1
|
Lu F, Liu Y, Dai Y, Zhang G, Tong Y. Preparation of nanosilver/polymer composites and evaluation of their antimicrobial and antitumor effect. RSC Adv 2025; 15:6357-6369. [PMID: 40008016 PMCID: PMC11855276 DOI: 10.1039/d4ra08108k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
In this study, a copolymer (PVA-g-PEG) of polyethylene glycol (PEG) and polyvinyl alcohol (PVA) was synthesized by grafting PEG chains onto PVA backbone. PVA-g-PEG was used as the carrier to prepare the silver nanoparticles/polymer composite (AgNPs/PVA-g-PEG) using a "one-pot" biological method in the presence of grape seeds extract as a reducing and stabilizing agent. In order to highlight the effect of the copolymer, the homo-polymers PVA and PEG were applied as the carriers to prepare the corresponding composites - AgNPs/PVA, and AgNPs/PEG, respectively using the same method. The prepared AgNPs/polymer products were characterized by UV absorption spectroscopy (UV-vis), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results show that the silver ions were successfully reduced by the grade seeds extract and the produced AgNPs are coated on the surface of AgNPs/PVA-g-PEG and AgNPs/PVA, but not for AgNPs/PEG. The prepared AgNPs are uniform and monodisperse, the particle size is small with mean diameter about 25.7 ± 2.3 nm and 54.2 ± 3.4 nm for AgNPs/PVA-g-PEG and AgNPs/PVA, respectively. The AgNPs/polymer composites exhibited superior antimicrobial effects against microorganisms (Escherichia coli and Staphylococcus aureus). AgNPs/PVA-g-PEG demonstrated a better performance than AgNPs/PVA. AgNPs/PVA-g-PEG had a minimum inhibitory concentration (MIC) of 1.3 μg mL-1 and a minimum inhibitory concentration (MBC) of 2.4 μg mL-1 against the microorganisms. For anti-tumor effect, AgNPs/PVA-g-PEG also demonstrated a high cytotoxicity to the colorectal cancerous cells HCT116 and SW620. The IC50 values of AgNPs/PVA-g-PEG for HCT116 and SW620 cell lines were 25.4 and 37.6 μg mL-1, respectively, suggesting a good anticancer activity. All above results indicate that AgNPs/PVA-g-PEG composites have a significant potential for the control of microorganisms and inhibition of cancer cells.
Collapse
Affiliation(s)
- FeiFei Lu
- College of Medicine and Biological Information Engineering, Northeastern University Shenyang Liaoning 110167 China
| | - Yuxin Liu
- Department of Nuclear Medicine, General Hospital of Northern Theater Command No. 83, Wenhua Road Shenyang 110016 China
| | - Yingxin Dai
- Department of Nuclear Medicine, General Hospital of Northern Theater Command No. 83, Wenhua Road Shenyang 110016 China
| | - Guoxu Zhang
- Department of Nuclear Medicine, General Hospital of Northern Theater Command No. 83, Wenhua Road Shenyang 110016 China
| | - Yanan Tong
- Department of Nuclear Medicine, General Hospital of Northern Theater Command No. 83, Wenhua Road Shenyang 110016 China
| |
Collapse
|
2
|
Karnwal A, Jassim AY, Mohammed AA, Sharma V, Al-Tawaha ARMS, Sivanesan I. Nanotechnology for Healthcare: Plant-Derived Nanoparticles in Disease Treatment and Regenerative Medicine. Pharmaceuticals (Basel) 2024; 17:1711. [PMID: 39770553 PMCID: PMC11678348 DOI: 10.3390/ph17121711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Nanotechnology has revolutionised biomedical research, offering innovative healthcare solutions. Plant-based nanotechnology is emerging as a sustainable alternative, minimising environmental impacts and enhancing therapeutic effectiveness. This paper explores the potential of plant-derived nanoparticles (PNPs) in medicine, highlighting their biocompatibility, multifunctionality, and eco-friendliness. PNPs, synthesised through green methods, have demonstrated promising applications in drug delivery, cancer therapy, antimicrobial treatments, and tissue regeneration. Their unique properties, such as a high surface area and bioactive components, enable improved drug delivery, targeting, and controlled release, reducing side effects and enhancing treatment efficacy. Additionally, plant-derived compounds' inherent antimicrobial and antioxidant properties, retained within platinum nanoparticles (PNPs), present innovative opportunities for combating antimicrobial resistance and promoting wound healing. Despite their potential, challenges remain in standardising PNP synthesis, ensuring consistency, and scaling up production for industrial applications. This review emphasises the need for further research on PNP toxicity, biocompatibility, and regulatory frameworks to fully harness their capabilities in clinical and commercial applications. Plant-based nanotechnology represents a promising, greener alternative for advancing healthcare solutions, aligning with global sustainability goals.
