1
|
Afzal A, Abbasi MH, Ahmad S, Sheikh N, Khawar MB. Current Trends in Messenger RNA Technology for Cancer Therapeutics. Biomater Res 2025; 29:0178. [PMID: 40207255 PMCID: PMC11978394 DOI: 10.34133/bmr.0178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 04/11/2025] Open
Abstract
Messenger RNA (mRNA)-based therapy has revolutionized cancer research by enabling versatile delivery systems for therapeutic applications. The future of mRNA-based cancer therapies shows promise amidst challenges such as delivery efficiency, immunogenicity, and tumor heterogeneity. Recent progress has adapted various strategies such as design flexibility, scalable production, and targeted delivery capabilities to enhance the potential in personalized cancer therapy. Further research to optimize delivery for enhanced outcomes and efficacy in solid tumors is warranted. Therefore, we aim to explore the current landscape and future prospects of mRNA technology across various therapeutic platforms.
Collapse
Affiliation(s)
- Ali Afzal
- Applied Molecular Biology and Biomedicine Lab, Department of Zoology,
University of Narowal, Narowal, Pakistan
| | | | - Shaaf Ahmad
- King Edward Medical University/Mayo Hospital, Lahore, Punjab 54000, Pakistan
| | - Nadeem Sheikh
- Cell & Molecular Biology Lab, Institute of Zoology,
University of the Punjab, Lahore, Pakistan
| | - Muhammad Babar Khawar
- Applied Molecular Biology and Biomedicine Lab, Department of Zoology,
University of Narowal, Narowal, Pakistan
| |
Collapse
|
2
|
Bekele-Alemu A, Dessalegn-Hora O, Safawo-Jarso T, Ligaba-Osena A. Rethinking progress: harmonizing the discourse on genetically modified crops. FRONTIERS IN PLANT SCIENCE 2025; 16:1547928. [PMID: 40190653 PMCID: PMC11968767 DOI: 10.3389/fpls.2025.1547928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/27/2025] [Indexed: 04/09/2025]
Abstract
Genetically modified crops (GM crops) also known as biotech crops are crops that have been altered through genetic engineering techniques and under cultivation for approximately 28 years. By October 2024, over 30 nations have approved the cultivation of GM crops. The global area utilized for biotech crop production has reached 206.3 million hectares. Despite the substantial growth in the cultivation of these crops, debate continues between proponents and opponents of GM crops. In this article, critical concerns and common ground between the arguments of both sides were described. The main issues addressed include the naturalness of GM crops, religious perspectives, beneficial aspects, safety issues, socio-economic impacts and intellectual property rights. We argue that the classification GM crops as unnatural is a claim that lacks scientific reality. In a similar vein, comparing GM technology to the act of playing God is inappropriate. Moreover, the belief that GM crops do not contribute to yield improvements is inconsistent with empirical evidence. Additionally, the claim that foods produced from GM crops are unsafe for human consumption holds unseen concerns that is not on the ground. We have also highlighted the necessity of implementing intellectual property rights that support seed developers for a limited duration without violating farmers' rights. In conclusion, as a consumer has the right to know what they eat, labeling of GM food products fosters transparency and enhance consumer autonomy.
Collapse
Affiliation(s)
- Abreham Bekele-Alemu
- Laboratory of Plant Molecular Biology and Biotechnology, Department of Biology, University of North Carolina Greensboro, Greensboro, NC, United States
- Department of Biology, College of Natural Sciences, Salale University, Fiche, Ethiopia
| | - Obssi Dessalegn-Hora
- Ethiopian Agricultural Research Institute, National Agricultural Biotechnology Research Center, Addis Ababa, Ethiopia
| | - Tura Safawo-Jarso
- Department of Biology, College of Natural Sciences, Salale University, Fiche, Ethiopia
| | - Ayalew Ligaba-Osena
- Laboratory of Plant Molecular Biology and Biotechnology, Department of Biology, University of North Carolina Greensboro, Greensboro, NC, United States
| |
Collapse
|
3
|
Ali A, Jabeen N, Farruhbek R, Chachar Z, Laghari AA, Chachar S, Ahmed N, Ahmed S, Yang Z. Enhancing nitrogen use efficiency in agriculture by integrating agronomic practices and genetic advances. FRONTIERS IN PLANT SCIENCE 2025; 16:1543714. [PMID: 40161228 PMCID: PMC11951869 DOI: 10.3389/fpls.2025.1543714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 01/31/2025] [Indexed: 04/02/2025]
Abstract
Nitrogen is a critical nutrient for plant growth and productivity, but inefficiencies in its use in agriculture present both economic and environmental challenges. Enhancing nitrogen use efficiency (NUE) is essential for promoting sustainable crop production and mitigating the negative impacts of nitrogen loss, such as water pollution and greenhouse gas emissions. This review discusses various strategies aimed at improving NUE, with a focus on agronomic practices, genetic advancements, and integrated management approaches. Traditional agronomic methods, including split nitrogen application and the use of controlled-release fertilizers, are explored alongside precision agriculture techniques, which enable real-time adjustments to nitrogen application based on crop and soil conditions. Advances in genetics and biotechnology, such as conventional breeding, genetic modification, and genome editing, have contributed to the development of crop varieties with improved nitrogen uptake and assimilation. Additionally, the role of beneficial microbes, including nitrogen-fixing bacteria and mycorrhizal fungi, is highlighted as a natural means of enhancing nitrogen availability and reducing reliance on synthetic fertilizers. The review further emphasizes sustainable practices such as legume-based crop rotations, continuous cover cropping, and organic fertilization, which contribute to soil nitrogen enrichment and overall soil health. By combining these agronomic, genetic, and microbial strategies, a holistic nitrogen management approach can be achieved, maximizing crop yields while minimizing environmental impacts. This integrated strategy supports the development of resilient and sustainable agricultural systems, promoting long-term soil fertility and productivity.
