1
|
Wang H, Hu W, Xiang F, Lei Z, Zhang X, Zhang J, Ding Y, Kang X. Differentiation of cultured hair follicle neural crest stem cells into functional melanocytes. Heliyon 2024; 10:e35295. [PMID: 39170163 PMCID: PMC11336637 DOI: 10.1016/j.heliyon.2024.e35295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/02/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024] Open
Abstract
Many autologous melanocytes are required for surgical treatment of depigmentation diseases such as vitiligo. However, primary cultured melanocytes have a limited number of in vitro passages. The production of functional epidermal melanocytes from stem cells provides an unprecedented source of cell therapy for vitiligo. This study explores the clinical application of melanocytes induced by hair follicle neural crest stem cells (HFNCSCs). This study established an in vitro differentiation model of HFNCSCs into melanocytes. Results demonstrate that most differentiated melanocytes expressed the proteins C-KIT, MITF, S-100B, TYRP1, TYRP2, and tyrosinase. The HFNCSC-derived melanocytes were successfully transplanted onto the dorsal skin of mice and survived in the local tissues, expressing marker protein of melanocytes. In conclusion, HFNCSCs in mice can be induced to differentiate into melanocytes under specific conditions. These induced melanocytes exhibit the potential to facilitate repigmentation in the lesion areas of vitiligo-affected mice, suggesting a promising avenue for therapeutic intervention.
Collapse
Affiliation(s)
- Hongjuan Wang
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Dermatology Research, Urumqi, 830000, Xinjiang, China
| | - Wen Hu
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Dermatology Research, Urumqi, 830000, Xinjiang, China
| | - Fang Xiang
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Dermatology Research, Urumqi, 830000, Xinjiang, China
| | - Zixian Lei
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Dermatology Research, Urumqi, 830000, Xinjiang, China
| | - Xiangyue Zhang
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Dermatology Research, Urumqi, 830000, Xinjiang, China
| | - Jingzhan Zhang
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Dermatology Research, Urumqi, 830000, Xinjiang, China
| | - Yuan Ding
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Dermatology Research, Urumqi, 830000, Xinjiang, China
| | - Xiaojing Kang
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
- Xinjiang Clinical Research Center for Dermatologic Diseases, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Dermatology Research, Urumqi, 830000, Xinjiang, China
| |
Collapse
|
2
|
Awad SS, Moftah NH, Rashed LA, Touni AA, Telep RAA. Evaluation of the effect of narrow band-ultraviolet B on the expression of tyrosinase, TYRP-1, and TYRP-2 mRNA in vitiligo skin and their correlations with clinical improvement: A retrospective study. Dermatol Ther 2020; 34:e14649. [PMID: 33314655 DOI: 10.1111/dth.14649] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/19/2020] [Accepted: 12/03/2020] [Indexed: 12/01/2022]
Abstract
Narrowband-ultraviolet B (NB-UVB) is considered one of the main therapeutic tools in vitiligo, which is able to induce repigmentation and halt depigmentation. However, little remains known about the effect of NB-UVB on TYR gene family, the main pigmentary genes, in vitiligo patients. To assess the effect of NB-UVB on expression of some genes related to the pigmentary problem of vitiligo; tyrosinase (TYR), tyrosinase related protein 1 (TYRP1) and tyrosinase related protein 2 (TYRP2), mRNA levels of those genes were quantitatively evaluated by Real-Time quantitative Polymerase Chain Reaction (RT-qPCR) in skin biopsies obtained from 30 patients with nonsegmental vitiligo and five healthy controls. Vitiligo patients were classified into two groups; group 1, involving 12 untreated vitiligo patients and group 2, including 18 vitiligo patients treated by NB-UVB. The levels of TYR, TYRP-1, and TYRP-2 mRNAs in untreated group were significantly lower than in control subjects (P < .001). In NB-UVB treated group, the three genes were significantly higher than in group 1 (P < .001), however, they were still significantly lower than in the control subjects (P < .001). A significant positive correlation was detected between TYR and TYRP-2 genes in group 2 (P = .03). This study demonstrated that mRNA level of TYR, TYRP-1, and TYRP-2, which decreased in vitiligo, was significantly increased upon treatment with NB-UVB. Accordingly, the mechanism of depigmentation in vitiligo disease and repigmentation by NB-UVB treatment may be related to the changes in the expression of these genes.
