun F, Hou L, Shao Z, Wang J. Carbohydrate polymer-based nanoparticles in curcumin delivery for cancer therapy. Int J Biol Macromol 2025; 304:140441. [PMID: 39884595 DOI: 10.1016/j.ijbiomac.2025.140441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/31/2024] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
The application of natural products for cancer treatment has a long history. The safety and multifunctionality of naturally occurring substances have made them appropriate for cancer treatment and management. Curcumin affects multiple molecular pathways and is advantageous for treating both hematological and solid tumors. Nonetheless, the effectiveness of curcumin in vivo and in clinical studies has faced challenges due to its poor pharmacokinetic profile. Consequently, nanoparticles have been developed for the administration of curcumin in cancer treatment. The nanoparticles can enhance the distribution of curcumin in tissues and increase its therapeutic effectiveness. Furthermore, nanoparticles expand the uptake of curcumin in cancer cells, leading to increased cytotoxicity. Carbohydrate polymer-based nanoparticles provide a promising solution for the delivery of curcumin in cancer treatment by addressing its low solubility, limited bioavailability, and quick degradation. These biodegradable and biocompatible carriers, originating from polymers such as chitosan, hyaluronic acid, and alginate, protect curcumin, improving its stability and allowing for controlled release. Targeting ligands for functionalization provides selective and specific distribution to the tumor cells, enhancing therapeutic effectiveness and reducing off-target impacts. Their capacity to encapsulate curcumin with other agents allows for synergistic therapies, enhancing anticancer results even more. The adjustable characteristics of carbohydrate nanoparticles, along with their minimal toxicity, develop a revolutionary, functional and safe platform.
Collapse
Affiliation(s)
- Kexin Meng
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, Zhejiang 310014, China; Zhejiang Provincial Clinical Research Center for Malignant Tumor, Hangzhou, Zhejiang 310014, China
| | - Xinzhuo Tu
- Department of Pathology, Air Force Medical Center, PLA, Beijing, China
| | - Feixia Sun
- Nursing Department, Shandong First Medical University Affiliated Occupational Disease Hospital (Shandong Provincial Occupational Disease Hospital), Jinan, China
| | - Lingmi Hou
- Department of Breast Surgery, Sichuan Clinical Research Center for Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu 610041, Sichuan, China.
| | - Zhouxiang Shao
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China.
| | - Jinxiang Wang
- Department of Urology, Kidney and Urology Center, Pelvic Floor Disorders Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, Guangdong, China.
| |
Collapse
|
3
|
Matus MF, Häkkinen H. Rational Design of Targeted Gold Nanoclusters with High Affinity to Integrin αvβ3 for Combination Cancer Therapy. Bioconjug Chem 2024. [PMID: 39008847 DOI: 10.1021/acs.bioconjchem.4c00248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The unique attributes of targeted nano-drug delivery systems (TNDDSs) over conventional cancer therapies in suppressing off-target effects make them one of the most promising options for cancer treatment. There is evidence that the density of surface-conjugated ligands is a crucial factor in achieving the desired therapeutic efficacy of TNDDSs, but this is hardly manageable in conventional nanomaterials. In this context, ligand-protected gold nanoclusters (AuNCs) are excellent candidates for developing new TNDDSs with a unique control on their surface functionalities, thus helping to achieve enhanced delivery performance. Here, we study the interactions and binding free energies between ten different functionalized Au144(SR)60 (SR = thiolate ligand) nanoclusters and integrin αvβ3 using molecular dynamics simulations and the umbrella sampling method to obtain the optimal formulations. The AuNCs were functionalized with anticancer drugs (5-fluorouracil or signaling pathways inhibitors, such as capivasertib, linifanib, tanespimycin, and taselisib) and integrin-targeting peptides (RGD4C or QS13), and we identified the optimal mixed ligand layer to enhance their binding affinity to the cancer cell receptor. The results showed that changing the proportions of the same type of ligands on the surface of AuNCs led to differences of up to 38 kcal/mol in computed binding free energies. RGD4C as the targeting peptide resulted in greater affinity for αvβ3, and in most formulations studied, a higher amount of drug than peptide was needed. Polar and charged residues, such as Ser123, Asp150, Tyr178, Arg214, and Asp251 were found to play a significant role in AuNC binding. Our simulations also revealed that Mn2+ cations are crucial for stabilizing the αvβ3-AuNC complex. These findings demonstrate the potential of carefully designing the surface composition of TNDDSs to optimize their target affinity and specificity.