Collapse
Affiliation(s)
- Arun Karnwal
- Department of Microbiology, Graphic Era (Deemed to be University), Dehradun 248009, India;
- Department of Microbiology, School of Bioengineering and BioSciences, Lovely Professional University, Phagwara 144411, India
| | - Amar Yasser Jassim
- Department of Marine Vertebrate, Marine Science Center, University of Basrah, Basrah 61001, Iraq; (A.Y.J.); (A.A.M.)
| | - Ameer Abbas Mohammed
- Department of Marine Vertebrate, Marine Science Center, University of Basrah, Basrah 61001, Iraq; (A.Y.J.); (A.A.M.)
| | - Vikas Sharma
- Department of Molecular Biology and Genetic Engineering, School of Bioengineering and BioSciences, Lovely Professional University, Phagwara 144411, India;
| | | | - Iyyakkannu Sivanesan
- Department of Environmental Health Science, Institute of Natural Science and Agriculture, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
3
|
Tawfeek HM, Mekkawy AI, Abdelatif AAH, Aldosari BN, Mohammed-Saeid WA, Elnaggar MG. Intranasal delivery of sulpiride nanostructured lipid carrier to central nervous system; in vitro characterization and in vivo study. Pharm Dev Technol 2024; 29:841-854. [PMID: 39264666 DOI: 10.1080/10837450.2024.2404034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/05/2024] [Accepted: 09/10/2024] [Indexed: 09/13/2024]
Abstract
The low and erratic oral absorption of sulpiride (SUL) a dopaminergic receptor antagonist, and its P-glycoprotein efflux in the gastrointestinal tract restricted its oral route for central nervous system disorders. An intranasal formulation was formulated based on nanostructured lipid carrier to tackle these obstacles and deliver SUL directly to the brain. Sulipride-loaded nanostructured lipid carrier (SUL-NLC) was prepared using compritol®888 ATO and different types of liquid lipids and emulsifiers. SUL-NLCs were characterized for their particle size, charge, and encapsulation efficiency. Morphology and compatibility with other NLC excipients were also studied. Moreover, SUL in vitro release, nanodispersion stability, in vivo performance and SUL pharmacokinetics were investigated. Results delineates that SUL-NLC have a particle size ranging from 366.2 ± 62.1 to 640.4 ± 50.2 nm and encapsulation efficiency of 75.5 ± 1.5%. SUL showed a sustained release pattern over 24 h and maintained its physical stability for three months. Intranasal SUL-NLC showed a significantly (p < 0.01) higher SUL brain concentration than that found in plasma after oral administration of commercial SUL product with 4.47-fold increase in the relative bioavailability. SUL-NLCs as a nose to brain approach is a promising formulation for enhancing the SUL bioavailability and efficient management of neurological disorders.
