1
|
Yoon SB, Lee CH, Kim HY, Jeong D, Jeon MK, Cho SA, Kim K, Lee T, Yang JY, Gong YD, Cho H. A novel sphingosylphosphorylcholine and sphingosine-1-phosphate receptor 1 antagonist, KRO-105714, for alleviating atopic dermatitis. JOURNAL OF INFLAMMATION-LONDON 2020; 17:20. [PMID: 32514255 PMCID: PMC7257206 DOI: 10.1186/s12950-020-00244-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 03/26/2020] [Indexed: 11/17/2022]
Abstract
Background Atopic dermatitis (eczema) is a type of inflammation of the skin, which presents with itchy, red, swollen, and cracked skin. The high global incidence of atopic dermatitis makes it one of the major skin diseases threatening public health. Sphingosylphosphorylcholine (SPC) and sphingosine-1-phosphate (S1P) act as pro-inflammatory mediators, as an angiogenesis factor and a mitogen in skin fibroblasts, respectively, both of which are important biological responses to atopic dermatitis. The SPC level is known to be elevated in atopic dermatitis, resulting from abnormal expression of sphingomyelin (SM) deacylase, accompanied by a deficiency in ceramide. Also, S1P and its receptor, sphingosine-1-phosphate receptor 1 (S1P1) are important targets in treating atopic dermatitis. Results In this study, we found a novel antagonist of SPC and S1P1, KRO-105714, by screening 10,000 compounds. To screen the compounds, we used an SPC-induced cell proliferation assay based on a high-throughput screening (HTS) system and a human S1P1 protein-based [35S]-GTPγS binding assay. In addition, we confirmed the inhibitory effects of KRO-105714 on atopic dermatitis through related cell-based assays, including a tube formation assay, a cell migration assay, and an ELISA assay on inflammatory cytokines. Finally, we confirmed that KRO-105714 alleviates atopic dermatitis symptoms in a series of mouse models. Conclusions Taken together, our data suggest that SPC and S1P1 antagonist KRO-105714 has the potential to alleviate atopic dermatitis.
Collapse
Affiliation(s)
- Sae-Bom Yoon
- Drug Discovery Platform Research Center, Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong, Daejeon, 34114 Republic of Korea
| | - Chang Hoon Lee
- Drug Discovery Platform Research Center, Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong, Daejeon, 34114 Republic of Korea
| | - Hyun Young Kim
- Drug Discovery Platform Research Center, Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong, Daejeon, 34114 Republic of Korea
| | - Daeyoung Jeong
- Drug Discovery Platform Research Center, Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong, Daejeon, 34114 Republic of Korea
| | - Moon Kook Jeon
- Drug Discovery Platform Research Center, Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong, Daejeon, 34114 Republic of Korea
| | - Sun-A Cho
- Department of Laboratory Animal Medicine, Research Institute for Veterinary Science, BK21PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul, 08826 Republic of Korea
| | - Kwangmi Kim
- College of Pharmacy, Danguk University, 119 Dandae-ro, Cheonan, Chungnam, 31116 Republic of Korea
| | - Taeho Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu, 702-701 South Korea
| | - Jung Yoon Yang
- Drug Discovery Platform Research Center, Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong, Daejeon, 34114 Republic of Korea
| | - Young-Dae Gong
- Innovative Drug Library Research Center, Science College, Dongguk University, Seoul, 100-715 Republic of Korea
| | - Heeyeong Cho
- Drug Discovery Platform Research Center, Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong, Daejeon, 34114 Republic of Korea.,Medicinal Chemistry and Pharmacology, Korea University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
2
|
Role of Sphingosylphosphorylcholine in Tumor and Tumor Microenvironment. Cancers (Basel) 2019; 11:cancers11111696. [PMID: 31683697 PMCID: PMC6896196 DOI: 10.3390/cancers11111696] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/25/2019] [Accepted: 10/30/2019] [Indexed: 12/25/2022] Open
Abstract
Sphingosylphosphorylcholine (SPC) is a unique type of lysosphingolipid found in some diseases, and has been studied in cardiovascular, neurological, and inflammatory phenomena. In particular, SPC’s studies on cancer have been conducted mainly in terms of effects on cancer cells, and relatively little consideration has been given to aspects of tumor microenvironment. This review summarizes the effects of SPC on cancer and tumor microenvironment, and presents the results and prospects of modulators that regulate the various actions of SPC.