Collapse
Affiliation(s)
- Sherif Shoukry Awad
- Department of Dermatology and Venereology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Noha Hassan Moftah
- Department of Dermatology and Venereology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Laila Ahmed Rashed
- Department of Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ahmed Ahmed Touni
- Department of Dermatology and Venereology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Rowida Ahmed Amer Telep
- Department of Dermatology and Venereology, Faculty of Medicine, Minia University, Minia, Egypt
| |
Collapse
|
3
|
Shakhbazova A, Wu H, Chambers CJ, Sivamani RK. A Systematic Review of Nutrition, Supplement, and Herbal-Based Adjunctive Therapies for Vitiligo. J Altern Complement Med 2020; 27:294-311. [PMID: 33337930 DOI: 10.1089/acm.2020.0292] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background: Vitiligo is an autoimmune skin condition that affects people globally anywhere, from <0.1% to more than 8% of individuals. The disease destroys skin melanocytes, resulting in a patchy depigmentation of the skin. About 50% of all patients develop the disease before their 20s. Methods: We systematically searched the literature and reviewed the evidence for the use of nutritional supplements and diet in the management of vitiligo. Embase and Medline were searched for diet, herbal, and nutrition-based clinical studies. Additional filters were applied that looked for controlled trial or randomized controlled trial and article or article in press or letter and English and clinical study. We selected clinical studies in humans that showed how diet or natural supplements can improve the symptoms of vitiligo in all of our searches. Results: There were 62 manuscripts that resulted from the PubMed search and 259 from the Embase search. A final of 26 studies were reviewed, and other supplemental case and case-control studies were used to introduce diet components that may influence either exacerbation or amelioration of vitiligo. Possible mechanisms of action are introduced for natural and supplemental interventions. Conclusion: Some of the supplements reviewed include Gingko biloba, oral Polypodium leucotomos, alpha lipoic acid, vitamins B12, D, and E, folic acid, phenylalanine, canthaxanthin, Nigella sativa oil, and other combined herbal bio-actives. Overall, the growing evidence is promising, but more studies are needed in this area to further explore the impact that supplements and diet can have on vitiligo management. The most promising therapies included oral phenylalanine as adjuvant therapy with UVA therapy, oral G. biloba as monotherapy, both of which can be used with other traditional therapies, and oral P. leucotomos with phototherapy or photochemotherapy.
Collapse
Affiliation(s)
| | - Hera Wu
- College of Medicine, California Northstate University, Elk Grove, CA, USA.,Department of Dermatology, University of California, Davis, Sacramento, CA, USA
| | - Cindy J Chambers
- College of Medicine, California Northstate University, Elk Grove, CA, USA.,Pacific Skin Institute, Sacramento, CA, USA.,Zen Dermatology, Sacramento, CA, USA
| | - Raja K Sivamani
- College of Medicine, California Northstate University, Elk Grove, CA, USA.,Department of Dermatology, University of California, Davis, Sacramento, CA, USA.,Pacific Skin Institute, Sacramento, CA, USA.,Zen Dermatology, Sacramento, CA, USA.,Department of Biological Sciences, California State University, Sacramento, Sacramento, CA, USA
| |
Collapse
|
4
|
EZH2-mediated inhibition of microRNA-22 promotes differentiation of hair follicle stem cells by elevating STK40 expression. Aging (Albany NY) 2020; 12:12726-12739. [PMID: 32657761 PMCID: PMC7377840 DOI: 10.18632/aging.103165] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/31/2020] [Indexed: 02/07/2023]
Abstract
Hair follicle stem cells (HFSCs) contribute to the regeneration of hair follicles (HFs), thus accelerating hair growth. microRNAs (miRs) are potential regulators in various cellular processes, including HFSC proliferation and differentiation. This study proposed a potential target, enhancer of zeste homolog 2 (EZH2) for facilitating hair growth, due to its function over HFSC activities by mediating the miR-22/serine/threonine kinase 40 (STK40)/myocyte enhancer factor 2 (MEF2)/alkaline phosphatase (ALP) axis. Gain- and loss-of-function approaches were adopted to explore the roles of EZH2, miR-22, and STK40 in the proliferation and apoptosis of HFSCs, along with the functional relevance of MEF2-ALP activity. STK40 was elevated during HFSC differentiation, which was found to facilitate HFSC proliferation, but impede their apoptosis by activating MEF2-ALP. Mechanically, miR-22 targeted and inversely regulated STK40, which inhibited MEF2-ALP activity to impede HFSC proliferation and differentiation. Moreover, EZH2 elevated the STK40 expression by repressing miR-22 to promote the proliferation and differentiation of HFSCs. Furthermore, in vivo experiments further validated the roles of EZH2 and STK40 on hair follicle neogenesis and hair growth. Collectively, EZH2 elevated the STK40 expression by downregulating miR-22, consequently accelerating differentiation of HFSCs and hair growth, which sheds light on the underlying molecular mechanism responsible for hair growth.