Collapse
Affiliation(s)
- Aamir Ali
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong, China
| | - Nida Jabeen
- School of Communications and Information Engineering, Chongqing University of Posts and Telecommunication, Chongqing, China
| | - Rasulov Farruhbek
- Andijan State Medical Institute, Department of Pharmaceutical Sciences, Andijan, Uzbekistan
| | - Zaid Chachar
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Azhar Ali Laghari
- College of Resources and Environment, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Sadaruddin Chachar
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Nazir Ahmed
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Shoaib Ahmed
- Department of Agronomy, Sindh Agriculture University Campus, Umerkot, Pakistan
- Department of Agronomy, Faculty of Crop Production, Sindh Agriculture University, Tandojam, Pakistan
| | - Zhenping Yang
- College of Agriculture, Shanxi Agricultural University, Taigu, Jinzhong, China
| |
Collapse
|
4
|
Fashedemi O, Ozoemena OC, Peteni S, Haruna AB, Shai LJ, Chen A, Rawson F, Cruickshank ME, Grant D, Ola O, Ozoemena KI. Advances in human papillomavirus detection for cervical cancer screening and diagnosis: challenges of conventional methods and opportunities for emergent tools. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:1428-1450. [PMID: 39775553 PMCID: PMC11706323 DOI: 10.1039/d4ay01921k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025]
Abstract
Human papillomavirus (HPV) infection is the main cause of cervical cancer and other cancers such as anogenital and oropharyngeal cancers. The prevention screening and treatment of cervical cancer has remained one of the top priorities of the World Health Organization (WHO). In 2020, the WHO came up with the 90-70-90 strategy aimed at eliminating cervical cancers as a public health problem by the year 2030. One of the key priorities of this strategy is the recommendation for countries to ensure that 70% of their women are screened using a high-performance test by the age of 35, and again by the age of 45. Over the years, several traditional methods (notably, Pap smear and nucleic acid-based techniques) have been used for the detection of cervical cancer. While these methods have significantly reduced the incidence of cervical cancer and death, they still come short of excellence for the total eradication of HPV infection. The challenges include low sensitivity, low specificity, poor reproducibility, the need for high-level specialists, and the high cost of access to the facilities, to mention a few. Interestingly, however, several efforts are being made today to mitigate these challenges. In this review, we discussed the pros and cons of the traditional screening and testing of HPV infections, the efforts being made to improve their performances, and the emergent tools (especially, the electrochemical methods) that promise to revolutionize the screening and testing of HPV infections. The main aim of the review is to provide some novel clues to researchers that would allow for the development of high-performance, affordable, and triage-suitable electrochemical-based diagnostic tools for HPV and cervical cancer.
Collapse
Affiliation(s)
- O Fashedemi
- Advanced Materials Group, Faculty of Engineering, The University of Nottingham, Nottingham NG7 2RD, UK.
| | | | - Siwaphiwe Peteni
- Molecular Science Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa.
| | - Aderemi B Haruna
- Molecular Science Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa.
| | - Leshweni J Shai
- Department of Biomedical Sciences, Tshwane University of Technology, Pretoria 0001, South Africa
| | - Aicheng Chen
- Department of Chemistry, University of Guelph, Ontario, Canada
| | - Frankie Rawson
- Advanced Materials Group, Faculty of Engineering, The University of Nottingham, Nottingham NG7 2RD, UK.
