1
|
Eghlima G, Sonboli A, Mirjalili MH. Chemometrics based analysis of the essential oil composition, phenolic compounds and antibacterial potency of aerial parts of Grammosciadium platycarpum populations. Sci Rep 2025; 15:5083. [PMID: 39934232 PMCID: PMC11814275 DOI: 10.1038/s41598-025-89786-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 02/07/2025] [Indexed: 02/13/2025] Open
Abstract
Grammosciadium platycarpum Boiss. & Hausskn (Family 'Apiaceae') is a crop rich in essential oil and widely used in food and perfume industries. This study aimed to investigate the diversity of phytochemical traits and antimicrobial potency in G. platycarpum Boiss. & Hausskn populations collected from fourteen geographical regions in Iran. The aim was to identify the compounds of the essential oil and extract of the aerial parts, to investigate its antimicrobial properties, and to select the best population for domestication, cultivation and future breeding programs. The aerial parts of the plant were used to extract and determine the content and constituents of the essential oil. The essential oil content (EOC) exhibited a range from 0.09 to 0.46%. TAK population showed the maximum and QAS population revealed the minimum EOC. Based on GC-MS and GC analysis, 91.63 to 98.50% of the essential compounds of different populations of G. platycarpum Boiss. & Hausskn were identified. The main chemical groups identified in the essential oil include hydrocarbon monoterpenes (22.79-46.15%), oxygenated monoterpenes (0.87-31.05%), hydrocarbon sesquiterpenes (25.50-61.04%) and oxygenated sesquiterpenes (5.75-19.52%). Based on the results, (Z, E)-α-Farnesene (13.29-53.71%), linalool (0.44-30.56%), limonene (5.84-31.14%), α-Farnesene (0.71-22.39%), β-pinene (5.10-18.48%), and Caryophyllene (2.95-17.87%) were the major compounds of the essential oil. Chlorogenic acid, ferulic acid, and rutin were detected as the major phenolic compounds using HPLC. The essential oil of ABH, JOL and GAR populations as well as the extracts of MAG, OSH and JOL populations showed great antibacterial activity against E. coli and S. aureus. The high diversity observed among different populations of G. platycarpum Boiss. & Hausskn provides good potential for selecting the best populations and using them in domestication projects, cultivation, and breeding programs.
Collapse
Affiliation(s)
- Ghasem Eghlima
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, 1983969411, Iran.
| | - Ali Sonboli
- Department of Biology, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, 1983969411, Iran
| | - Mohammad Hossein Mirjalili
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, 1983969411, Iran
| |
Collapse
|
2
|
Singh S, Mishra A. Linalool: Therapeutic Indication And Their Multifaceted Biomedical Applications. Drug Res (Stuttg) 2024; 74:255-268. [PMID: 38968949 DOI: 10.1055/a-2321-9571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
This comprehensive review endeavors to illuminate the nuanced facets of linalool, a prominent monoterpene found abundantly in essential oils, constituting a massive portion of their composition. The biomedical relevance of linalool is a key focus, highlighting its therapeutic attributes observed through anti-nociceptive effects, anxiolytic properties, and behavioral modulation in individuals affected by dementia. These findings underscore the compound's potential application in biomedical applications. This review further explores contemporary formulations, delineating the adaptability of linalool in nano-emulsions, microemulsions, bio-capsules, and various topical formulations, including topical gels and lotions. This review covers published and granted patents between 2018-2024 and sheds light on the evolving landscape of linalool applications, revealing advancements in dermatological, anti-inflammatory, and antimicrobial domains.
Collapse
Affiliation(s)
- Shiva Singh
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Noida, (U.P.) India
| | - Anuradha Mishra
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Noida, (U.P.) India
| |
Collapse
|
3
|
Wang X, Yan S, Zhao W, Wu L, Tian W, Xue X. Comprehensive study of volatile compounds of rare Leucosceptrum canum Smith honey: Aroma profiling and characteristic compound screening via GC-MS and GC-MS/MS. Food Res Int 2023; 169:112799. [PMID: 37254383 DOI: 10.1016/j.foodres.2023.112799] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/05/2023] [Accepted: 04/03/2023] [Indexed: 06/01/2023]
Abstract
Monofloral honeys are highly valued for their unique flavors and potential health benefits. In this study, the aromatic attributes of rare Leucosceptrum canum Smith honey (LCH) were characterized by GC-MS coupled with GC-MS/MS. Based on their odor contribution rates (OCRs), linalool (74.22%), 3-methyl-1-butanol (18.19%), benzeneacetaldehyde (1.31%) and lilac aldehyde B (2.78%) were largely responsible for the unique and complex flavor of LCH - flowery, spicy, sweet, fruity and fresh. Compared to other tested honeys, linalool (0.18 mg/kg), which has known antibacterial properties, was higher in LCH. However, it was not the main antibacterial compound in LCH, suggesting as of now unknown antibacterial compounds. This study provides the first aromatic profile of LCH, which will be useful for the authentication of LCH and for uncovering the mechanisms behind its perceived health benefits.