Collapse
|
5
|
Dong D, Chen S, Feng C, Xiong H, Xu X. NB-UVB Induces Melanocytic Differentiation of Human Hair Follicle Neural Crest Stem Cells. Ann Dermatol 2020; 32:289-297. [PMID: 33911756 PMCID: PMC7992648 DOI: 10.5021/ad.2020.32.4.289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 03/15/2020] [Accepted: 03/16/2020] [Indexed: 11/08/2022] Open
Abstract
Background Phototherapy is an important method to treat vitiligo. However, it is unclear how phototherapy affects melanocyte precursors and skin neural crest stem cells. Objective To investigate the underlying mechanisms of narrow-band ultraviolet B (NB-UVB) induced melanocyte lineage differentiated from human scalp-derived neural crest stem cells (HS-NCSCs). Methods HS-NCSCs were expanded from scalp hair follicles. The c-Kit-/CD57- HS-NCSCs were isolated by cell sorting. Different doses of NB-UVB were used to irradiate these HS-NCSCs. Cell ultrastructure was examined by transmission electron microscope. Melanocyte marker expression was analyzed by Quantitative RT-PCR and Western blot. Cell proliferation and migration were also evaluated. Results The c-Kit-/CD57- HS-NCSCs expressed embryonic NCSC biomarkers. NB-UVB at a dose of 100 mJ of NB-UVB had little effect on the cell proliferation of differentiated melanocytes from c-Kit-/CD57- HS-NCSCs, while 700 mJ inhibited cell proliferation significantly. The dendritic processes of differentiated melanocytes increased after radiation. The tyrosinase and Melanocortin 1 receptor (Mc1R) expression of differentiated melanocytes increased after NB-UVB exposure. The effect of NB-UVB on tyrosinase expression was modulated by signaling inhibitors H89 and PD98059 as well as Mc1R level in the cells. The migration ability of differentiated melanocytes was enhanced under 100 mJ exposure. Conclusion These data demonstrate that NB-UVB facilitates melanocytic differentiation of the HS-NCSCs and enhances migration of these cells. Mc1R and cAMP pathway play a critical role in NB-UVB induced melanocytic differentiation.
Collapse
Affiliation(s)
- Dake Dong
- Department of Dermatology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shujun Chen
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Cheng Feng
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Dermatology, the Second Affiliated Hospital of Xi'anJiaoTong University, Xi'an, Shanxi, China
| | - Huizi Xiong
- Department of Dermatology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Xiaowei Xu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
6
|
Effects of Extremely Low Frequency Electromagnetic Fields on Melanogenesis through p-ERK and p-SAPK/JNK Pathways in Human Melanocytes. Int J Mol Sci 2017; 18:ijms18102120. [PMID: 29019940 PMCID: PMC5666802 DOI: 10.3390/ijms18102120] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 09/29/2017] [Accepted: 10/03/2017] [Indexed: 02/07/2023] Open
Abstract
This study evaluated frequency-dependent effects of extremely low frequency electromagnetic fields (ELF-EMFs) on melanogenesis by melanocytes in vitro. Melanocytes were exposed to 2 mT EMFs at 30-75 Hz for 3 days before melanogenesis was examined. Exposure to ELF-EMFs at 50 and 60 Hz induced melanogenic maturation without cell damage, without changing cell proliferation and mitochondrial activity. Melanin content and tyrosinase activity of cells exposed to 50 Hz were higher than in controls, and mRNA expression of tyrosinase-related protein-2 was elevated relative to controls at 50 Hz. Phosphorylated cyclic adenosine monophosphate response element-binding protein (p-CREB) levels were higher than controls in cells exposed to ELF-EMFs at 50-75 Hz. Immunohistochemical staining showed that melanocyte-specific markers (HMB45, Melan-A) were strongly expressed in cells exposed to EMFs at 50 and 60 Hz compared to controls. Thus, exposure to ELF-EMFs at 50 Hz could stimulate melanogenesis in melanocytes, through activation of p-CREB and p-p38 and inhibition of phosphorylated extracellular signal-regulated protein kinase and phosphorylated stress-activated protein kinase/c-Jun N-terminal kinase. The results may form the basis of an appropriate anti-gray hair treatment or be applied in a therapeutic device for inducing repigmentation in the skin of vitiligo patients.
