1
|
Dolivo DM, Rodrigues AE, Galiano RD, Mustoe TA, Hong SJ. Prediction and Demonstration of Retinoic Acid Receptor Agonist Ch55 as an Antifibrotic Agent in the Dermis. J Invest Dermatol 2023; 143:1724-1734.e15. [PMID: 36804965 PMCID: PMC10432574 DOI: 10.1016/j.jid.2023.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/18/2023]
Abstract
The prevalence of fibrotic diseases and the lack of pharmacologic modalities to effectively treat them impart particular importance to the discovery of novel antifibrotic therapies. The repurposing of drugs with existing mechanisms of action and/or clinical data is a promising approach for the treatment of fibrotic diseases. One paradigm that pervades all fibrotic diseases is the pathological myofibroblast, a collagen-secreting, contractile mesenchymal cell that is responsible for the deposition of fibrotic tissue. In this study, we use a gene expression paradigm characteristic of activated myofibroblasts in combination with the Connectivity Map to select compounds that are predicted to reverse the pathological gene expression signature associated with the myofibroblast and thus contain the potential for use as antifibrotic compounds. We tested a small list of these compounds in a first-pass screen, applying them to fibroblasts, and identified the retinoic acid receptor agonist Ch55 as a potential hit. Further investigation exhibited and elucidated the antifibrotic effects of Ch55 in vitro as well as showing antiscarring activity upon intradermal application in a preclinical rabbit ear hypertrophic scar model. We hope that similar predictions to uncover antiscarring compounds may yield further preclinical and ultimately clinical success.
Collapse
Affiliation(s)
- David M Dolivo
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Adrian E Rodrigues
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Robert D Galiano
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Thomas A Mustoe
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Seok Jong Hong
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.
| |
Collapse
|
2
|
Ames PRJ, Bucci T, Merashli M, Amaral M, Arcaro A, Gentile F, Nourooz-Zadeh J, DelgadoAlves J. Oxidative/nitrative stress in the pathogenesis of systemic sclerosis: are antioxidants beneficial? Free Radic Res 2018; 52:1063-1082. [PMID: 30226391 DOI: 10.1080/10715762.2018.1525712] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Systemic sclerosis (SSc) is a multisystem autoimmune disease: characterised from the clinical side by progressive vasculopathy and fibrosis of the skin and different organs and from the biochemical side by fibroblast deregulation with excessive production of collagen and increased expression of nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4). The latter contributes to an overproduction of reactive oxygen species that through an autocrine loop maintains NOX4 in a state of activation. Reactive oxygen and nitrogen species are implicated in the origin and perpetuation of several clinical manifestations of SSc having vascular damage in common; attempts to dampen oxidative and nitrative stress through different agents with antioxidant properties have not translated into a sustained clinical benefit. Objective of this narrative review is to describe the origin and clinical implications of oxidative and nitrative stress in SSc, with particular focus on the central role of NOX4 and its interactions, to re-evaluate the antioxidant approaches so far used to limit disease progression, to appraise the complexity of antioxidant treatment and to touch on novel pathways elements of which may represent specific treatment targets in the not so distant future.