Collapse
Affiliation(s)
- Hesham M Tawfeek
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Aml I Mekkawy
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, Sohag, Egypt
| | - Ahmed A H Abdelatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah, Saudi Arabia
| | - Basmah N Aldosari
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Waleed A Mohammed-Saeid
- Department of Pharmaceutics and Pharmaceutical Industries, College of Pharmacy, Taibah University, Madinah, Saudi Arabia
| | - Marwa G Elnaggar
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, Egypt
- Department of Industrial and Molecular Pharmaceutics, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
4
|
Sarikhani AR, Abedi M, Abolmaali SS, Borandeh S, Tamaddon AM. Magnetic graphene oxide nanosheets with amidoamine dendronized crosslinks for dual pH and redox-sensitive doxorubicin delivery. BMC Chem 2024; 18:189. [PMID: 39342347 PMCID: PMC11439217 DOI: 10.1186/s13065-024-01301-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024] Open
Abstract
Delivering anticancer drugs to the appropriate site within the body poses a critical challenge in cancer treatment with chemotherapeutic agents like doxorubicin (DOX). Magnetic graphene oxide (GO) nanosheets with generation 1 (G1) amidoamine-dendronized crosslinks were developed by coupling cystamine-functionalized GO nanosheets with Fe3O4 nanoparticles modified with primary amine and methyl acrylate. These magnetic GO nanosheets were loaded with DOX to create a dual pH- and redox-responsive delivery system for cancer chemotherapy. The prepared magnetic nanosheets underwent characterization using FTIR, XRD, DLS, VSM, FE-SEM, and TEM. Physical DOX adsorption was evaluated using various isotherms, including Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich. The in-vitro release profiles of DOX from the magnetic nanosheets were studied under different pH conditions, with and without glutathione (GSH), and the drug release data were fitted with various kinetic models. Additionally, an MTT assay was employed to assess the compatibility and antitumor activity of DOX-loaded magnetic nanosheets in the HepG2 cell line. The results showed that the maximum drug loading was 13.1% (w/w) at a drug/carrier ratio of 1. Without GSH addition, the maximum drug release after 10 days was only 17.9% and 24.1% at pH 7.4 and 5.3, respectively. However, in the presence of GSH, the maximum drug release reached 51.7% and 64.8% at pH 7.4 and 5.3, respectively. Finally, the research findings suggest that the magnetic nanosheets exhibited pH- and redox-stimuli drug release, high biocompatibility, and superior antitumor activity compared to free DOX.
Collapse
Affiliation(s)
- Amir Reza Sarikhani
- Center for Nanotechnology in Drug Delivery, Shiraz School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, 71345, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Abedi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, 71345, Iran
| | - Samira Sadat Abolmaali
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Center for Nanotechnology in Drug Delivery, Shiraz School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, 71345, Iran
| | - Sedigheh Borandeh
- Center for Nanotechnology in Drug Delivery, Shiraz School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, 71345, Iran
| | - Ali Mohammad Tamaddon
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
- Center for Nanotechnology in Drug Delivery, Shiraz School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, 71345, Iran.
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, 71345, Iran.
| |
Collapse
|
5
|
Younis MA. Clinical translation of silver nanoparticles into the market. SILVER NANOPARTICLES FOR DRUG DELIVERY 2024:395-432. [DOI: 10.1016/b978-0-443-15343-3.00007-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
6
|
Mohamed SM, Abou-Ghadir OMF, El-Mokhtar MA, Aboraia AS, Abdel Aal ABM. Fatty Acid Conjugated Chalcones as Tubulin Polymerization Inhibitors: Design, Synthesis, QSAR, and Apoptotic and Antiproliferative Activity. JOURNAL OF NATURAL PRODUCTS 2023; 86:1150-1158. [PMID: 37098901 DOI: 10.1021/acs.jnatprod.2c00793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Cancer is often associated with an aberrant increase in tubulin and microtubule activity required for cell migration, invasion, and metastasis. A new series of fatty acid conjugated chalcones have been designed as tubulin polymerization inhibitors and anticancer candidates. These conjugates were designed to harness the beneficial physicochemical properties, ease of synthesis, and tubulin inhibitory activity of two classes of natural components. New lipidated chalcones were synthesized from 4-aminoacetophenone via N-acylation followed by condensation with different aromatic aldehydes. All new compounds showed strong inhibition of tubulin polymerization and antiproliferative activity against breast and lung cancer cell lines (MCF-7 and A549) at low or sub-micromolar concentrations. A significant apoptotic effect was shown using a flow cytometry assay that corresponded to cytotoxicity against cancer cell lines, as indicated by a 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide assay. Decanoic acid conjugates were more potent than longer lipid analogues, with the most active being more potent than the reference tubulin inhibitor, combretastatin-A4 and the anticancer drug, doxorubicin. None of the newly synthesized compounds caused any detectable cytotoxicity against the normal cell line (Wi-38) or hemolysis of red blood cells below 100 μM. It is unlikely that the new conjugates described would affect normal cells or interrupt with cell membranes due to their lipidic nature. A quantitative structure-activity relationship analysis was performed to determine the influence of 315 descriptors of the physicochemical properties of the new conjugates on their tubulin inhibitory activity. The obtained model revealed a strong correlation between the tubulin inhibitory activity of the investigated compounds and their dipole moment and degree of reactivity.
