1
|
Titova SA, Kruglova MP, Stupin VA, Manturova NE, Achar RR, Deshpande G, Parfenov VA, Silina EV. Excipients for Cerium Dioxide Nanoparticle Stabilization in the Perspective of Biomedical Applications. Molecules 2025; 30:1210. [PMID: 40141988 PMCID: PMC11944302 DOI: 10.3390/molecules30061210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/25/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Rare earth metal nanoparticles, some of which are already widely used in medicine, are of growing interest in the modern scientific community. One of the promising rare earth metals for biomedical applications is cerium, specifically its oxide form, which is characterized by a higher level of stability and safety. According to a number of studies, cerium dioxide has a wide range of biological effects (regenerative, antimicrobial, antioxidant, antitumor), which justifies the interest of its potential application in medicine. However, these effects and their intensity vary significantly across a number of studies. Since cerium dioxide was used in these studies, it can be assumed that not only is the chemical formula important, but also the physicochemical parameters of the nanoparticles obtained, and consequently the methods of their synthesis and modification with the use of excipients. In this review, we considered the possibilities of using a number of excipients (polyacrylate, polyvinylpyrrolidone, dextran, hyaluronic acid, chitosan, polycarboxylic acids, lecithin, phosphatidylcholine) in the context of preserving the biological effects of cerium dioxide and its physicochemical properties, as well as the degree of study of these combinations from the point of view of the prospect of creating drugs based on it for biomedical applications.
Collapse
Affiliation(s)
- Svetlana A. Titova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia; (S.A.T.); (M.P.K.); (V.A.P.)
| | - Maria P. Kruglova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia; (S.A.T.); (M.P.K.); (V.A.P.)
| | - Victor A. Stupin
- Pirogov Russian National Research Medical University, Moscow 117997, Russia; (V.A.S.); (N.E.M.)
| | - Natalia E. Manturova
- Pirogov Russian National Research Medical University, Moscow 117997, Russia; (V.A.S.); (N.E.M.)
| | - Raghu Ram Achar
- JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India;
| | - Gouri Deshpande
- Regional Institute of Education (RIE NCERT), Mysuru 570006, Karnataka, India;
| | - Vladimir A. Parfenov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia; (S.A.T.); (M.P.K.); (V.A.P.)
| | - Ekaterina V. Silina
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia; (S.A.T.); (M.P.K.); (V.A.P.)
| |
Collapse
|
2
|
Yadav VK, Dhanasekaran S, Choudhary N, Nathiya D, Thakur V, Gupta R, Pramanik S, Kumar P, Gupta N, Patel A. Recent advances in nanotechnology for Parkinson's disease: diagnosis, treatment, and future perspectives. Front Med (Lausanne) 2025; 12:1535682. [PMID: 39911864 PMCID: PMC11794224 DOI: 10.3389/fmed.2025.1535682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/06/2025] [Indexed: 02/07/2025] Open
Abstract
Parkinson's disease is a progressive neurodegenerative disease that destroys substantia nigra dopaminergic neurons, causing tremors, bradykinesia, rigidity, and postural instability. Current treatment approaches primarily focus on symptom management, employing pharmacological, non-pharmacological, and surgical methods. However, these treatments often result in fluctuating symptoms, side effects, and disease progression. Here, the authors have reviewed the emerging field of nanomedicine as a promising path for Parkinson's disease treatment, emphasizing its potential to overcome the limitations of traditional therapies. Nanomedicine utilizes nanoparticles for targeted drug delivery, leveraging their small size and high surface area to volume ratio to cross the blood-brain barrier and deliver therapeutic agents directly to affected brain regions. Various nanoparticles, including lipid-based, polymeric, metallic, and carbon-based, have shown potential in Parkinson's disease treatment. Additionally, nanocarrier systems like liposomes, nanogels, dendrimers, and solid lipid nanoparticles offer controlled and sustained release of therapeutic agents, enhancing their bioavailability and reducing side effects. This review provides insights into the pathophysiology of Parkinson's disease, highlighting the mechanisms of neurodegeneration, the role of alpha-synuclein, and the disruption of dopaminergic pathways. It further discusses the application of gene therapy in conjunction with nanomedicine for targeted therapeutic interventions.