Collapse
Affiliation(s)
- Paul R J Ames
- a Immune Response and Vascular Disease Unit , CEDOC, Nova University , Lisboa , Portugal.,b Department of Haematology , Dumfries Royal Infirmary , Dumfries , UK
| | - Tommaso Bucci
- c Division of Allergy and Clinical Immunology, Department of Internal Medicine , University of Salerno , Baronissi , Italy
| | - Mira Merashli
- d Department of Rheumatology , American University of Beirut , Beirut , Lebanon
| | - Marta Amaral
- a Immune Response and Vascular Disease Unit , CEDOC, Nova University , Lisboa , Portugal
| | - Alessia Arcaro
- e Department of Medicine & Health Sciences , Universita' del Molise , Campobasso , Italy
| | - Fabrizio Gentile
- e Department of Medicine & Health Sciences , Universita' del Molise , Campobasso , Italy
| | - Jaffar Nourooz-Zadeh
- f Nephrology & Kidney Transplantation Research Center , Urmia University of Medical Sciences , Urmia , Iran
| | - Jose DelgadoAlves
- a Immune Response and Vascular Disease Unit , CEDOC, Nova University , Lisboa , Portugal.,g Immunomediated Systemic Diseases Unit, Medicine 4 , Hospital Fernando Fonseca , Amadora , Portugal
| |
Collapse
|
3
|
All-Trans Retinoic Acid Induces CD4+CD25+FOXP3+ Regulatory T Cells by Increasing FOXP3 Demethylation in Systemic Sclerosis CD4+ T Cells. J Immunol Res 2018; 2018:8658156. [PMID: 29854846 PMCID: PMC5952589 DOI: 10.1155/2018/8658156] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 02/03/2018] [Accepted: 02/18/2018] [Indexed: 12/21/2022] Open
Abstract
Background Retinoic acid (RA) is an active metabolite of vitamin A and has been reported to improve the clinical symptoms of patients with systemic sclerosis (SSc). However, the mechanism of RA in the prevention of SSc remains unclear. Regulatory T cells (Tregs) are a subpopulation of T cells with immunosuppressive activity. The quantitative and functional defects of Tregs may mediate the immune dysfunction in SSc. The addition of all-trans retinoic acid (ATRA) to human naïve CD4+ cells could promote the maturation of Tregs and increase the stable expression of Foxp3. In this study, we explored the role of RA on Tregs in SSc CD4+ T cells and its possible epigenetic mechanisms, so as to further understand the mechanisms of RA on SSc. Methods CD4+ T cells were isolated from peripheral blood of SSc and treated with or without ATRA and/or transforming growth factor-β (TGF-β). The percentage of CD4+CD25+FOXP3+ Tregs was counted by flow cytometry. FOXP3 mRNA and protein levels were measured by quantitative real-time reverse transcriptase polymerase chain reaction and Western blotting, respectively. Bisulfite sequencing was performed to determine the methylation status of the FOXP3 proximal promoter sequences. Results The expression of Tregs and FOXP3 in CD4+ T cells from patients with SSc increased in response to ATRA. Moreover, combined stimulation with ATRA and TGF-β resulted in the enhancement of these effects. Further studies revealed that stimulation with ATRA increased the expression of FOXP3 in SSc CD4+ T cells by downregulating FOXP3 promoter methylation levels. Conclusions ATRA acts as an inducer of Treg response in SSc CD4+ T cells via demethylation of the FOXP3 promoter and activation of FOXP3 expression. This may be one of the molecular mechanisms for ATRA, and therefore, RA can be used for the treatment of SSc.
Collapse
|
4
|
Thomas RM, Worswick S, Aleshin M. Retinoic acid for treatment of systemic sclerosis and morphea: A literature review. Dermatol Ther 2016; 30. [PMID: 28032675 DOI: 10.1111/dth.12455] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/07/2016] [Accepted: 10/31/2016] [Indexed: 01/17/2023]
Abstract
Systemic sclerosis and morphea are connective tissue diseases characterized by tightening, thickening, and hardening of the skin, leading to significant morbidity. Unfortunately, current treatment options have limited efficacy for many patients. Cutaneous manifestations of these diseases arise from excess collagen deposition and fibrosis in the skin, through pathogenic mechanisms which have yet to be extensively detailed at the causal immune and cellular levels. Research elucidating the mechanism of action of retinoic acid on collagen production in the skin and case series highlighting the success of retinoic acid on the skin manifestations of systemic sclerosis and on morphea demonstrate its promise as a treatment. Herein they will briefly review the treatment options for both systemic sclerosis and morphea, and will discuss the potential of retinoic acid as a therapy and the supporting evidence from the literature, highlighting the previously published basic science and clinical studies investigating the role of retinoic acid in the treatment of sclerotic skin diseases.