Collapse
Affiliation(s)
- Samia M Mohamed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Ola M Fahmy Abou-Ghadir
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Mohamed A El-Mokhtar
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Ahmed S Aboraia
- Department of Therapeutic Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Abu-Baker M Abdel Aal
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
- Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjong Malim 35900, Perak, Malaysia
| |
Collapse
|
7
|
Tawfeek HM, Younis MA, Aldosari BN, Almurshedi AS, Abdelfattah A, Abdel-Aleem JA. Impact of the Functional Coating of Silver Nanoparticles on their In Vivo Performance and Biosafety. Drug Dev Ind Pharm 2023:1-8. [PMID: 37184200 DOI: 10.1080/03639045.2023.2214207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
OBJECTIVE AND SIGNIFICANCE Silver nanoparticles (AgNPs) have become an interesting therapeutic modality and drug delivery platform. Herein, we aimed to investigate the impact of functional coating on the in vivo performance of AgNPs as an economic and scalable method to modulate their behavior. METHODS AgNPs were coated with chitosan (CHI) as a model biopolymer using a one-pot reduction-based method, where CHI of two molecular weight ranges were investigated. The resultant CHI-coated AgNPs (AgNPs-CHI) were characterized using UV-VIS spectroscopy, DLS, and TEM. AgNPs were administered intravenously to rats and their biodistribution and serum levels of hepato-renal function markers were monitored 24 h later compared to plain AgNO3 as a positive control. RESULTS UV-VIS spectroscopy confirmed the successful coating of AgNPs with CHI. DLS revealed the superiority of medium molecular weight CHI over its low molecular weight counterpart. AgNPs-CHI demonstrated a semi-complete clearance from the systemic circulation, a liver-dominated tissue tropism, and a limited renal exposure. On the other hand, AgNO3 was poorly cleared from the circulation, with a relatively high renal exposure and a non-specific tissue tropism. AgNPs-CHI were well-tolerated by the liver and kidney without signs of toxicity or inflammation, in contrary with AgNO3 which resulted in a significant elevation of Creatinine (CRE), Urea, and Total Protein (TP), suggesting a significant nephrotoxicity and inflammation. CONCLUSIONS Functional coating of AgNPs with CHI substantially modulated their in vivo behavior, promoting their hepatic selectivity and biotolerability, which can be invested in the development of drug delivery systems for the treatment of liver diseases.