Collapse
|
7
|
Dong DK, Pan ZY, Zhang J, Lu XF, Jin C, Tao SQ, Yang LJ. Efficacy and Safety of Targeted High-Intensity Medium-Band (304-312 nm) Ultraviolet B Light in Pediatric Vitiligo. Pediatr Dermatol 2017; 34:266-270. [PMID: 28318054 DOI: 10.1111/pde.13098] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND/OBJECTIVES Phototherapy is a commonly used treatment for vitiligo that has demonstrated safety and efficacy. High-intensity targeted ultraviolet B (UVB) light (304-312 nm) delivered using a phototherapy device is a useful therapeutic option because it can induce repigmentation in a short time without global exposure to radiation, but information regarding this device in children is limited. METHODS We performed a retrospective analysis of 95 patches of vitiligo in 27 children treated using a targeted phototherapy device. Phototherapy was administered twice a week. RESULTS After the first 10 treatment sessions, 82 (86.3%) patches demonstrated some repigmentation and 36.8% achieved 50% or more repigmentation. After a mean of 20.4 treatment sessions, 86 patches (90%) demonstrated some repigmentation and 53.7% achieved 50% or more repigmentation. Responses varied depending on the anatomic location of the lesions. Better responses were usually observed on the face and trunk, whereas the extremities typically showed little response. Repigmentation was better in patients with active vitiligo than in those with stable vitiligo, with responses better with a disease duration of 1 year or less than in those with a duration of more than 1 year. There was no statistically significant difference in repigmentation between those with segmental and generalized vitiligo. The only short-term local side effect was mild erythema that required a decrease in dosage in six patients. CONCLUSION Targeted high-intensity medium-band UVB phototherapy alone can produce clinical improvement in pediatric vitiligo and is well tolerated.
Collapse
Affiliation(s)
- Da-Ke Dong
- Department of Dermatology, Wuxi Second Affiliated Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Zhan-Yan Pan
- Department of Dermatology, Ren ji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Juan Zhang
- Department of Dermatology, Wuxi Second Affiliated Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Xue-Fen Lu
- Department of Dermatology, Wuxi Second Affiliated Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Cheng Jin
- Department of Dermatology, Wuxi Second Affiliated Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Shi-Qin Tao
- Department of Dermatology, Wuxi Second Affiliated Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Li-Jia Yang
- Department of Dermatology, Wuxi Second Affiliated Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| |
Collapse
|
8
|
Cho SE, Kim YM, Kang KH, Kim SC, Park JK, Seo YK. Pigmentation effect of electromagnetic fields at various intensities to melanocytes. Tissue Eng Regen Med 2016; 13:560-567. [PMID: 30603437 PMCID: PMC6170843 DOI: 10.1007/s13770-016-0090-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 07/13/2016] [Accepted: 07/19/2016] [Indexed: 11/29/2022] Open
Abstract
Melanogenesis is the biological process that results in the synthesis of skin pigment of melanin and it has various functions in living systems and is synthesized by the melanosome within the melanocytes. A variety of physical treatments are used to promote melanin production in the melanocytes for pigmentation control. The purpose of this study was to evaluate the intensity-dependent effect of extremely low-frequency electromagnetic fields (ELF-EMFs) on melanogenesis by melanocytes in vitro. Melanocytes were exposed to ELF-EMFs at a frequency of 50 Hz and at intensities in the range of 0.5-20 G over 4 days. The results of lactate dehydrogenase assay showed that there were no significant differences between cells exposed to 0.5 G or 2 G groups and the controls. The melanin contents increased 1.2-1.5-fold in cells exposed to ELF-EMFs and tyrosinase activity increased 1.3-fold in cells exposed to ELF-EMFs, relative to the controls. Also, exposure to ELF-EMFs was associated with activation in cyclic-AMP response element binding protein and microphthalmia-associated transcription factor (MITF) was up-regulated. Up-regulation of MITF induces the expression of melanogenesis-related markers, such as tyrosinase, tyrosinase-related protein (TRP)-1, TRP-2. In conclusion, the present study showed that the exposure to ELF-EMFs at low intensities can stimulate melanogenesis in melanocyte, and these results may be used to a therapeutic devices for inducing repigmentation in vitiligo patients.