Collapse
Affiliation(s)
- Renee M Thomas
- University of California, Los Angeles, Los Angeles, California, 90095
| | - Scott Worswick
- University of California, Los Angeles, Los Angeles, California, 90095
| | - Maria Aleshin
- University of California, Los Angeles, Los Angeles, California, 90095
| |
Collapse
|
5
|
Ikeda T, Nishide T, Ohtani T, Furukawa F. The effects of vitamin A derivative etretinate on the skin of MRL mice. Lupus 2016; 14:510-6. [PMID: 16130505 DOI: 10.1191/0961203305lu2144oa] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
MRL/Mp-lpr/lpr (MRL/lpr) mice are characterized by the disorder of apoptosis due to defects in Fas antigens and autoimmune symptoms including spontaneous lupus erythematosus (LE)-like skin lesions. MRL/Mp- +/+ (MRL/n) mice do not carry the defect of lpr mutation nor do they exhibit skin disorders during the first six months of life. Retinoids are known to inhibit the proliferation of skin fibroblasts, collagen synthesis, modulate immune responses, and apoptosis by Fas ligand upregulation in skin fibroblasts. We examined changes in dermal thickness and appearance of skin disorders in five months old MRL/lpr mice by oral treatment with etretinate, a retinoic acid derivative. Etretinate treated MRL/lpr mice did not have skin lesions or dermatopathological characteristics including an increase in cells infiltrating the dermis. The mean dermal thickness of MRL/lpr and MRL/n mice treated with etretinate decreased significantly and apoptotic cells density in the dermis of MRL/lpr mice with etretinate was significantly higher compared with the control group (P, 0.05) although MRL/lpr mice have a defect within the Fas antigen. We assumed that etretinate reduced dermal thickness, and suppressed the appearance of skin lesions by inducting apoptosis and perhaps regulation of cytokine expression.
Collapse
Affiliation(s)
- T Ikeda
- Department of Dermatology, Wakayama Medical University, Wakayama, Japan.
| | | | | | | |
Collapse
|
6
|
Shima T, Yamamoto Y, Ikeda T, Furukawa F. A patient with localized scleroderma successfully treated with etretinate. Case Rep Dermatol 2014; 6:200-6. [PMID: 25408646 PMCID: PMC4209276 DOI: 10.1159/000367707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
There are several treatment methods for localized scleroderma, but treatment is difficult when the lesion is widely distributed. We encountered a case who was treated successfully with etretinate, a vitamin A derivative. The usefulness of this agent is discussed.
Collapse
Affiliation(s)
- Tomoko Shima
- Department of Dermatology, Wakayama Medical University, Wakayama, Japan
| | - Yuki Yamamoto
- Department of Dermatology, Wakayama Medical University, Wakayama, Japan
| | - Takaharu Ikeda
- Department of Dermatology, Wakayama Medical University, Wakayama, Japan
| | - Fukumi Furukawa
- Department of Dermatology, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
7
|
Miyabe Y, Miyabe C, Nanki T. Could retinoids be a potential treatment for rheumatic diseases? Rheumatol Int 2014; 35:35-41. [PMID: 24939557 DOI: 10.1007/s00296-014-3067-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 06/04/2014] [Indexed: 01/24/2023]
Abstract
Retinoid, a derivative of vitamin A, is a general term used to describe compounds that bind to and activate retinoic acid receptors [RARs (RARα, RARβ, and RARγ)] and/or retinoid X receptors [RXRs (RXRα, RXRβ, and RXRγ)]. They have been shown to surpress the differentiation of Th1/Th17 cells and induce the development of Th1/regulatory T cells. They also affect the proliferation of B cells as both an inducer and suppressor. Furthermore, retinoids may induce the maturation of dendritic cells and production of interleukin-10 from monocytes/macrophages. We recently demonstrated that retinoids suppressed the production of reactive oxygen species, the release of elastase from neutrophils by inhibiting mitogen-activated protein kinase signals, and both the migration speed and chemotaxis directionality of neutrophils. Retinoids, such as all-trans retinoic acid and tamibarotene, were previously shown to have positive effects on animal models of several rheumatic diseases, including arthritis, myositis, and vasculitis in vivo. Moreover, retinoids have been used in a pilot study to effectively treat patients with lupus nephritis and systemic sclerosis. We herein reviewed the effects of retinoids on immune cells, animal models of rheumatic diseases, and rheumatic patients.