| | - Maggie E Cruickshank
- Aberdeen Centre for Women's Health Research, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - David Grant
- Advanced Materials Group, Faculty of Engineering, The University of Nottingham, Nottingham NG7 2RD, UK.
| | - Oluwafunmilola Ola
- Advanced Materials Group, Faculty of Engineering, The University of Nottingham, Nottingham NG7 2RD, UK.
| | - Kenneth I Ozoemena
- Molecular Science Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa.
| |
Collapse
|
5
|
Bonowicz K, Jerka D, Piekarska K, Olagbaju J, Stapleton L, Shobowale M, Bartosiński A, Łapot M, Bai Y, Gagat M. CRISPR-Cas9 in Cardiovascular Medicine: Unlocking New Potential for Treatment. Cells 2025; 14:131. [PMID: 39851560 PMCID: PMC11763404 DOI: 10.3390/cells14020131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/12/2025] [Accepted: 01/15/2025] [Indexed: 01/26/2025] Open
Abstract
Cardiovascular diseases (CVDs) remain a significant global health challenge, with many current treatments addressing symptoms rather than the genetic roots of these conditions. The advent of CRISPR-Cas9 technology has revolutionized genome editing, offering a transformative approach to targeting disease-causing mutations directly. This article examines the potential of CRISPR-Cas9 in the treatment of various CVDs, including atherosclerosis, arrhythmias, cardiomyopathies, hypertension, and Duchenne muscular dystrophy (DMD). The technology's ability to correct single-gene mutations with high precision and efficiency positions it as a groundbreaking tool in cardiovascular therapy. Recent developments have extended the capabilities of CRISPR-Cas9 to include mitochondrial genome editing, a critical advancement for addressing mitochondrial dysfunctions often linked to cardiovascular disorders. Despite its promise, significant challenges remain, including off-target effects, ethical concerns, and limitations in delivery methods, which hinder its translation into clinical practice. This article also explores the ethical and regulatory considerations surrounding gene editing technologies, emphasizing the implications of somatic versus germline modifications. Future research efforts should aim to enhance the accuracy of CRISPR-Cas9, improve delivery systems for targeted tissues, and ensure the safety and efficacy of treatments in the long term. Overcoming these obstacles could enable CRISPR-Cas9 to not only treat but also potentially cure genetically driven cardiovascular diseases, heralding a new era in precision medicine for cardiovascular health.
Collapse
Affiliation(s)
- Klaudia Bonowicz
- Department of Histology and Embryology and Vascular Biology Student Research Club, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland; (K.B.); (D.J.); (K.P.); (J.O.); (L.S.); (M.S.)
- Faculty of Medicine, Collegium Medicum, Mazovian Academy in Płock, 09-402 Płock, Poland; (A.B.); (M.Ł.)
| | - Dominika Jerka
- Department of Histology and Embryology and Vascular Biology Student Research Club, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland; (K.B.); (D.J.); (K.P.); (J.O.); (L.S.); (M.S.)
| | - Klaudia Piekarska
- Department of Histology and Embryology and Vascular Biology Student Research Club, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland; (K.B.); (D.J.); (K.P.); (J.O.); (L.S.); (M.S.)
| | - Janet Olagbaju
- Department of Histology and Embryology and Vascular Biology Student Research Club, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland; (K.B.); (D.J.); (K.P.); (J.O.); (L.S.); (M.S.)
| | - Laura Stapleton
- Department of Histology and Embryology and Vascular Biology Student Research Club, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland; (K.B.); (D.J.); (K.P.); (J.O.); (L.S.); (M.S.)
| | - Munirat Shobowale
- Department of Histology and Embryology and Vascular Biology Student Research Club, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland; (K.B.); (D.J.); (K.P.); (J.O.); (L.S.); (M.S.)
| | - Andrzej Bartosiński
- Faculty of Medicine, Collegium Medicum, Mazovian Academy in Płock, 09-402 Płock, Poland; (A.B.); (M.Ł.)
| | - Magdalena Łapot
- Faculty of Medicine, Collegium Medicum, Mazovian Academy in Płock, 09-402 Płock, Poland; (A.B.); (M.Ł.)
| | - Yidong Bai
- Department of Cell Systems and Anatomy, UT Health, Long School of Medicine, San Antonio, TX 78229, USA;
| | - Maciej Gagat
- Department of Histology and Embryology and Vascular Biology Student Research Club, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland; (K.B.); (D.J.); (K.P.); (J.O.); (L.S.); (M.S.)