Collapse
Affiliation(s)
- Sang-Eun Cho
- Department of Medical Biotechnology (BK21 Plus Team), Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang, 10326 Korea
| | - Yu-Mi Kim
- Department of Medical Biotechnology (BK21 Plus Team), Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang, 10326 Korea
| | | | - Soo-Chan Kim
- Graduate School of Bio and Information Technology, Hankyong National University, Anseong, Korea
| | - Jung-Keug Park
- Department of Medical Biotechnology (BK21 Plus Team), Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang, 10326 Korea
| | - Young-Kwon Seo
- Department of Medical Biotechnology (BK21 Plus Team), Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang, 10326 Korea
| |
Collapse
|
9
|
Esmat S, Mostafa W, Hegazy RA, Shalaby S, Sheth V, Youssef R, El-Mofty M. WITHDRAWN: Phototherapy: The Vitiligo Management Pillar. Clin Dermatol 2016. [DOI: 10.1016/j.clindermatol.2016.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Esmat S, Mostafa W, Hegazy RA, Shalaby S, Sheth V, Youssef R, El-Mofty M. Phototherapy: The vitiligo management pillar. Clin Dermatol 2016; 34:594-602. [PMID: 27638438 DOI: 10.1016/j.clindermatol.2016.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Phototherapy has been the mainstay of vitiligo therapy for several decades. A variety of wavelengths and modalities are available, but narrowband ultraviolet B remains the safest and most commonly used treatment. Acting on multiple steps in vitiligo pathogenesis, narrowband ultraviolet B is one of the few therapies that can effectively induce stabilization and stimulate repigmentation. Achievement of optimal results involves using a combination of appropriate treatment protocols, careful patient selection, and patient education to set expectations. Individual patient characteristics, including disease activity, vitiligo phenotype, lesion location, and skin phototype, should all be considered, along with combination therapies.
Collapse
Affiliation(s)
- Samia Esmat
- Phototherapy Unit, Dermatology Department, Faculty of Medicine, Cairo University, Egypt.
| | - Wedad Mostafa
- Phototherapy Unit, Dermatology Department, Faculty of Medicine, Cairo University, Egypt
| | - Rehab A Hegazy
- Phototherapy Unit, Dermatology Department, Faculty of Medicine, Cairo University, Egypt
| | - Suzan Shalaby
- Phototherapy Unit, Dermatology Department, Faculty of Medicine, Cairo University, Egypt
| | - Vaneeta Sheth
- Newton-Wellesley Dermatology Associates, Wellesley, MA
| | - Randa Youssef
- Phototherapy Unit, Dermatology Department, Faculty of Medicine, Cairo University, Egypt
| | - Medhat El-Mofty
- Phototherapy Unit, Dermatology Department, Faculty of Medicine, Cairo University, Egypt
| |
Collapse
|
11
|
Saleh FY, Awad SS, Nasif GA, Halim C. Epithelial expression of cytokeratins 15 and 19 in vitiligo. J Cosmet Dermatol 2016; 15:312-317. [PMID: 27139521 DOI: 10.1111/jocd.12223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2016] [Indexed: 12/01/2022]
Abstract
BACKGROUND Cytokeratins (CK) belong to the family of intermediate filament proteins, and among them specific epithelial keratins are considered markers for stem cells activation. OBJECTIVES This study aims to investigate the expression of CK15 and CK19 as possible stem cell markers in vitiligo during phototherapy. METHODS The study was conducted on vitiligo patients receiving narrow-band ultraviolet therapy. Immunohistochemical staining for CK15 and CK19 was carried out, and clinical follow-up continued for 4 weeks. RESULTS Of 28 patients, CK15 expression was demonstrated in 17 cases (61%) while CK19 expression was demonstrated in 11 cases (39%). Cells expressing positive staining were demonstrated in follicular and interfollicular epithelium. Expression was clearly demonstrated in patients younger than 20 years old, with shorter disease duration, with disease stability, and with normally pigmented hairs. Expression of cytokeratins was significantly correlated to improvement of vitiligo lesions. CONCLUSION CK15 and CK19 are expressed in vitiligo during UV repigmentation in the follicular and interfollicular epithelium. This expression of cytokeratins was significantly correlated to improvement and can be considered valuable tool to monitor stem cells stimulation for the sake of the repigmentation process in vitiligo.
