1
|
Bacal CJO, Allardyce BJ, Valente F. Influence of material format and surface chemistry for the sustained delivery and efficacy of silk drug delivery systems in vivo. J Mater Chem B 2025. [PMID: 40400450 DOI: 10.1039/d4tb02756f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
Silk fibroin materials are promising for use in controlled drug delivery in the field of tissue engineering and biomedical applications thanks to silk's generally established biocompatibility and tunable properties for implants and drug storage. Several factors must be considered in the materials design, including material format, drug properties and release kinetics, and the activity and stability of the drug after release. While numerous reviews described silk-based DDS that demonstrated controllable in vitro release, success in vivo has been limited, especially in some material formats. This review therefore aims to provide insight into the current material format and functionalization strategies to maximize in vivo performance by describing the in vivo activity of recently developed silk drug delivery systems. The review also aims to provide a fresh perspective on the suitable format and functionalization strategies for a target biomedical application. Based on the release behavior of drugs in various material formats, silk films, foams, and microneedles were better suited to serve as scaffolds for cell regeneration and improved recovery rate for biomedical applications involving wound healing and tissue engineering. Gels and particles could be incorporated within the films and foams but the purpose would be to serve as additional physical barriers towards drug diffusion in these types of application. For drugs or therapeutics that target internal organs (i.e. brain, liver, intestines, etc.), gels and particles were mainly used due to their size. In the event that the material format selection based on the target application does not contribute a lot to the prolonged release of drugs or therapeutic agents, hybrid functionalization strategies were adapted to make the surface chemistry of the material more responsive to the environmental stimuli for a more tunable silk DDS.
Collapse
Affiliation(s)
- Christine Jurene O Bacal
- Ear Science Institute Australia, Ear Sciences Centre, School of Medicine, The University of Western Australia, Nedlands 6009, Australia.
| | | | - Filippo Valente
- Ear Science Institute Australia, Ear Sciences Centre, School of Medicine, The University of Western Australia, Nedlands 6009, Australia.
| |
Collapse
|
2
|
Fan L, Cai Z, Zhao J, Mahmoudi N, Wang Y, Cheeseman S, Aguilar LC, Reis RL, Kundu SC, Kaplan DL, Nisbet DR, Li JL. Gelation Dynamics, Formation Mechanism, Functionalization, and 3D Bioprinting of Silk Fibroin Hydrogel Materials for Biomedical Applications. ACS NANO 2025; 19:17979-18002. [PMID: 40340314 DOI: 10.1021/acsnano.4c18568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
Silk fibroin (SF), derived from silk cocoon fibers (Bombyx mori), is a natural protein polymer known for its biocompatibility, biodegradability, and sustainability. The protein can be processed into various material formats suitable for a range of applications. Among these, SF hydrogels are useful in the biomedical field, such as tissue engineering, due to the tailorable structures and properties achievable through tuning the gelation process. Therefore, the focus of this contribution is to comprehensively review and understand the formation, gelation mechanism, dynamic control, and functionalization of SF hydrogels. Unlike previous reviews, this work delves into understanding the strategies and mechanisms for tuning the gelation dynamics of SF from molecular assembly and crystallization points of view. Further, this review presents functionalization pathways and practical examples, such as for the 3D printing of SF hydrogels, to illustrate how these strategies, mechanisms, and pathways can be implemented in a specific application scenario. With these insights, researchers can gain a deeper understanding of how to manipulate or control the gelation process and the types of functionalization to achieve specific properties and features. This knowledge would further facilitate the development and application of SF hydrogel materials in various fields.
Collapse
Affiliation(s)
- Linpeng Fan
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3220, Australia
- The Graeme Clark Institute, The University of Melbourne, Parkville, VIC 3010, Australia
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC 3010, Australia
- The Aikenhead Centre for Medical Discovery, St Vincent's Hospital, Fitzroy, Victoria 3065, Australia
| | - Zengxiao Cai
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3220, Australia
| | - Jian Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Negar Mahmoudi
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Yi Wang
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Samuel Cheeseman
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Lilith Caballero Aguilar
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC 3010, Australia
- The Aikenhead Centre for Medical Discovery, St Vincent's Hospital, Fitzroy, Victoria 3065, Australia
| | - Rui Luís Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Parque da Ciência e Tecnologia, Rua Ave 1, 4805-694 Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Subhas C Kundu
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Parque da Ciência e Tecnologia, Rua Ave 1, 4805-694 Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - David R Nisbet
- The Graeme Clark Institute, The University of Melbourne, Parkville, VIC 3010, Australia
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC 3010, Australia
- Melbourne Medical School, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Jing-Liang Li
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3220, Australia
| |
Collapse
|
3
|
Ansari M, Shahlaei M, Hosseinzadeh S, Moradi S. Recent advances in nanostructured delivery systems for vancomycin. Nanomedicine (Lond) 2024; 19:1931-1951. [PMID: 39143926 PMCID: PMC11457640 DOI: 10.1080/17435889.2024.2377063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/30/2024] [Indexed: 08/16/2024] Open
Abstract
Despite the development of new generations of antibiotics, vancomycin remained as a high-efficacy antibiotic for treating the infections caused by MRSA. Researchers have explored various nanoformulations, aiming to enhance the therapeutic efficacy of vancomycin. Such novel formulations improve the effectiveness of drug cargoes in treating bacterial infections and minimizing the risk of adverse effects. The vast of researches have focuses on enhancing the permeation ability of vancomycin through different biological barriers especially those of gastrointestinal tract. Increasing the drug loading and tuning the drug release from nanocarrier are other important goal for many conducted studies. This study reviews the newest nano-based formulations for vancomycin as a key antibiotic in treating hospitalized bacterial infections.