Collapse
Affiliation(s)
- Xuan Wang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Sha Yan
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Wen Zhao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Liming Wu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Wenli Tian
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Xiaofeng Xue
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| |
Collapse
|
4
|
Ramachandran R, Parthasarathy R, Dhayalan S. Silver nanoparticles synthesized by Euphorbia hirta exhibited antibacterial activity and induced apoptosis through downregulation of PI3Kγ mediated PI3K/Akt/mTOR/p70S6K in human lung adenocarcinoma A549 cells. ENVIRONMENTAL TOXICOLOGY 2022; 37:2865-2876. [PMID: 36073799 DOI: 10.1002/tox.23643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/02/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Plant extracts were successfully applied to synthesize nanoparticles, and expected such biological processes of effective for chemotherapeutic applications and safe for human use. Our study planned to evaluate the anticancer efficacy of silver nanoparticles (AgNPs) synthesized by Euphorbia hirta on human lung adenocarcinoma A549 cells. The E. hirta synthesized Eh-AgNPs was investigated by UV-spectroscopy, X-ray diffraction, transmission electron microscopy, and Fourier-transform infrared spectroscopy examination. The bactericidal efficacy of Eh-AgNPs was studied by the agar well method, and the cytotoxicity on A549 cells was assessed by MTT assay. Results showed that Eh-AgNPs exhibited effective antibacterial activity against bacterial pathogens, established dose-dependent cytotoxicity on A549 cells, and persuaded apoptosis, as evidenced by increased lipid peroxidation and decreased levels of antioxidants. Eh-AgNPs significantly increased the early apoptosis in A549 cells in a concentration-dependent way. The Eh-AgNPs administration reduced the Bcl-2 expression; however, it increased the expression of p53, Bax, cleaved caspase-3 and -9 apoptotic members. Eh-AgNPs treatment reduced PI3Kγ, phospho-PI3K, phospho-Akt, phospho-mTOR, and p70S6K levels. The obtained results demonstrated that the Eh-AgNPs induce reactive oxygen species-mediated apoptosis by expressing p53, Bax, and inhibiting PI3K/Akt/mTOR/p70S6K signaling pathway.
Collapse
Affiliation(s)
- Rajalakshmi Ramachandran
- Department of Microbiology, Faculty of Science, Annamalai University, Annamalai Nagar, Chidambaram, India
| | - Ramya Parthasarathy
- Department of Microbiology, Faculty of Science, Annamalai University, Annamalai Nagar, Chidambaram, India
| | - Sangeetha Dhayalan
- Department of Microbiology, Faculty of Science, Annamalai University, Annamalai Nagar, Chidambaram, India
| |
Collapse
|
5
|
Gheorghita Puscaselu R, Lobiuc A, Sirbu IO, Covasa M. The Use of Biopolymers as a Natural Matrix for Incorporation of Essential Oils of Medicinal Plants. Gels 2022; 8:756. [PMID: 36421579 PMCID: PMC9690358 DOI: 10.3390/gels8110756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/15/2022] [Accepted: 11/19/2022] [Indexed: 09/28/2023] Open
Abstract
The benefits of using biopolymers for the development of films and coatings are well known. The enrichment of these material properties through various natural additions has led to their applicability in various fields. Essential oils, which are well-known for their beneficial properties, are widely used as encapsulating agents in films based on biopolymers. In this study, we developed biopolymer-based films and tested their properties following the addition of 7.5% and 15% (w/v) essential oils of lemon, orange, grapefruit, cinnamon, clove, chamomile, ginger, eucalyptus or mint. The samples were tested immediately after development and after one year of storage in order to examine possible long-term property changes. All films showed reductions in mass, thickness and microstructure, as well as mechanical properties. The most considerable variations in physical properties were observed in the 7.5% lemon oil sample and the 15% grapefruit oil sample, with the largest reductions in mass (23.13%), thickness (from 109.67 µm to 81.67 µm) and density (from 0.75 g/cm3 to 0.43 g/cm3). However, the microstructure of the sample was considerably improved. Although the addition of lemon essential oil prevented the reduction in mass during the storage period, it favored the degradation of the microstructure and the loss of elasticity (from 16.7% to 1.51% for the sample with 7.5% lemon EO and from 18.28% to 1.91% for the sample with 15% lemon EO). Although the addition of essential oils of mint and ginger resulted in films with a more homogeneous microstructure, the increase in concentration favored the appearance of pores and modifications of color parameters. With the exception of films with added orange, cinnamon and clove EOs, the antioxidant capacity of the films decreased during storage. The most obvious variations were identified in the samples with lemon, mint and clove EOs. The most unstable samples were those with added ginger (95.01%), lemon (92%) and mint (90.22%).
Collapse
Affiliation(s)
- Roxana Gheorghita Puscaselu
- Department of Biochemistry, Victor Babeş University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Department of Medicine and Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania
| | - Andrei Lobiuc
- Department of Medicine and Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania
| | - Ioan Ovidiu Sirbu
- Department of Biochemistry, Victor Babeş University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Center for Complex Network Science, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Mihai Covasa
- Department of Medicine and Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|