Collapse
Affiliation(s)
- Hesham M Tawfeek
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Mahmoud A Younis
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Basma Nasser Aldosari
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | | | - Ahmed Abdelfattah
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Jelan A Abdel-Aleem
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| |
Collapse
|
8
|
Khabibullin VR, Chetyrkina MR, Obydennyy SI, Maksimov SV, Stepanov GV, Shtykov SN. Study on Doxorubicin Loading on Differently Functionalized Iron Oxide Nanoparticles: Implications for Controlled Drug-Delivery Application. Int J Mol Sci 2023; 24:4480. [PMID: 36901910 PMCID: PMC10002596 DOI: 10.3390/ijms24054480] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Nanoplatforms applied for the loading of anticancer drugs is a cutting-edge approach for drug delivery to tumors and reduction of toxic effects on healthy cells. In this study, we describe the synthesis and compare the sorption properties of four types of potential doxorubicin-carriers, in which iron oxide nanoparticles (IONs) are functionalized with cationic (polyethylenimine, PEI), anionic (polystyrenesulfonate, PSS), and nonionic (dextran) polymers, as well as with porous carbon. The IONs are thoroughly characterized by X-ray diffraction, IR spectroscopy, high resolution TEM (HRTEM), SEM, magnetic susceptibility, and the zeta-potential measurements in the pH range of 3-10. The degree of doxorubicin loading at pH 7.4, as well as the degree of desorption at pH 5.0, distinctive to cancerous tumor environment, are measured. Particles modified with PEI were shown to exhibit the highest loading capacity, while the greatest release at pH 5 (up to 30%) occurs from the surface of magnetite decorated with PSS. Such a slow release of the drug would imply a prolonged tumor-inhibiting action on the affected tissue or organ. Assessment of the toxicity (using Neuro2A cell line) for PEI- and PSS-modified IONs showed no negative effect. In conclusion, the preliminary evaluation of the effects of IONs coated with PSS and PEI on the rate of blood clotting was carried out. The results obtained can be taken into account when developing new drug delivery platforms.
Collapse
Affiliation(s)
- Vladislav R. Khabibullin
- Chemistry Department, Lomonosov Moscow State University, Lenin Hills, 119991 Moscow, Russia
- State Scientific Center of the Russian Federation, Joint Stock Company “State Order of the Red Banner of Labor Research Institute of Chemistry and Technology of Organoelement Compounds”, 105118 Moscow, Russia
| | | | - Sergei I. Obydennyy
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117198 Moscow, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, 119334 Moscow, Russia
| | - Sergey V. Maksimov
- Chemistry Department, Lomonosov Moscow State University, Lenin Hills, 119991 Moscow, Russia
| | - Gennady V. Stepanov
- State Scientific Center of the Russian Federation, Joint Stock Company “State Order of the Red Banner of Labor Research Institute of Chemistry and Technology of Organoelement Compounds”, 105118 Moscow, Russia
| | - Sergei N. Shtykov
- Department of Analytical Chemistry and Chemical Ecology, Institute of Chemistry, Saratov State University, 410012 Saratov, Russia
| |
Collapse
|
9
|
Akhtar N, Mohammed HA, Yusuf M, Al-Subaiyel A, Sulaiman GM, Khan RA. SPIONs Conjugate Supported Anticancer Drug Doxorubicin's Delivery: Current Status, Challenges, and Prospects. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3686. [PMID: 36296877 PMCID: PMC9611558 DOI: 10.3390/nano12203686] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/13/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Considerable efforts have been directed towards development of nano-structured carriers to overcome the limitations of anticancer drug, doxorubicin's, delivery to various cancer sites. The drug's severe toxicity to cardio and hepatic systems, low therapeutic outcomes, inappropriate dose-demands, metastatic and general resistance, together with non-selectivity of the drug have led to the development of superparamagnetic iron oxide nanoparticles (SPIONs)-based drug delivery modules. Nano-scale polymeric co-encapsulation of the drug, doxorubicin, with SPIONs, the SPIONs surface end-groups' cappings with small molecular entities, as well as structural modifications of the SPIONs' surface-located functional end-groups, to attach the doxorubicin, have been achieved through chemical bonding by conjugation and cross-linking of natural and synthetic polymers, attachments of SPIONs made directly to the non-polymeric entities, and attachments made through mediation of molecular-spacer as well as non-spacer mediated attachments of several types of chemical entities, together with the physico-chemical bondings of the moieties, e.g., peptides, proteins, antibodies, antigens, aptamers, glycoproteins, and enzymes, etc. to the SPIONs which are capable of targeting multiple kinds of cancerous sites, have provided stable and functional SPIONs-based nano-carriers suitable for the systemic, and in vitro deliveries, together with being suitable for other biomedical/biotechnical applications. Together with the SPIONs inherent properties, and ability to respond to magnetic resonance, fluorescence-directed, dual-module, and molecular-level tumor imaging; as well as multi-modular cancer cell targeting; magnetic-field-inducible drug-elution capacity, and the SPIONs' magnetometry-led feasibility to reach cancer action sites have made sensing, imaging, and drug and other payloads deliveries to cancerous sites for cancer treatment a viable option. Innovations in the preparation of SPIONs-based delivery modules, as biocompatible carriers; development of delivery route modalities; approaches to enhancing their drug delivery-cum-bioavailability have explicitly established the SPIONs' versatility for oncological theranostics and imaging. The current review outlines the development of various SPIONs-based nano-carriers for targeted doxorubicin delivery to different cancer sites through multiple methods, modalities, and materials, wherein high-potential nano-structured platforms have been conceptualized, developed, and tested for, both, in vivo and in vitro conditions. The current state of the knowledge in this arena have provided definite dose-control, site-specificity, stability, transport feasibility, and effective onsite drug de-loading, however, with certain limitations, and these shortcomings have opened the field for further advancements by identifying the bottlenecks, suggestive and plausible remediation, as well as more clear directions for future development.