Collapse
Affiliation(s)
- Yoshishige Miyabe
- Division of Rheumatology, Allergy and Immunology, Center for Immunology and Inflammatory Disease, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, MA, 02129, USA
| | | | | |
Collapse
|
8
|
Wan YN, Yan JW, Peng WJ, Zhang JQ, Xiao CC, Wang BX, Wang J. Micronutrients, their potential effect on patients with systemic sclerosis. Mod Rheumatol 2013; 24:709-14. [PMID: 24251996 DOI: 10.3109/14397595.2013.844383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
9
|
Xiao R, Yoshida N, Higashi Y, Lu QJ, Fukushige T, Kanzaki T, Kanekura T. Retinoic acids exhibit anti-fibrotic activity through the inhibition of 5-lipoxygenase expression in scleroderma fibroblasts. J Dermatol 2010; 38:345-53. [PMID: 21352343 DOI: 10.1111/j.1346-8138.2010.00993.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The pathogenesis of systemic sclerosis (SSc) is not fully understood and there is no effective treatment for this disease. Retinoic acid (RA) can modulate connective tissue metabolism, exhibit anti-fibrotic activity, and improve the clinical symptoms of SSc. However, the mechanisms by which RA elicits its anti-fibrotic actions remain to be determined. The aim of this study was to elucidate the underlying mechanisms by which RA exerts beneficial effects on scleroderma. Cultured skin fibroblasts from patients with scleroderma were treated with RA and their effect on the expression of 5-lipoxygenase (LOX), transforming growth factor (TGF)-β1, connective tissue growth factor (CTGF), type I and type III collagen was tested by reverse transcription polymerase chain reaction (RT-PCR) and western immunoblotting. The effect of MK886, a 5-LOX-specific inhibitor, on the expression of TGF-β1, CTGF, type I and type III collagen was also examined by RT-PCR. In cultured scleroderma fibroblasts, the expression of 5-LOX was elevated compared with normal human dermal fibroblasts. RA significantly inhibited the expression of 5-LOX and of TGF-β1, CTGF, type I and type III collagen. We further found that the expression of TGF-β1, CTGF and type I and type III collagen mRNA was inhibited by MK886 in scleroderma fibroblasts. In vitro, RA reduced 5-LOX expression in scleroderma fibroblasts and downregulated TGF-β1 and CTGF expression, leading to the inhibition of type I and type III collagen synthesis. Our results indicate that the clinical effects of RA on scleroderma are, at least in part, attributable to the reduction of 5-LOX expression and the subsequent suppression of TGF-β1 and CTGF expression that results in the blockade of collagenogenesis.
Collapse
Affiliation(s)
- Rong Xiao
- Department of Dermatology, Kagoshima University Graduate School of Medical and Dental Sciences, Sakuragaoka, Kagoshima, Japan.
| | | | | | | | | | | | | |
Collapse
|
10
|
Xiao R, Kanekura T, Yoshida N, Higashi Y, Yan KL, Fukushige T, Kanzaki T. 9-Cis-retinoic acid exhibits antifibrotic activity via the induction of cyclooxygenase-2 expression and prostaglandin E2 production in scleroderma fibroblasts. Clin Exp Dermatol 2008; 33:484-90. [PMID: 18462443 DOI: 10.1111/j.1365-2230.2008.02727.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND The pathogenesis of scleroderma (SSc) is not fully understood, and there is no effective treatment for this chronic disease. Retinoic acid (RA) can modulate connective tissue metabolism, exhibit antifibrotic activity and improve the clinical symptoms of patients with SSc. However, the mechanisms by which RA elicits its antifibrotic actions remain to be determined. OBJECTIVE To elucidate the underlying mechanisms by which retinoids exert beneficial effects on SSc. METHODS Cultured skin fibroblasts from patients with SSc were treated with retinoids (9-cis-, 13-cis- and all-trans-retinoic acid) and their effect on the expression of cyclooxygenase (COX)-2, connective tissue growth factor (CTGF) and type I and III collagen and on the production of PGE(2) was examined. COX-2 expression was analysed by western immunoblotting, PGE(2) production by enzyme immunoassay and CTGF expression, and type I and III collagen expression by reverse transcriptase PCR and western immunoblotting. RESULTS In cultured SSc fibroblasts, 9-cis-RA significantly increased COX-2 protein expression and PGE(2) production and inhibited the expression of CTGF and type I and III collagen. We further found that expression of CTGF and of type I and III collagen mRNA was inhibited by exogenous PGE(2) in SSc fibroblasts. CONCLUSION In vitro, 9-cis-RA induced COX-2 expression and PGE(2) production in SSc fibroblasts and PGE(2) downregulated CTGF expression, leading to the inhibition of type I and III collagen synthesis. Our results indicate that the clinical effects of 9-cis-RA on SSc are, at least in part, attributable to the induction of PGE(2) and the subsequent suppression of CTGF expression that results in the blockade of collagenogenesis.
Collapse
Affiliation(s)
- R Xiao
- Department of Dermatology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan.
| | | | | | | | | | | | | |
Collapse
|
11
|
Ikeda T, Ohtani T, Furukawa F. Vitamin A Derivative Etretinate Improves Bleomycin-induced Scleroderma. Allergol Int 2005. [DOI: 10.2332/allergolint.54.419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|