Collapse
Affiliation(s)
- Virendra Kumar Yadav
- Faculty of Sciences, Department of Microbiology, Marwadi University Research Center, Marwadi University, Rajkot, Gujarat, India
| | | | - Nisha Choudhary
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara, India
| | - Deepak Nathiya
- Department of Pharmacy Practice, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Vishal Thakur
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, India
| | - Rachna Gupta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Sheersha Pramanik
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Pankaj Kumar
- Department of Environmental Science, Parul Institute of Applied Sciences, Parul University, Vadodara, India
| | - Nishant Gupta
- Department of Engineering and Medical Devices, River Engineering Pvt. Ltd., Greater Noida, India
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, India
| |
Collapse
|
3
|
Furko M, Horváth ZE, Tolnai I, Balázsi K, Balázsi C. Investigation of Calcium Phosphate-Based Biopolymer Composite Scaffolds for Bone Tissue Engineering. Int J Mol Sci 2024; 25:13716. [PMID: 39769477 PMCID: PMC11677478 DOI: 10.3390/ijms252413716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
We present a novel method for preparing bioactive and biomineralized calcium phosphate (mCP)-loaded biopolymer composite scaffolds with a porous structure. Two types of polymers were investigated as matrices: one natural, cellulose acetate (CA), and one synthetic, polycaprolactone (PCL). Biomineralized calcium phosphate particles were synthesized via wet chemical precipitation, followed by the addition of organic biominerals, such as magnesium gluconate and zinc gluconate, to enhance the bioactivity of the pure CP phase. We compared the morphological and chemical characteristics of the two types of composites and assessed the effect of biomineralization on the particle structure of pure CP. The precipitated CP primarily consisted of nanocrystalline apatite, and the addition of organic trace elements significantly influenced the morphology by reducing particle size. FE-SEM elemental mapping confirmed the successful incorporation of mCP particles into both CA and PCL polymer matrices. Short-term immersion tests revealed that the decomposition rate of both composites is slow, with moderate and gradual ionic dissolution observed via ICP-OES measurements. The weight loss of the PCL-based composite during immersion was minimal, decreasing by only 0.5%, while the CA-based composite initially exhibited a slight weight increase before gradually decreasing over time.
Collapse
Affiliation(s)
- Monika Furko
- Institute of Technical Physics and Materials Science, HUN-REN Centre for Energy Research, Konkoly-Thege str. 29-33, H-1121 Budapest, Hungary; (Z.E.H.); (I.T.); (K.B.)
| | | | | | | | - Csaba Balázsi
- Institute of Technical Physics and Materials Science, HUN-REN Centre for Energy Research, Konkoly-Thege str. 29-33, H-1121 Budapest, Hungary; (Z.E.H.); (I.T.); (K.B.)
| |
Collapse
|
4
|
Pantelaiou MA, Vagenas D, Karvelis ES, Rotas G, Pispas S. Co-Assembled Nanosystems Exhibiting Intrinsic Fluorescence by Complexation of Amino Terpolymer and Its Quaternized Analog with Aggregation-Induced Emission (AIE) Dye. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1631. [PMID: 39452967 PMCID: PMC11510664 DOI: 10.3390/nano14201631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024]
Abstract
Aggregation-induced emission dyes (AIEs) have gained significant interest due to their unique optical properties. Upon aggregation, AIEs can exhibit remarkable fluorescence enhancement. These systems are ideal candidates for applications in bioimaging, such as image-guided drug delivery or surgery. Encapsulation of AIEs in polymeric nanocarriers can result in biocompatible and efficient nanosystems. Herein, we report the fabrication of novel nanoaggregates formulated by amino terpolymer and tetraphenylethylene (TPE) AIE in aqueous media. Poly(di(ethylene glycol) methyl ether methacrylate-co-2-(dimethylamino)ethylmethacrylate-co-oligoethylene glycol methyl ether methacrylate), P(DEGMA-co-DMAEMA-co-OEGMA) hydrophilic terpolymer was utilized for the complexation of the sodium tetraphenylethylene 4,4',4″,4‴-tetrasulfonate AIE dye. Fluorescence spectroscopy, physicochemical studies, and self-assembly in aqueous and fetal bovine serum media were carried out. The finely dispersed nanoparticles exhibited enhanced fluorescence compared to the pure dye. To investigate the role of tertiary amino groups in the aggregation phenomenon, the polymer was quaternized, and quaternized polymer nanocarriers were fabricated. The increase in fluorescence intensity indicated stronger interaction between the cationic polymer analog and the dye. A stronger interaction between the nanoparticles and fetal bovine serum was observed in the case of the quaternized polymer. Thus, P(DEGMA-co-DMAEMA-co-OEGMA) formulations are better candidates for bioimaging applications than the quaternized ones, presenting both aggregation-induced emission and less interaction with fetal bovine serum.