Collapse
Affiliation(s)
- Naseem Akhtar
- Department of Pharmaceutics, College of Dentistry & Pharmacy, Buraydah Private Colleges, P.O. Box 31717, Buraydah 51418, Qassim, Saudi Arabia
| | - Hamdoon A. Mohammed
- Department of Medicinal Chemistry & Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 51452, Qassim, Saudi Arabia
| | - Mohammed Yusuf
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Mecca, Saudi Arabia
| | - Amal Al-Subaiyel
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah 51452, Qassim, Saudi Arabia
| | - Ghassan M. Sulaiman
- Division of Biotechnology, Department of Applied Sciences, University of Technology, Baghdad 10066, Iraq
| | - Riaz A. Khan
- Department of Medicinal Chemistry & Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 51452, Qassim, Saudi Arabia
| |
Collapse
|
10
|
Rugaie OA, Abdellatif AAH, El-Mokhtar MA, Sabet MA, Abdelfattah A, Alsharidah M, Aldubaib M, Barakat H, Abudoleh SM, Al-Regaiey KA, Tawfeek HM. Retardation of Bacterial Biofilm Formation by Coating Urinary Catheters with Metal Nanoparticle-Stabilized Polymers. Microorganisms 2022; 10:1297. [PMID: 35889016 PMCID: PMC9319761 DOI: 10.3390/microorganisms10071297] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 02/06/2023] Open
Abstract
Urinary catheter infections remain an issue for many patients and can complicate their health status, especially for individuals who require long-term catheterization. Catheters can be colonized by biofilm-forming bacteria resistant to the administered antibiotics. Therefore, this study aimed to investigate the efficacy of silver nanoparticles (AgNPs) stabilized with different polymeric materials generated via a one-step simple coating technique for their ability to inhibit biofilm formation on urinary catheters. AgNPs were prepared and characterized to confirm their formation and determine their size, charge, morphology, and physical stability. Screening of the antimicrobial activity of nanoparticle formulations and determining minimal inhibitory concentration (MIC) and their cytotoxicity against PC3 cells were performed. Moreover, the antibiofilm activity and efficacy of the AgNPs coated on the urinary catheters under static and flowing conditions were examined against a clinical isolate of Escherichia coli. The results showed that the investigated polymers could form physically stable AgNPs, especially those prepared using polyvinyl pyrrolidone (PVP) and ethyl cellulose (EC). Preliminary screening and MIC determinations suggested that the AgNPs-EC and AgNPs-PVP had superior antibacterial effects against E. coli. AgNPs-EC and AgNPs-PVP inhibited biofilm formation to 58.2% and 50.8% compared with AgNPs-PEG, silver nitrate solution and control samples. In addition, coating urinary catheters with AgNPs-EC and AgNPs-PVP at concentrations lower than the determined IC50 values significantly (p < 0.05; t-test) inhibited bacterial biofilm formation compared with noncoated catheters under both static and static and flowing conditions using two different types of commercial Foley urinary catheters. The data obtained in this study provide evidence that AgNP-coated EC and PVP could be useful as potential antibacterial and antibiofilm catheter coating agents to prevent the development of urinary tract infections caused by E. coli.