Collapse
|
3
|
Transition from inflammation to proliferation: a critical step during wound healing. Cell Mol Life Sci 2016; 73:3861-85. [PMID: 27180275 PMCID: PMC5021733 DOI: 10.1007/s00018-016-2268-0] [Citation(s) in RCA: 1034] [Impact Index Per Article: 114.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/22/2016] [Accepted: 05/06/2016] [Indexed: 02/08/2023]
Abstract
The ability to rapidly restore the integrity of a broken skin barrier is critical and is the ultimate goal of therapies for hard-to-heal-ulcers. Unfortunately effective treatments to enhance healing and reduce scarring are still lacking. A deeper understanding of the physiology of normal repair and of the pathology of delayed healing is a prerequisite for the development of more effective therapeutic interventions. Transition from the inflammatory to the proliferative phase is a key step during healing and accumulating evidence associates a compromised transition with wound healing disorders. Thus, targeting factors that impact this phase transition may offer a rationale for therapeutic development. This review summarizes mechanisms regulating the inflammation-proliferation transition at cellular and molecular levels. We propose that identification of such mechanisms will reveal promising targets for development of more effective therapies.
Collapse
|
4
|
Lee GH, Lee SJ, Jeong DY, Kim HY, Lee D, Lee T, Hwang JY, Park WK, Kong JY, Cho H, Gong YD. Discovery of a Novel 2,6-Difunctionalized 2H-Benzopyran Inhibitors Toward Sphingosylphosphorylcholine Synthetic Pathway as New Anti-inflammatory Target. B KOREAN CHEM SOC 2014. [DOI: 10.5012/bkcs.2014.35.8.2385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Interleukin-6 expression under gravitational stress due to vibration and hypergravity in follicular thyroid cancer cells. PLoS One 2013; 8:e68140. [PMID: 23844163 PMCID: PMC3699536 DOI: 10.1371/journal.pone.0068140] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 05/25/2013] [Indexed: 01/16/2023] Open
Abstract
It is known that exposing cell lines in vitro to parabolic flights changes their gene expression and protein production patterns. Parabolic flights and spaceflight in general are accompanied by transient hypergravity and vibration, which may impact the cells and therefore, have to be considered too. To estimate the possible impact of transient hypergravity and vibration, we investigated the effects of these forces separately using dedicated ground-based facilities. We placed follicular thyroid ML-1 and CGTH W-1 cancer cells in a specific centrifuge (MuSIC Multi Sample Incubator Centrifuge; SAHC Short Arm Human Centrifuge) simulating the hypergravity phases that occur during one (P1) and 31 parabolas (P31) of parabolic flights, respectively. On the Vibraplex device, the same cell lines were treated with vibration waves corresponding to those that occur during a whole parabolic flight lasting for two hours. After the various treatments, cells were harvested and analyzed by quantitative real-time PCR, focusing on the genes involved in forming (ACTB, MYO9, TUBB, VIM, TLN1, and ITGB1) and modulating (EZR, RDX, and MSN) the cytoskeleton, as well as those encoding growth factors (EGF, CTGF, IL6, and IL8) or protein kinases (PRKAA1 and PRKCA). The analysis revealed alterations in several genes in both cell lines; however, fewer genes were affected in ML-1 than CGTH W-1 cells. Interestingly, IL6 was the only gene whose expression was changed in both cell lines by each treatment, while PKCA transcription remained unaffected in all experiments. We conclude that a PKCa-independent mechanism of IL6 gene activation is very sensitive to physical forces in thyroid cells cultured in vitro as monolayers.
Collapse
|
6
|
Kendall AC, Nicolaou A. Bioactive lipid mediators in skin inflammation and immunity. Prog Lipid Res 2012; 52:141-64. [PMID: 23124022 DOI: 10.1016/j.plipres.2012.10.003] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 10/15/2012] [Accepted: 10/17/2012] [Indexed: 12/20/2022]
Abstract
The skin is the primary barrier from the outside environment, protecting the host from injury, infectious pathogens, water loss and solar ultraviolet radiation. In this role, it is supported by a highly organized system comprising elements of innate and adaptive immunity, responsive to inflammatory stimuli. The cutaneous immune system is regulated by mediators such as cytokines and bioactive lipids that can initiate rapid immune responses with controlled inflammation, followed by efficient resolution. However, when immune responses are inadequate or mounted against non-infectious agents, these mediators contribute to skin pathologies involving unresolved or chronic inflammation. Skin is characterized by active lipid metabolism and fatty acids play crucial roles both in terms of structural integrity and functionality, in particular when transformed to bioactive mediators. Eicosanoids, endocannabinoids and sphingolipids are such key bioactive lipids, intimately involved in skin biology, inflammation and immunity. We discuss their origins, role and influence over various cells of the epidermis, dermis and cutaneous immune system and examine their function in examples of inflammatory skin conditions. We focus on psoriasis, atopic and contact dermatitis, acne vulgaris, wound healing and photodermatology that demonstrate dysregulation of bioactive lipid metabolism and examine ways of using this insight to inform novel therapeutics.