Collapse
Affiliation(s)
- Fatma Y Saleh
- Department of Dermatology, STDs and Andrology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Sherif S Awad
- Department of Dermatology, STDs and Andrology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Ghada A Nasif
- Department of Dermatology, STDs and Andrology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Christein Halim
- Department of Dermatology, STDs and Andrology, Faculty of Medicine, Minia University, Minia, Egypt
| |
Collapse
|
12
|
Wang Q, Wang X, Le Y, Jiang M, Wu J, Tao L, Kang Y, Xiang L. Rnaset2 inhibits melanocyte outgrowth possibly through interacting with shootin1. J Dermatol Sci 2015; 80:25-32. [PMID: 26293343 DOI: 10.1016/j.jdermsci.2015.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 07/02/2015] [Accepted: 07/08/2015] [Indexed: 01/09/2023]
Abstract
BACKGROUND Impaired dendrite outgrowth of melanocytes is one of the reasons triggering vitiligo. RNASET2 was identified as one of the risk genes for vitiligo in a GWAS study conducted in the Chinese Han population. However, the role of Rnaset2 in the outgrowth of melanocytes is rarely studied. OBJECTIVE This study is to investigate the effects of Rnaset2 in regulating the outgrowth of melanocytes and its interacting proteins. METHODS Stress conditions (UV irradiation, hydrogen peroxide, and lipopolysaccharides) were applied to primary human epidermal melanocytes (HEMs) and epidermal keratinocytes (HEKs). HEKs with Rnaset2 overexpression were co-cultured with HEMs. Rnaset2 expression levels were detected by ELISA. HEMs, HEKs and A375 cells were treated with recombinant Rnaset2 protein and actin network was observed with fluorescence microscope. Cell migration assay was performed using nuclepore filters after incubating A375 cells with recombinant Rnaset2 protein. Human proteome microarray was performed to identify proteins interacting with Rnaset2. Co-immunoprecipitation was conducted to verify the results. RESULTS Our results showed that after exposing to stress conditions, Rnaset2 expression and secretion by HEKs and HEMs were increased. Co-culture of HEKs and HEMs showed that outgrowth of HEMs was inhibited by Rnaset2 overexpression in HEKs. Additionally, human recombinant Rnaset2 protein treatment altered the actin network of HEMs, HEKs and A375 cells. The migration of A375 cells was also inhibited by human recombinant Rnaset2 protein treatment. Human proteome microarray identified shootin1, an important protein involved in axon outgrowth, as one of the interacting proteins of Rnaset2. Co-immunoprecipitation confirmed that Rnaset2 interacted with shootin1 in vitro. CONCLUSION Rnaset2 inhibits melanocyte outgrowth through interacting with shootin1 and this effect may be associated with vitiligo pathogenesis. Rnaset2 may be a potential therapeutic target for vitiligo.
Collapse
Affiliation(s)
- Qianqian Wang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Xiuxiu Wang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Yan Le
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Min Jiang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Jiaqiang Wu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Li Tao
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Yuli Kang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Leihong Xiang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, PR China.
| |
Collapse
|
13
|
Abstract
Vitiligo is an acquired depigmenting disorder that affects 0.5% to 2% of the world population. Three different forms are classified according to the distribution of lesions; namely non-segmental, segmental and mixed vitiligo. Vitiligo is associated with polymorphisms in genes involved in the immune response and in melanogenesis. However, environmental factors are required for the development of manifest disease. In general, the diagnosis is clinical and no laboratory tests or biopsies are required. Metabolic alterations are central to current concepts in pathophysiology. They induce an increased generation of reactive oxygen species and susceptibility to mild exogenous stimuli in the epidermis. This produces a senescent phenotype of skin cells, leads to the release of innate immune molecules, which trigger autoimmunity, and ultimately causes dysfunction and death of melanocytes. Clinical management aims to halt depigmentation, and to either repigment or depigment the skin, depending on the extent of disease. New therapeutic approaches include stimulation of melanocyte differentiation and proliferation through α-melanocyte-stimulating hormone analogues and through epidermal stem cell engineering. Several questions remain unsolved, including the connection between melanocyte depletion and stem cell exhaustion, the underlying degenerative mechanisms and the biological mediators of cell death. Overall, vitiligo is an excellent model for studying degenerative and autoimmune processes and for testing novel approaches in regenerative medicine. For an illustrated summary of this Primer, visit: http://go.nature.com/vIhFSC.