Collapse
Affiliation(s)
| | - Hannu Häkkinen
- Department of Physics, University of Jyväskylä, FI-40014 Jyväskylä, Finland
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| |
Collapse
|
4
|
Tiwari V, Garg S, Karmakar T. Insights into the Interactions of Peptides with Monolayer-Protected Metal Nanoclusters. ACS APPLIED BIO MATERIALS 2024; 7:685-691. [PMID: 36820798 DOI: 10.1021/acsabm.2c00997] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Monolayer-protected atomically precise metal nanoclusters (MPCs) have potential applications in catalysis, imaging, and drug delivery. Understanding their interactions with biomolecules such as peptides is of paramount interest for their use in cell imaging and drug delivery. Here we have carried out atomistic molecular dynamics simulations to investigate the interactions between MPCs and an anticancer peptide, melittin. Melittin gets attached to the MPCs surface by the formation of multiple hydrogen bonds between its amino acid residues with MPCs ligands. Additionally, the positively charged Lys, Arg, and peptide's N-terminal strongly anchor the peptide to the MPC metal surface, providing extra stabilization.
Collapse
Affiliation(s)
- Vikas Tiwari
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, 110016 New Delhi, India
| | - Sonali Garg
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, 110016 New Delhi, India
| | - Tarak Karmakar
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, 110016 New Delhi, India
| |
Collapse
|
5
|
Tiwari V, Karmakar T. Understanding Molecular Aggregation of Ligand-Protected Atomically-Precise Metal Nanoclusters. J Phys Chem Lett 2023:6686-6694. [PMID: 37463483 DOI: 10.1021/acs.jpclett.3c01770] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Monolayer-protected atomically precise nanoclusters (MPCs) are an important class of molecules due to their unique structural features and diverse applications, including bioimaging, sensors, and drug carriers. Understanding the atomistic and dynamical details of their self-assembly process is crucial for designing system-specific applications. Here, we applied molecular dynamics and on-the-fly probability-based enhanced sampling simulations to study the aggregation of Au25(pMBA)18 MPCs in aqueous and methanol solutions. The MPCs interact via both hydrogen bonds and π-stacks between the aromatic ligands to form stable dimers, oligomers, and crystals. The dimerization free energy profiles reveal a pivotal role of the ligand charged state and solvent mediating the molecular aggregation. Furthermore, MPCs' ligands exhibit suppressed conformational flexibility in the solid phase due to facile intercluster hydrogen bonds and π-stacks. Our work provides unprecedented molecular-level dynamical details of the aggregation process and conformational dynamics of MPCs ligands in solution and crystalline phases.