- Faculty of Medicine, Collegium Medicum, Mazovian Academy in Płock, 09-402 Płock, Poland; (A.B.); (M.Ł.)
| |
Collapse
|
6
|
Amoah P, Oumarou Mahamane AR, Byiringiro MH, Mahula NJ, Manneh N, Oluwasegun YR, Assfaw AT, Mukiti HM, Garba AD, Chiemeke FK, Bernard Ojuederie O, Olasanmi B. Genome editing in Sub-Saharan Africa: a game-changing strategy for climate change mitigation and sustainable agriculture. GM CROPS & FOOD 2024; 15:279-302. [PMID: 39481911 PMCID: PMC11533803 DOI: 10.1080/21645698.2024.2411767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 11/03/2024]
Abstract
Sub-Saharan Africa's agricultural sector faces a multifaceted challenge due to climate change consisting of high temperatures, changing precipitation trends, alongside intensified pest and disease outbreaks. Conventional plant breeding methods have historically contributed to yield gains in Africa, and the intensifying demand for food security outpaces these improvements due to a confluence of factors, including rising urbanization, improved living standards, and population growth. To address escalating food demands amidst urbanization, rising living standards, and population growth, a paradigm shift toward more sustainable and innovative crop improvement strategies is imperative. Genome editing technologies offer a promising avenue for achieving sustained yield increases while bolstering resilience against escalating biotic and abiotic stresses associated with climate change. Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein (CRISPR/Cas) is unique due to its ubiquity, efficacy, alongside precision, making it a pivotal tool for Sub-Saharan African crop improvement. This review highlights the challenges and explores the prospect of gene editing to secure the region's future foods.
Collapse
Affiliation(s)
- Peter Amoah
- Plant Breeding Programme, Pan African University Life and Earth Sciences Institute (Including Health and Agriculture), Ibadan, Nigeria
| | | | - Moise Hubert Byiringiro
- Plant Breeding Programme, Pan African University Life and Earth Sciences Institute (Including Health and Agriculture), Ibadan, Nigeria
| | - Neo Jeremiah Mahula
- Plant Breeding Programme, Pan African University Life and Earth Sciences Institute (Including Health and Agriculture), Ibadan, Nigeria
| | - Nyimasata Manneh
- Plant Breeding Programme, Pan African University Life and Earth Sciences Institute (Including Health and Agriculture), Ibadan, Nigeria
| | - Yetunde Ruth Oluwasegun
- Plant Breeding Programme, Pan African University Life and Earth Sciences Institute (Including Health and Agriculture), Ibadan, Nigeria
| | - Abebawork Tilahun Assfaw
- Plant Breeding Programme, Pan African University Life and Earth Sciences Institute (Including Health and Agriculture), Ibadan, Nigeria
| | - Hellen Mawia Mukiti
- Plant Breeding Programme, Pan African University Life and Earth Sciences Institute (Including Health and Agriculture), Ibadan, Nigeria
| | - Abubakar Danlami Garba
- Plant Breeding Programme, Pan African University Life and Earth Sciences Institute (Including Health and Agriculture), Ibadan, Nigeria
| | - Felicity Kido Chiemeke
- Plant Breeding Programme, Pan African University Life and Earth Sciences Institute (Including Health and Agriculture), Ibadan, Nigeria
| | - Omena Bernard Ojuederie
- Department of Biological Sciences, Biotechnology Unit, Faculty of Science, Kings University, Ode-Omu, Nigeria
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Bunmi Olasanmi
- Department of Crop and Horticultural Science, Faculty of Agriculture, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
7
|
Bhagat M, Kamal R, Sharma J, Kaur K, Sharma A, Singh TG, Bhatia R, Awasthi A. Gene Therapy: Towards a New Era of Medicine. AAPS PharmSciTech 2024; 26:17. [PMID: 39702810 DOI: 10.1208/s12249-024-03010-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024] Open
Abstract
Over the past years, many significant advances have been made in the field of gene therapy and shown promising results in clinical trials conducted. Gene therapy aims at modifying or replacing a defective, inefficient, or nonfunctional gene with a healthy, functional gene by administration of genome material into the cell to cure genetic diseases. Various methods have been devised to do this by using several viral and non-viral vectors which are either administered by in vivo or ex vivo technique. Viral vectors are best suitable for this therapy due to their potential to invade cells and deliver their genetic material whereas non-viral vectors are less efficient than viral vectors but possess some advantages such as less immunogenic response and large gene carrying capacity. Recent advances in biotechnology such as CRISPR-Cas9 mediated genome engineering and Cancer treatment with Chimeric antigen receptor (CAR) T-cell therapy are addressed in this review. This review article also delves into some recent research studies, gene therapy trials, and its applications, laying out future hopes for gene therapy in the treatment of various diseases namely haemophilia, Muscular dystrophy, SCID, Sickle cell disease, Familial Hypercholesterolemia, Cystic Fibrosis. Additionally, it also includes various nanoformulations and clinical trial data related to gene therapy.