Collapse
Affiliation(s)
- Mauro Picardo
- Cutaneous Physiopathology, San Gallicano Dermatologic Institute, IFO IRCCS, via Elio Chianesi 53, 00144 Rome, Italy
| | - Maria L Dell'Anna
- Cutaneous Physiopathology, San Gallicano Dermatologic Institute, IFO IRCCS, via Elio Chianesi 53, 00144 Rome, Italy
| | - Khaled Ezzedine
- Service de Dermatologie et Dermatologie Pédiatrique, Centre de référence pour les maladies rares de la peau, INSERM 1035, Université de Bordeaux, Bordeaux, France
| | - Iltefat Hamzavi
- Multicultural Dermatology Center, Department of Dermatology, Henry Ford Hospital Detroit, Michigan, USA
| | - John E Harris
- Division of Dermatology, Department of Medicine, University of Massachusetts Medical School, Worcester, USA
| | | | - Alain Taieb
- Service de Dermatologie et Dermatologie Pédiatrique, Centre de référence pour les maladies rares de la peau, INSERM 1035, Université de Bordeaux, Bordeaux, France
| |
Collapse
|
14
|
Risk factors and treatment responses in patients with vitiligo in Japan—A retrospective large-scale study. Kaohsiung J Med Sci 2015; 31:260-4. [DOI: 10.1016/j.kjms.2015.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 12/29/2014] [Accepted: 01/26/2015] [Indexed: 11/24/2022] Open
|
15
|
Ni Y, Zhang K, Liu X, Yang T, Wang B, Fu L, A L, Zhou Y. miR-21 promotes the differentiation of hair follicle-derived neural crest stem cells into Schwann cells. Neural Regen Res 2014; 9:828-36. [PMID: 25206896 PMCID: PMC4146246 DOI: 10.4103/1673-5374.131599] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2014] [Indexed: 12/20/2022] Open
Abstract
Hair follicle-derived neural crest stem cells can be induced to differentiate into Schwann cells in vivo and in vitro. However, the underlying regulatory mechanism during cell differentiation remains poorly understood. This study isolated neural crest stem cells from human hair follicles and induced them to differentiate into Schwann cells. Quantitative RT-PCR showed that microRNA (miR)-21 expression was gradually increased during the differentiation of neural crest stem cells into Schwann cells. After transfection with the miR-21 agonist (agomir-21), the differentiation capacity of neural crest stem cells was enhanced. By contrast, after transfection with the miR-21 antagonist (antagomir-21), the differentiation capacity was attenuated. Further study results showed that SOX-2 was an effective target of miR-21. Without compromising SOX2 mRNA expression, miR-21 can down-regulate SOX protein expression by binding to the 3′-UTR of miR-21 mRNA. Knocking out the SOX2 gene from the neural crest stem cells significantly reversed the antagomir-21 inhibition of neural crest stem cells differentiating into Schwann cells. The results suggest that miR-21 expression was increased during the differentiation of neural crest stem cells into Schwann cells and miR-21 promoted the differentiation through down-regulating SOX protein expression by binding to the 3′-UTR of SOX2 mRNA.
Collapse
Affiliation(s)
- Yuxin Ni
- Hospital of Stomatology, Jilin University, Changchun, Jilin Province, China
| | - Kaizhi Zhang
- China-Japan Union Hospital, Jilin University, Changchun, Jilin Province, China
| | - Xuejuan Liu
- First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Tingting Yang
- Hospital of Stomatology, Jilin University, Changchun, Jilin Province, China
| | - Baixiang Wang
- Hospital of Stomatology, Jilin University, Changchun, Jilin Province, China
| | - Li Fu
- Hospital of Stomatology, Jilin University, Changchun, Jilin Province, China
| | - Lan A
- Hospital of Stomatology, Jilin University, Changchun, Jilin Province, China
| | - Yanmin Zhou
- Hospital of Stomatology, Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
16
|
Abstract
INTRODUCTION Melanocytes produce pigment granules that color both skin and hair. In the hair follicles melanocytes are derived from stem cells (MelSCs) that are present in hair bulges or sub-bulge regions and function as melanocyte reservoirs. Quiescence, maintenance, activation and proliferation of MelSCs are controlled by specific activities in the microenvironment that can influence the differentiation and regeneration of melanocytes. Therefore, understanding MelSCs and their niche may lead to use of MelSCs in new treatments for various pigmentation disorders. AREAS COVERED We describe here pathophysiological mechanisms by which melanocyte defects lead to skin pigmentation disorders such as vitiligo and hair graying. The development, migration and proliferation of melanocytes and factors involved in the survival, maintenance and regeneration of MelSCs are reviewed with regard to the biological roles and potential therapeutic applications in skin pigmentation diseases. EXPERT OPINION MelSC biology and niche factors have been studied mainly in murine experimental models. Human MelSC markers or methods to isolate them are much less well understood. Identification, isolation and culturing of human MelSCs would represent a major step toward new biological therapeutic options for patients with recalcitrant pigmentary disorders or hair graying. By modulating the niche factors for MelSCs, it may one day be possible to control skin pigmentary disorders and prevent or reverse hair graying.