Collapse
Affiliation(s)
- Alexandra C Kendall
- School of Pharmacy and Centre for Skin Sciences, School of Life Sciences, University of Bradford, Richmond Road, Bradford BD7 1DP, UK
| | | |
Collapse
|
7
|
Irradiation at 636 nm Positively Affects Diabetic Wounded and Hypoxic Cellsin Vitro. Photomed Laser Surg 2011; 29:521-30. [DOI: 10.1089/pho.2010.2877] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
8
|
Intravenous sphingosylphosphorylcholine protects ischemic and postischemic myocardial tissue in a mouse model of myocardial ischemia/reperfusion injury. Mediators Inflamm 2011; 2010:425191. [PMID: 21274265 PMCID: PMC3022218 DOI: 10.1155/2010/425191] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 10/14/2010] [Accepted: 11/02/2010] [Indexed: 11/17/2022] Open
Abstract
HDL, through sphingosine-1-phosphate (S1P), exerts direct cardioprotective effects on ischemic myocardium. It remains unclear whether other HDL-associated sphingophospholipids have similar effects. We therefore examined if HDL-associated sphingosylphosphorylcholine (SPC) reduces infarct size in a mouse model of transient myocardial ischemia/reperfusion. Intravenously administered SPC dose-dependently reduced infarct size after 30 minutes of myocardial ischemia and 24 hours reperfusion compared to controls. Infarct size was also reduced by postischemic, therapeutical administration of SPC. Immunohistochemistry revealed reduced polymorphonuclear neutrophil recruitment to the infarcted area after SPC treatment, and apoptosis was attenuated as measured by TUNEL. In vitro, SPC inhibited leukocyte adhesion to TNFα-activated endothelial cells and protected rat neonatal cardiomyocytes from apoptosis. S1P3 was identified as the lysophospholipid receptor mediating the cardioprotection by SPC, since its effect was completely absent in S1P3-deficient mice. We conclude that HDL-associated SPC directly protects against myocardial reperfusion injury in vivo via the S1P3 receptor.
Collapse
|
9
|
Shi G, Sohn KC, Choi TY, Choi DK, Lee SS, Ou BS, Kim S, Lee YH, Yoon TJ, Kim SJ, Lee Y, Seo YJ, Lee JH, Kim CD. Expression of paired-like homeodomain transcription factor 2c (PITX2c) in epidermal keratinocytes. Exp Cell Res 2010; 316:3263-71. [PMID: 20875405 DOI: 10.1016/j.yexcr.2010.09.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2010] [Revised: 08/23/2010] [Accepted: 09/20/2010] [Indexed: 01/26/2023]
Abstract
Paired-like homeodomain transcription factor 2 (PITX2) has been implicated as one of the genes responsible for Rieger syndrome. It has been also shown to play a central role during development. In this study, we investigated the functional role of PITX2 in keratinocyte differentiation. RT-PCR analysis showed that PITX2c isoform was predominantly expressed in a differentiation-dependent manner. Consistent with, immunohistochemical staining showed that PITX2 expression was increased in the upper layer of epidermis. When PITX2c was overexpressed in cultured keratinocytes by a recombinant adenovirus, the differentiation markers such as involucrin and loricrin were significantly increased at both mRNA and protein levels. In addition, PITX2c overexpression led to the decrease of cell growth, concomitantly with the upregulation of cell cycle-related genes p21. To investigate the effect of PITX2c in vivo, we microinjected PITX2c expression vector into zebrafish embryo. Interestingly, overexpression of PITX2c in zebrafish embryo led to the formation of horn-like structure and thickening of epidermis, together with the increase of keratin 8 (K8) expression. These results suggest that PITX2c has a role in proliferation and differentiation of epidermal keratinocytes.