Collapse
Affiliation(s)
- Osamah Al Rugaie
- Department of Basic Medical Sciences, College of Medicine and Medical Sciences, Qassim University, P.O. Box 991, Unaizah 51911, Saudi Arabia
| | - Ahmed A. H. Abdellatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia;
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Mohamed A. El-Mokhtar
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt;
| | - Marwa A. Sabet
- Department of Microbiology and Immunology, Faculty of Pharmacy, Sphinx University, New-Assiut 71684, Egypt;
| | - Ahmed Abdelfattah
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt;
| | - Mansour Alsharidah
- Department of Physiology, College of Medicine, Qassim University, Buraydah 51452, Saudi Arabia;
| | - Musaed Aldubaib
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51911, Saudi Arabia;
| | - Hassan Barakat
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia;
- Food Technology Department, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt
| | - Suha Mujahed Abudoleh
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Isra University, Amman 11622, Jordan;
| | - Khalid A. Al-Regaiey
- Department of Physiology, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Hesham M. Tawfeek
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt;
| |
Collapse
|
11
|
Ahmad I, Khan MFA, Rahdar A, Hussain S, Tareen FK, Salim MW, Ajalli N, Amirzada MI, Khan A. Design and Evaluation of pH Sensitive PEG-Protamine Nanocomplex of Doxorubicin for Treatment of Breast Cancer. Polymers (Basel) 2022; 14:polym14122403. [PMID: 35745979 PMCID: PMC9229304 DOI: 10.3390/polym14122403] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/29/2022] [Accepted: 06/10/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer is the most common cause of mortality worldwide. There is dire need of modern strategies—such as surface modification of nanocarriers—to combat this global illness. Incorporation of active targeting ligands has arisen as a novel platform for specific tumor targeting. The aim of the current study was to formulate PEG-protamine complex (PPC) of doxorubicin (DOX) for treatment of breast cancer (BC). DOX coupling with PEG can enhance cell-penetrating ability: combating resistance in MDA-MB 231 breast cancer cells. Ionic gelation method was adopted to fabricate a pH sensitive nanocomplex. The optimized nanoformulation was characterized for its particle diameter, zeta potential, surface morphology, entrapment efficiency, crystallinity, and molecular interaction. In vitro assay was executed to gauge the release potential of nanoformulation. The mean particle size, zeta potential, and polydispersity index (PDI) of the optimized nanoparticles were observed to be 212 nm, 15.2 mV, and 0.264, respectively. Crystallinity studies and Fourier transform infrared (FTIR) analysis revealed no molecular interaction and confirmed the amorphous nature of drug within nanoparticles. The in vitro release data indicate sustained drug release at pH 4.8, which is intracellular pH of breast cancer cells, as compared to the drug solution. PPC loaded with doxorubicin can be utilized as an alternative and effective approach for specific targeting of breast cancer.
Collapse
Affiliation(s)
- Ikhlaque Ahmad
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (I.A.); (M.F.A.K.); (S.H.); (M.W.S.)
| | - Muhammad Farhan Ali Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (I.A.); (M.F.A.K.); (S.H.); (M.W.S.)
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol 98613-35856, Iran
- Correspondence: (A.R.); (M.I.A.); (A.K.)
| | - Saddam Hussain
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (I.A.); (M.F.A.K.); (S.H.); (M.W.S.)
| | - Fahad Khan Tareen
- Faculty of Pharmacy, Capital University of Science and Technology, Islamabad Expressway, Kahuta Road, Zone-V, Islamabad 45320, Pakistan;
| | - Muhammad Waqas Salim
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (I.A.); (M.F.A.K.); (S.H.); (M.W.S.)
| | - Narges Ajalli
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran 98613-35859, Iran;
| | - Muhammad Imran Amirzada
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22010, Pakistan
- Correspondence: (A.R.); (M.I.A.); (A.K.)
| | - Ahmad Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (I.A.); (M.F.A.K.); (S.H.); (M.W.S.)
- Correspondence: (A.R.); (M.I.A.); (A.K.)
| |
Collapse
|