Collapse
Affiliation(s)
- Mokshit Bhagat
- Bachlor of Pharmacy, I.S.F College of Pharmacy, Moga, Punjab, India
| | - Raj Kamal
- School of Pharmacy, Desh Bhagat University, Mandi Gobindgarh, Punjab, 147301, India
| | - Jyoti Sharma
- Department of Pharmaceutics, I.S. F College of Pharmacy, Moga, Punjab, India
| | - Kirandeep Kaur
- Department of Pharmaceutics, I.S. F College of Pharmacy, Moga, Punjab, India
| | - Amit Sharma
- Department of Pharmaceutics, I.S. F College of Pharmacy, Moga, Punjab, India.
| | | | - Rohit Bhatia
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Ankit Awasthi
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| |
Collapse
|
8
|
Bhat R, Nallamothu B, Shethia F, Chhaya V, Khambholja K. Key challenges in developing a gene therapy for Usher syndrome: machine-assisted scoping review. J Community Genet 2024; 15:735-747. [PMID: 39549230 PMCID: PMC11645336 DOI: 10.1007/s12687-024-00749-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/30/2024] [Indexed: 11/18/2024] Open
Abstract
Despite compelling empirical evidence demonstrating its efficacy, gene therapies for usher syndrome (USH) are not yet available for the patient's usage. This scoping review assessed the current scenario and analysed the challenges in implementing gene therapies for USH. A literature search was conducted using PubMed and Google Scholar through an artificial intelligence (AI) tool, MaiA, focusing on relevant publications from the last 10 years. We followed the methodological guidance of the Joanna Briggs Institute (JBI) and adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses for Scoping Reviews (PRISMA-ScR) checklist. Of 517 records, 51 reports were considered for final analysis. It identified and categorized challenges across four key areas: preclinical, clinical, economic, and regulatory. Of all, many reports (30) highlighted the preclinical challenges where the USH gene development process encountered roadblocks. Specifically, preclinical challenges included the lack of suitable in-vivo models and effective delivery methods. Clinical challenges focused on establishing clear endpoints and long-term safety and efficacy. Economic challenges addressed diagnostic issues and manufacturing hurdles, while regulatory challenges focused on expedited evaluation processes and guidance for clinical development. Our analysis uncovered key barriers to clinical translation of USH gene therapy and strategies to address them. Researchers are employing innovative approaches, including novel delivery methods such as minigenes and nanoparticles, inventive clinical trial designs, cohesive regulatory frameworks, strategic market assessments, and collaborative research initiatives. These efforts hold promise for impactful disease-cure and modifying interventions ultimately enhancing the quality of life for USH patients.
Collapse
Affiliation(s)
| | | | - Foram Shethia
- Catalyst Clinical Research, Vadodara, Gujarat, India
| | - Vatsal Chhaya
- Catalyst Clinical Research, Vadodara, Gujarat, India
| | | |
Collapse
|
9
|
Pathoor NN, Ganesh PS, Gopal RK. Microbiome interactions: Acinetobacter baumannii biofilms as a co-factor in oral cancer progression. World J Microbiol Biotechnol 2024; 40:398. [PMID: 39612015 DOI: 10.1007/s11274-024-04208-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 11/19/2024] [Indexed: 11/30/2024]
Abstract
Acinetobacter baumannii (A. baumannii) has long been recognized primarily as a hospital-acquired pathogen. However, recent studies have uncovered a potential link between this bacterium and oral cancer, necessitating a deeper exploration of this relationship. This review examines the relevance of A. baumannii biofilms in the context of oral cancer development. By synthesizing current knowledge, we seek to provide a comprehensive understanding of this emerging area of research and identify critical directions for future investigations. The review emphasizes the remarkable adaptability, environmental resilience, and antibiotic resistance of A. baumannii, delves into the molecular mechanisms of biofilm formation, and their potential connection to oral cancer progression. The review also evaluates how biofilm colonization on oral surfaces and medical devices, along with its role in chronic infections, inflammation, and increased antimicrobial resistance, could contribute to creating a microenvironment favourable for tumor development. This review underscores the broader healthcare implications of A. baumannii biofilms, evaluates current strategies for their prevention and eradication, and calls for interdisciplinary research in this emerging field. By shedding light on the complex interactions between A. baumannii biofilms and oral cancer, it aims to stimulate further research and guide the development of new diagnostic, preventive, and therapeutic strategies in both microbiology and oncology.