Collapse
Affiliation(s)
- Mohabbat Ansari
- Department of Tissue Engineering & Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Shahlaei
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Simzar Hosseinzadeh
- Department of Tissue Engineering & Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Moradi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
4
|
Huang L, Shi J, Zhou W, Zhang Q. Advances in Preparation and Properties of Regenerated Silk Fibroin. Int J Mol Sci 2023; 24:13153. [PMID: 37685960 PMCID: PMC10487664 DOI: 10.3390/ijms241713153] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Over the years, silk fibroin (SF) has gained significant attention in various fields, such as biomedicine, tissue engineering, food processing, photochemistry, and biosensing, owing to its remarkable biocompatibility, machinability, and chemical modifiability. The process of obtaining regenerated silk fibroin (RSF) involves degumming, dissolving, dialysis, and centrifugation. RSF can be further fabricated into films, sponges, microspheres, gels, nanofibers, and other forms. It is now understood that the dissolution method selected greatly impacts the molecular weight distribution and structure of RSF, consequently influencing its subsequent processing and application. This study comprehensively explores and summarizes different dissolution methods of SF while examining their effects on the structure and performance of RSF. The findings presented herein aim to provide valuable insights and references for researchers and practitioners interested in utilizing RSF in diverse fields.
Collapse
Affiliation(s)
| | | | | | - Qing Zhang
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
5
|
Omidian H, Chowdhury SD. Advancements and Applications of Injectable Hydrogel Composites in Biomedical Research and Therapy. Gels 2023; 9:533. [PMID: 37504412 PMCID: PMC10379998 DOI: 10.3390/gels9070533] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023] Open
Abstract
Injectable hydrogels have gained popularity for their controlled release, targeted delivery, and enhanced mechanical properties. They hold promise in cardiac regeneration, joint diseases, postoperative analgesia, and ocular disorder treatment. Hydrogels enriched with nano-hydroxyapatite show potential in bone regeneration, addressing challenges of bone defects, osteoporosis, and tumor-associated regeneration. In wound management and cancer therapy, they enable controlled release, accelerated wound closure, and targeted drug delivery. Injectable hydrogels also find applications in ischemic brain injury, tissue regeneration, cardiovascular diseases, and personalized cancer immunotherapy. This manuscript highlights the versatility and potential of injectable hydrogel nanocomposites in biomedical research. Moreover, it includes a perspective section that explores future prospects, emphasizes interdisciplinary collaboration, and underscores the promising future potential of injectable hydrogel nanocomposites in biomedical research and applications.
Collapse
Affiliation(s)
- Hossein Omidian
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Sumana Dey Chowdhury
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| |
Collapse
|
6
|
Zhang P, Sun Y, Yang H, Liu D, Zhang F, Zhang Y, Zhong W, Zuo B, Zhou Z. Vancomycin-loaded silk fibroin microspheres in an injectable hydrogel for chronic osteomyelitis therapy. Front Bioeng Biotechnol 2023; 11:1163933. [PMID: 37324441 PMCID: PMC10267380 DOI: 10.3389/fbioe.2023.1163933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction: Chronic osteomyelitis remains a clinical challenge in orthopedics. Methods: In this study, silk fibroin microspheres (SFMPs) loaded with vancomycin are entrapped in an injectable silk hydrogel to form a vancomycin delivery system for treatment of chronic osteomyelitis. Results and Discussion: Vancomycin showed continuous release from the hydrogel for up to 25 days. The hydrogel shows strong antibacterial activity against both Escherichia coli and Staphylococcus aureus and a long antibacterial duration of 10 days without a decrease in the antibacterial effect. The injection of vancomycin-loaded silk fibroin microspheres entrapped in the hydrogel into the infected site of rat tibia reduced bone infection and improved bone regeneration compared with other treatment groups. Conclusion: Thus, the composite SF hydrogel features a sustained-release profile and good biocompatibility, making it promising for application in osteomyelitis treatment.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Yusheng Sun
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| | - Haizhen Yang
- Health Management Center, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Dong Liu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Feng Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| | - Yu Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Wentao Zhong
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Baoqi Zuo
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| | - Zhiqiang Zhou
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|