Collapse
Affiliation(s)
- Vikas Tiwari
- Department of Chemistry, Indian Institute of Technology, Delhi, 110016 New Delhi, India
| | - Tarak Karmakar
- Department of Chemistry, Indian Institute of Technology, Delhi, 110016 New Delhi, India
| |
Collapse
|
6
|
Hou G, Li Y, Wang Q, Zhang H, Liang S, Liu B, Shi W. iRGD-grafted N-trimethyl chitosan-coated protein nanotubes enhanced the anticancer efficacy of curcumin and melittin. Int J Biol Macromol 2022; 222:348-359. [PMID: 36150572 DOI: 10.1016/j.ijbiomac.2022.09.171] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/30/2022] [Accepted: 09/19/2022] [Indexed: 11/28/2022]
Abstract
Curcumin (Cur) and Melittin (Mel) are two natural extracts that have been shown anti-tumor effects. However, their applications are limited due to poor oral bioavailability and the lack of tumor-targeting property. Here, we developed a novel nanocomposite that enabled the co-delivery of Cur and Mel, which consists of α-lactalbumin protein nanotubes (NTs), positively charged N,N,N-trimethyl chitosan (TMC), and a tumor-targeting cyclic peptide iRGD. The results showed that NTs/Cur-TMC-Mel-iRGD incorporated the advantages of each component, for instance, effective compounds loading by NTs, improved cellular uptake by TMC, prolonged accumulation in tumors by iRGD as well as synergistic anti-tumor effects of Cur and Mel. In the tumor-bearing mice, NTs/Cur-TMC-Mel-iRGD treatment remarkably induced cancer cell apoptosis while inhibiting cell proliferation, leading to suppressed tumor growth. Besides, no obvious adverse effects were observed in the blood physiology and tissue histology. Overall, our study provided an effective strategy for co-delivering Cur and Mel, which has a potential for translational clinical research aiming to treat solid tumors.
Collapse
Affiliation(s)
- Guohua Hou
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Yuan Li
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Qimeng Wang
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Huijuan Zhang
- Department of Nutrition and Health, China Agricultural University, Beijing 100091, PR China
| | - Shuang Liang
- Department of Nutrition and Health, China Agricultural University, Beijing 100091, PR China
| | - Bin Liu
- Department of Nutrition and Health, China Agricultural University, Beijing 100091, PR China.
| | - Wenbiao Shi
- Department of Nutrition and Health, China Agricultural University, Beijing 100091, PR China.
| |
Collapse
|
7
|
Bhattacharya S, Bhattacharya K, Xavier VJ, Ziarati A, Picard D, Bürgi T. The Atomically Precise Gold/Captopril Nanocluster Au 25(Capt) 18 Gains Anticancer Activity by Inhibiting Mitochondrial Oxidative Phosphorylation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:29521-29536. [PMID: 35729793 PMCID: PMC9266621 DOI: 10.1021/acsami.2c05054] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Atomically precise gold nanoclusters (AuNCs) are an emerging class of quantum-sized nanomaterials with well-defined molecular structures and unique biophysical properties, rendering them highly attractive for biological applications. We set out to study the impact of different ligand shells of atomically similar nanoclusters on cellular recognition and response. To understand the effects of atomically precise nanoclusters with identical composition on cells, we selected two different water-soluble gold nanoclusters protected with captopril (Capt) and glutathione (GSH): Au25(Capt)18 (CNC) and Au25(GSH)18 (GNC), respectively. We demonstrated that a change of the ligand of the cluster completely changes its biological functions. Whereas both nanoclusters are capable of internalization, only CNC exhibits remarkable cytotoxicity, more specifically on cancer cells. CNC shows enhanced cytotoxicity by inhibiting the OXPHOS of mitochondria, possibly by inhibiting the ATP synthase complex of the electron transport chain (ETC), and by initiating the leakage of electrons into the mitochondrial lumen. The resulting increase in both mitochondrial and total cellular ROS triggers cell death indicated by the appearance of cellular markers of apoptosis. Remarkably, this effect of nanoclusters is independent of any external light source excitation. Our findings point to the prevailing importance of the ligand shell for applications of atomically precise nanoclusters in biology and medicine.
Collapse
Affiliation(s)
- Sarita
Roy Bhattacharya
- Department
of Physical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva, Switzerland
| | - Kaushik Bhattacharya
- Department
of Molecular and Cellular Biology, University
of Geneva, Sciences III, Geneva 1205, Switzerland
| | - Vanessa Joanne Xavier
- Department
of Molecular and Cellular Biology, University
of Geneva, Sciences III, Geneva 1205, Switzerland
| | - Abolfazl Ziarati
- Department
of Physical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva, Switzerland
| | - Didier Picard
- Department
of Molecular and Cellular Biology, University
of Geneva, Sciences III, Geneva 1205, Switzerland
| | - Thomas Bürgi
- Department
of Physical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva, Switzerland
| |
Collapse
|