Collapse
Affiliation(s)
- Naji Naseef Pathoor
- Department of Microbiology, Centre for infectious Diseases, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University (Deemed to be University), Poonamallee, High Road Chennai, 600 077, Tamil Nadu, India
| | - Pitchaipillai Sankar Ganesh
- Department of Microbiology, Centre for infectious Diseases, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University (Deemed to be University), Poonamallee, High Road Chennai, 600 077, Tamil Nadu, India.
| | - Rajesh Kanna Gopal
- Department of Microbiology, Centre for infectious Diseases, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University (Deemed to be University), Poonamallee, High Road Chennai, 600 077, Tamil Nadu, India
| |
Collapse
|
10
|
Al Tahan MA, Al Tahan S. Pioneering Advances and Innovative Applications of Mesoporous Carriers for Mitochondria-Targeted Therapeutics. Br J Biomed Sci 2024; 81:13707. [PMID: 39624468 PMCID: PMC11608979 DOI: 10.3389/bjbs.2024.13707] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/07/2024] [Indexed: 01/03/2025]
Abstract
Mitochondria, known as the cell's powerhouse, play a critical role in energy production, cellular maintenance, and stemness regulation in non-cancerous cells. Despite their importance, using drug delivery systems to target the mitochondria presents significant challenges due to several barriers, including cellular uptake limitations, enzymatic degradation, and the mitochondrial membranes themselves. Additionally, barriers in the organs to be targetted, along with extracellular barriers formed by physiological processes such as the reticuloendothelial system, contribute to the rapid elimination of nanoparticles designed for mitochondrial-based drug delivery. Overcoming these challenges has led to the development of various strategies, such as molecular targeting using cell-penetrating peptides, genomic editing, and nanoparticle-based systems, including porous carriers, liposomes, micelles, and Mito-Porters. Porous carriers stand out as particularly promising candidates as drug delivery systems for targeting the mitochondria due to their large pore size, surface area, and ease of functionalisation. Depending on the pore size, they can be classified as micro-, meso-, or macroporous and are either ordered or non-ordered based on both size and pore uniformity. Several methods are employed to target the mitochondria using porous carriers, such as surface modifications with polyethylene glycol (PEG), incorporation of targeting ligands like triphenylphosphonium, and capping the pores with gold nanoparticles or chitosan to enable controlled and triggered drug delivery. Photodynamic therapy is another approach, where drug-loaded porous carriers generate reactive oxygen species (ROS) to enhance mitochondrial targeting. Further advancements have been made in the form of functionalised porous silica and carbon nanoparticles, which have demonstrated potential for effective drug delivery to mitochondria. This review highlights the various approaches that utilise porous carriers, specifically focusing on silica-based systems, as efficient vehicles for targeting mitochondria, paving the way for improved drug delivery strategies in mitochondrial therapies.
Collapse
Affiliation(s)
- Mohamad Anas Al Tahan
- Aston Medical Research Institute, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| | - Sana Al Tahan
- Faculty of Pharmacy, Arab International University, Daraa, Syria
| |
Collapse
|
11
|
Maniaci A, Briglia M, Allia F, Montalbano G, Romano GL, Zaouali MA, H’mida D, Gagliano C, Malaguarnera R, Lentini M, Graziano ACE, Giurdanella G. The Role of Pericytes in Inner Ear Disorders: A Comprehensive Review. BIOLOGY 2024; 13:802. [PMID: 39452111 PMCID: PMC11504721 DOI: 10.3390/biology13100802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/02/2024] [Accepted: 10/06/2024] [Indexed: 10/26/2024]
Abstract
Inner ear disorders, including sensorineural hearing loss, Meniere's disease, and vestibular neuritis, are prevalent conditions that significantly impact the quality of life. Despite their high incidence, the underlying pathophysiology of these disorders remains elusive, and current treatment options are often inadequate. Emerging evidence suggests that pericytes, a type of vascular mural cell specialized to maintain the integrity and function of the microvasculature, may play a crucial role in the development and progression of inner ear disorders. The pericytes are present in the microvasculature of both the cochlea and the vestibular system, where they regulate blood flow, maintain the blood-labyrinth barrier, facilitate angiogenesis, and provide trophic support to neurons. Understanding their role in inner ear disorders may provide valuable insights into the pathophysiology of these conditions and lead to the development of novel diagnostic and therapeutic strategies, improving the standard of living. This comprehensive review aims to provide a detailed overview of the role of pericytes in inner ear disorders, highlighting the anatomy and physiology in the microvasculature, and analyzing the mechanisms that contribute to the development of the disorders. Furthermore, we explore the potential pericyte-targeted therapies, including antioxidant, anti-inflammatory, and angiogenic approaches, as well as gene therapy strategies.