Collapse
Affiliation(s)
- Michaila Akathi Pantelaiou
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635 Athens, Greece; (M.A.P.); (D.V.)
| | - Dimitrios Vagenas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635 Athens, Greece; (M.A.P.); (D.V.)
| | - Evangelos S. Karvelis
- Section of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (E.S.K.); (G.R.)
| | - Georgios Rotas
- Section of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (E.S.K.); (G.R.)
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635 Athens, Greece; (M.A.P.); (D.V.)
| |
Collapse
|
5
|
Cucoveica O, Stadoleanu C, Bertsch C, Triaud R, Condriuc IP, Atanase LI, Delaite C. Colloidal Characteristics of Poly(L-Lactic Acid)-b-Poly (ε-Caprolactone) Block Copolymer-Based Nanoparticles Obtained by an Emulsification/Evaporation Method. Polymers (Basel) 2024; 16:2748. [PMID: 39408458 PMCID: PMC11479068 DOI: 10.3390/polym16192748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Poly(L-lactic acid) (PLLA) and poly(ε-caprolactone) (PCL), two biodegradable and biocompatible polymers that are commonly used for biomedical applications, are, respectively, the result of the ring-opening polymerization of LA and ε-CL, cyclic esters, which can be produced according to several mechanisms (cationic, monomer-activated cationic, anionic, and coordination-insertion), except for L-lactide, which is polymerized only by anionic, cationic, or coordination-insertion polymerization. A series of well-defined PLLA-b-PCL block copolymers have been obtained starting from the same PLLA homopolymer, having a molar mass of 2500 g·mol-1, and being synthesized by coordination-insertion in the presence of tin octoate. PCL blocks were obtained via a cationic-activated monomer mechanism to limit transesterification reactions, and their molar masses varied from 1800 to 18,500 g·mol-1. The physicochemical properties of the copolymers were determined by 1H NMR, SEC, and DSC. Moreover, a series of nanoparticles (NPs) were prepared starting from these polyester-based copolymers by an emulsification/evaporation method. The sizes of the obtained NPs varied between 140 and 150 nm, as a function of the molar mass of the copolymers. Monomodal distribution curves with PDI values under 0.1 were obtained by Dynamic Light Scattering (DLS) and their spherical shape was confirmed by TEM. The increase in the temperature from 25 to 37 °C induced only a very slight decrease in the NP sizes. The results obtained in this preliminary study indicate that NPs have a temperature stability, allowing us to consider their use as drug-loaded nanocarriers for biomedical applications.
Collapse
Affiliation(s)
- Oana Cucoveica
- “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania;
- Faculty of Medicine, Apollonia University of Iasi, 700511 Iasi, Romania;
| | - Carmen Stadoleanu
- Faculty of Medicine, Apollonia University of Iasi, 700511 Iasi, Romania;
| | - Christelle Bertsch
- Laboratoire de Photochimie et d’Ingénierie Macromoléculaires (LPIM), Université de Haute Alsace (UHA), 68100 Mulhouse, France; (C.B.); (R.T.)
- Université de Strasbourg, 67000 Strasbourg, France
| | - Romain Triaud
- Laboratoire de Photochimie et d’Ingénierie Macromoléculaires (LPIM), Université de Haute Alsace (UHA), 68100 Mulhouse, France; (C.B.); (R.T.)
- Université de Strasbourg, 67000 Strasbourg, France
| | - Iustina Petra Condriuc
- Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Leonard Ionut Atanase
- “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania;
- Faculty of Medicine, Apollonia University of Iasi, 700511 Iasi, Romania;
- Academy of Romanian Scientists, 050045 Bucharest, Romania
| | - Christelle Delaite
- Laboratoire de Photochimie et d’Ingénierie Macromoléculaires (LPIM), Université de Haute Alsace (UHA), 68100 Mulhouse, France; (C.B.); (R.T.)
- Université de Strasbourg, 67000 Strasbourg, France
| |
Collapse
|