Collapse
Affiliation(s)
- Ge Shi
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, 301-747, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Kim JH, Sohn KC, Choi TY, Kim MY, Ando H, Choi SJ, Kim S, Lee YH, Lee JH, Kim CD, Yoon TJ. β-Catenin regulates melanocyte dendricity through the modulation of PKCζ and PKCδ. Pigment Cell Melanoma Res 2010; 23:385-93. [DOI: 10.1111/j.1755-148x.2010.00695.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
11
|
Inhibitor of differentiation 1 (Id1) expression attenuates the degree of TiO2-induced cytotoxicity in H1299 non-small cell lung cancer cells. Toxicol Lett 2009; 189:191-9. [DOI: 10.1016/j.toxlet.2009.05.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 05/20/2009] [Accepted: 05/25/2009] [Indexed: 01/13/2023]
|
12
|
Sohn KC, Shi G, Jang S, Choi DK, Lee Y, Yoon TJ, Park H, Hwang C, Kim HJ, Seo YJ, Lee JH, Park JK, Kim CD. Pitx2, a beta-catenin-regulated transcription factor, regulates the differentiation of outer root sheath cells cultured in vitro. J Dermatol Sci 2009; 54:6-11. [PMID: 19251162 DOI: 10.1016/j.jdermsci.2008.11.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Revised: 10/30/2008] [Accepted: 11/18/2008] [Indexed: 01/03/2023]
Abstract
BACKGROUND Beta-catenin exerts its crucial role in hair follicle development and hair growth cycle. Although the importance of Wnt/beta-catenin is well recognized, the downstream effectors of beta-catenin have not been clearly elucidated yet. OBJECTIVE The aim of this study is to identify the beta-catenin-regulated genes in cultured human hair outer root sheath (ORS) cells. METHODS We transduced ORS cells with adenovirus harboring the expression cassette for constitutive active form of beta-catenin, then performed cDNA microarray. RESULTS Overexpression of beta-catenin led to the upregulation of hair cell differentiation markers such as keratin 16 and 17. In addition, the expression of Pitx2, a bicoid-type homeodomain transcription factor, was also increased by overexpression of beta-catenin in ORS cells cultured in vitro. To investigate the potential role of Pitx2, we made the recombinant adenovirus expressing Pitx2, then transduced into the cultured ORS cells. Interestingly, Pitx2 induced the expression of keratin 16 and 17, indicating that Pitx2 activates ORS cells towards the follicular differentiation pathway preferentially. CONCLUSION Our results implicate the potential importance of Pitx2 as a beta-catenin downstream modulator in hair growth control.
Collapse
Affiliation(s)
- Kyung-Cheol Sohn
- Department of Dermatology and Research Institute for Medical Sciences, School of Medicine, Chungnam National University, 55 Munhwa-ro, Daejeon 301-747, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Lee YS, Sohn KC, Jang S, Lee Y, Hwang C, Kim KH, Cho MJ, Kim CD, Lee JH. Anti-apoptotic role of S100A8 in X-ray irradiated keratinocytes. J Dermatol Sci 2008; 51:11-8. [PMID: 18325741 DOI: 10.1016/j.jdermsci.2008.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 12/31/2007] [Accepted: 01/15/2008] [Indexed: 01/13/2023]
Abstract
BACKGROUND Ionizing radiation is used to treat a lot of cancers, however, it also produced unwanted side effect on normal tissues, such as radiodermatitis. We previously established an animal model for radiodermatitis, and identified many of radiation-induced genes by cDNA microarray. Of the candidates, we chose S100A8 gene for a further study. OBJECTIVE The aim of this study is to investigate the functional role of S100A8 in X-ray irradiated keratinocytes. METHODS RT-PCR and immunohistochemistry were performed to demonstrate the S100A8 induction by X-ray irradiation. HaCaT keratinocytes were transduced with the recombinant adenovirus expressing GFP-S100A8, and then effects on cell cycle and apoptosis were analyzed using flow cytometry and Western blot. RESULTS X-ray irradiation markedly induced S100A8 expression in the hyperplastic epidermis of mouse. Overexpression of S100A8 by adenoviral transduction led to the enhancement of cell proliferation in the absence and/or presence of X-ray irradiation, as compared with Ad/GFP control group. Furthermore, overexpression of S100A8 significantly protected the X-ray-induced apoptosis. CONCLUSION These results suggest that S100A8 have an anti-apoptotic role in X-ray irradiated keratinocytes.
Collapse
Affiliation(s)
- Young-Sook Lee
- Department of Dermatology and Research Institute of Medical Sciences, School of Medicine, Chungnam National University, 640 Daesa-dong, Daejeon, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|