Collapse
Affiliation(s)
- Antonino Maniaci
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
- Department of Surgery, ENT Unit, Asp 7 Ragusa, 97100 Ragusa, Italy
| | - Marilena Briglia
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
| | - Fabio Allia
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
| | - Giuseppe Montalbano
- Zebrafish Neuromorphology Laboratory, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy;
| | - Giovanni Luca Romano
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
| | - Mohamed Amine Zaouali
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy, University of Monastir, Avicenne Street, 5019 Monastir, Tunisia;
| | - Dorra H’mida
- Department of Cytogenetics and Reproductive Biology, Farhat Hached Hospital, 4021 Sousse, Tunisia;
| | - Caterina Gagliano
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
| | - Roberta Malaguarnera
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
| | - Mario Lentini
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
- Department of Surgery, ENT Unit, Asp 7 Ragusa, 97100 Ragusa, Italy
| | - Adriana Carol Eleonora Graziano
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
| | - Giovanni Giurdanella
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.); (F.A.); (G.L.R.); (C.G.); (R.M.); (G.G.)
| |
Collapse
|
12
|
Aljabali AAA, Alkaraki AK, Gammoh O, Tambuwala MM, Mishra V, Mishra Y, Hassan SS, El-Tanani M. Deciphering Depression: Epigenetic Mechanisms and Treatment Strategies. BIOLOGY 2024; 13:638. [PMID: 39194576 PMCID: PMC11351889 DOI: 10.3390/biology13080638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
Depression, a significant mental health disorder, is under intense research scrutiny to uncover its molecular foundations. Epigenetics, which focuses on controlling gene expression without altering DNA sequences, offers promising avenues for innovative treatment. This review explores the pivotal role of epigenetics in depression, emphasizing two key aspects: (I) identifying epigenetic targets for new antidepressants and (II) using personalized medicine based on distinct epigenetic profiles, highlighting potential epigenetic focal points such as DNA methylation, histone structure alterations, and non-coding RNA molecules such as miRNAs. Variations in DNA methylation in individuals with depression provide opportunities to target genes that are associated with neuroplasticity and synaptic activity. Aberrant histone acetylation may indicate that antidepressant strategies involve enzyme modifications. Modulating miRNA levels can reshape depression-linked gene expression. The second section discusses personalized medicine based on epigenetic profiles. Analyzing these patterns could identify biomarkers associated with treatment response and susceptibility to depression, facilitating tailored treatments and proactive mental health care. Addressing ethical concerns regarding epigenetic information, such as privacy and stigmatization, is crucial in understanding the biological basis of depression. Therefore, researchers must consider these issues when examining the role of epigenetics in mental health disorders. The importance of epigenetics in depression is a critical aspect of modern medical research. These findings hold great potential for novel antidepressant medications and personalized treatments, which would significantly improve patient outcomes, and transform psychiatry. As research progresses, it is expected to uncover more complex aspects of epigenetic processes associated with depression, enhance our comprehension, and increase the effectiveness of therapies.
Collapse
Affiliation(s)
- Alaa A. A. Aljabali
- Faculty of Pharmacy, Department of Pharmaceutics & Pharmaceutical Technology, Yarmouk University, Irbid 21163, Jordan
| | - Almuthanna K. Alkaraki
- Department of Biological Sciences, Faculty of Science, Yarmouk University, Irbid 21163, Jordan;
| | - Omar Gammoh
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Yarmouk University, P.O. Box 566, Irbid 21163, Jordan;
| | - Murtaza M. Tambuwala
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates; (M.M.T.); (M.E.-T.)
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Yachana Mishra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Sk. Sarif Hassan
- Department of Mathematics, Pingla Thana Mahavidyalaya, Maligram, Paschim Medinipur 721140, West Bengal, India;
| | - Mohamed El-Tanani
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates; (M.M.T.); (M.E.-T.)
| |
Collapse
|
13
|
Soroudi S, Jaafari MR, Arabi L. Lipid nanoparticle (LNP) mediated mRNA delivery in cardiovascular diseases: Advances in genome editing and CAR T cell therapy. J Control Release 2024; 372:113-140. [PMID: 38876358 DOI: 10.1016/j.jconrel.2024.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/05/2024] [Accepted: 06/09/2024] [Indexed: 06/16/2024]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of global mortality among non-communicable diseases. Current cardiac regeneration treatments have limitations and may lead to adverse reactions. Hence, innovative technologies are needed to address these shortcomings. Messenger RNA (mRNA) emerges as a promising therapeutic agent due to its versatility in encoding therapeutic proteins and targeting "undruggable" conditions. It offers low toxicity, high transfection efficiency, and controlled protein production without genome insertion or mutagenesis risk. However, mRNA faces challenges such as immunogenicity, instability, and difficulty in cellular entry and endosomal escape, hindering its clinical application. To overcome these hurdles, lipid nanoparticles (LNPs), notably used in COVID-19 vaccines, have a great potential to deliver mRNA therapeutics for CVDs. This review highlights recent progress in mRNA-LNP therapies for CVDs, including Myocardial Infarction (MI), Heart Failure (HF), and hypercholesterolemia. In addition, LNP-mediated mRNA delivery for CAR T-cell therapy and CRISPR/Cas genome editing in CVDs and the related clinical trials are explored. To enhance the efficiency, safety, and clinical translation of mRNA-LNPs, advanced technologies like artificial intelligence (AGILE platform) in RNA structure design, and optimization of LNP formulation could be integrated. We conclude that the strategies to facilitate the extra-hepatic delivery and targeted organ tropism of mRNA-LNPs (SORT, ASSET, SMRT, and barcoded LNPs) hold great prospects to accelerate the development and translation of mRNA-LNPs in CVD treatment.
Collapse
Affiliation(s)
- Setareh Soroudi
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Arabi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
14
|
Hussen BM, Najmadden ZB, Abdullah SR, Rasul MF, Mustafa SA, Ghafouri-Fard S, Taheri M. CRISPR/Cas9 gene editing: a novel strategy for fighting drug resistance in respiratory disorders. Cell Commun Signal 2024; 22:329. [PMID: 38877530 PMCID: PMC11179281 DOI: 10.1186/s12964-024-01713-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/12/2024] [Indexed: 06/16/2024] Open
Abstract
Respiratory disorders are among the conditions that affect the respiratory system. The healthcare sector faces challenges due to the emergence of drug resistance to prescribed medications for these illnesses. However, there is a technology called CRISPR/Cas9, which uses RNA to guide DNA targeting. This technology has revolutionized our ability to manipulate and visualize the genome, leading to advancements in research and treatment development. It can effectively reverse epigenetic alterations that contribute to drug resistance. Some studies focused on health have shown that targeting genes using CRISPR/Cas9 can be challenging when it comes to reducing drug resistance in patients with respiratory disorders. Nevertheless, it is important to acknowledge the limitations of this technology, such as off-target effects, immune system reactions to Cas9, and challenges associated with delivery methods. Despite these limitations, this review aims to provide knowledge about CRISPR/Cas9 genome editing tools and explore how they can help overcome resistance in patients with respiratory disorders. Additionally, this study discusses concerns related to applications of CRISPR and provides an overview of successful clinical trial studies.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Biomedical Sciences, College of Science, Cihan University-Erbil, Erbil, 44001, Kurdistan Region, Iraq
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Zana Baqi Najmadden
- Research Center, University of Halabja, Halabja, 46018, Kurdistan region, Iraq
| | - Snur Rasool Abdullah
- Medical Laboratory Science, College of Health Sciences, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Mohammed Fatih Rasul
- Department of Pharmaceutical Basic Science, Tishk International University, Kurdistan Region, Iraq
| | - Suhad A Mustafa
- General Directorate of Scientific Research Center, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| |
Collapse
|
15
|
Nie H, Yang X, Zheng S, Hou L. Gene-Based Developments in Improving Quality of Tomato: Focus on Firmness, Shelf Life, and Pre- and Post-Harvest Stress Adaptations. HORTICULTURAE 2024; 10:641. [DOI: 10.3390/horticulturae10060641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Tomato (Solanum lycopersicum) is a widely consumed vegetable crop with significant economic and nutritional importance. This review paper discusses the recent advancements in gene-based approaches to enhance the quality of tomatoes, particularly focusing on firmness, shelf life, and adaptations to pre- and post-harvest stresses. Utilizing genetic engineering techniques, such as Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated proteins 9 (CRISPR/Cas9) and Transcription Activator-like Effector Nucleases (TALENs), researchers have made remarkable progress in developing tomatoes with improved traits that address key challenges faced during cultivation, storage, and transportation. We further highlighted the potential of genetic modifications in enhancing tomato firmness, thereby reducing post-harvest losses and improving consumer satisfaction. Furthermore, strategies to extend tomato shelf life through genetic interventions are discussed, emphasizing the importance of maintaining quality and freshness for sustainable food supply chains. Furthermore, the review delves into the ways in which gene-based adaptations can bolster tomatoes against environmental stresses, pests, and diseases, thereby enhancing crop resilience and ensuring stable yields. Emphasizing these crucial facets, this review highlights the essential contribution of genetic advancements in transforming tomato production, elevating quality standards, and promoting the sustainability of tomato cultivation practices.
Collapse
Affiliation(s)
- Hongmei Nie
- College of Horticulture, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Xiu Yang
- College of Horticulture, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Shaowen Zheng
- College of Horticulture, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Leiping Hou
- College of Horticulture, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| |
Collapse
|