Collapse
Affiliation(s)
- Ju Hee Lee
- Massachusetts General Hospital, Harvard Medical School, Department of Dermatology and Cutaneous Biology Research Center , Boston, MA 02129 , USA +1 617 643 5428 ; +1 617 643 6588 ;
| | | |
Collapse
|
17
|
Dong D, Chen S, Zhang X, Jin C, Zheng Y, Yang L. Comparison of high-intensity ultraviolet and NB-UVB on the maturation of melanocytes derived from hair follicle neural crest stem cells. Lasers Med Sci 2014; 29:1649-54. [PMID: 24711010 DOI: 10.1007/s10103-014-1568-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 03/17/2014] [Indexed: 11/29/2022]
Abstract
Both high-intensity ultraviolet and narrowband ultraviolet B (NB-UVB) are important therapeutic options for vitiligo management, but high-intensity ultraviolet is more effective than NB-UVB. However, the underlying mechanisms have not been well investigated. Herein, we compare the effects of high-intensity ultraviolet and NB-UVB on the pigmentation of melanocytes derived from hair follicle-derived neural crest stem cells (HF-NCSCs) in vitro and study the underlying mechanisms. The HF-NCSCs were isolated from mouse whisker follicles. After radiation with high-intensity ultraviolet and NB-UVB, respectively, the cell viability by the CCK-8 assay showed gradual inhibitory effects in a dose-dependent manner, which has no apparent difference between the two modalities. The mRNA for melanogenesis factors such as tyrosinase and tyrp1 of the differentiated melanocytes increased significantly with high-intensity ultraviolet compared to the same dose of NB-UVB exposure. Furthermore, the expression of Mc1r was significantly increased by high-intensity ultraviolet in contrast to NB-UVB at the dosage of 0.5 J. By and large, these data suggest that high-intensity ultraviolet exhibited greater efficiency on the maturation of the melanocyte lineage differentiated from HF-NCSCs compared to NB-UVB with the same dose, which was probably due to the stronger stimulatory action of Mc1r. This may provide new insights into the different efficacies of high-intensity ultraviolet and NB-UVB in the treatment of vitiligo repigmentation.
Collapse
Affiliation(s)
- Dake Dong
- Department of Dermatology, Wuxi Second Affiliated Hospital of Nanjing Medical University, 68 Zhongshan Road, Wuxi, 214002, Jiangsu Province, China
| | | | | | | | | | | |
Collapse
|
18
|
Stress-induced RNASET2 overexpression mediates melanocyte apoptosis via the TRAF2 pathway in vitro. Cell Death Dis 2014; 5:e1022. [PMID: 24457966 PMCID: PMC4040706 DOI: 10.1038/cddis.2013.539] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 11/28/2013] [Accepted: 12/02/2013] [Indexed: 11/08/2022]
Abstract
The recent genome-wide association study identified a link between vitiligo and genetic variants in the ribonuclease T2 (RNASET2) gene; however, the functional roles of RNASET2 in vitiligo pathogenesis or in melanocyte apoptosis have yet to be determined. The current study was designed to investigate the vitiligo-related expression pattern of RNASET2 and its molecular function involving apoptosis-related signaling proteins and pathways. The results showed overexpression of RNASET2 in epidermis specimens from 40 vitiligo patients compared with that from matched healthy controls. In addition, in vitro analyses indicated that overexpression of RNASET2 was inducible in cultured primary human melanocytes and keratinocytes by stress conditions, that is, exposure to UV irradiation, hydrogen peroxide, and inflammatory factors, respectively, and led to increased cell apoptosis via the tumor necrosis factor receptor-associated factor 2 (TRAF2)-caspases pathway through the physical interaction of RNASET2 with TRAF2. Thus, RNASET2 may contribute to vitiligo pathogenesis by inhibiting TRAF2 expression and, as such, RNASET2 may represent a potential therapeutic target of vitiligo.
Collapse
|
19
|
Narrow band-ultraviolet B versus clobetasol propionate foam in the treatment of vitiligo: a retrospective study. Dermatol Ther (Heidelb) 2013; 3:95-105. [PMID: 23888259 PMCID: PMC3680636 DOI: 10.1007/s13555-013-0028-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Indexed: 10/31/2022] Open
Abstract
INTRODUCTION Several therapeutic options are available for the treatment of vitiligo; among these phototherapy and topical steroids are the most widely documented. A topical formulation of 0.05% clobetasol propionate foam (CPF) has been introduced in the market, but no data are available about the efficacy and tolerability of this new formulation in the treatment of vitiligo. The aim of this study was to investigate the efficacy and tolerability of CPF in the treatment of vitiligo, in comparison with narrowband-ultraviolet B (NB-UVB) phototherapy. METHODS The medical records of the first 60 vitiligo patients treated with NB-UVB phototherapy or with CPF were selected. Response to the treatment was determined for each anatomic site (neck, upper and lower limbs, trunk, hands/wrists, feet/ankles). Based on the area of repigmentation, treatment outcome was calculated according to a scale ranging from 0 (absent) to 4 (excellent). The incidence of adverse effects was also noted as a secondary endpoint. Significance level was set at P = 0.05. RESULTS For each anatomic site, statistical analyses demonstrated that the efficacy of CPF was significantly higher compared to NB-UVB. Side effects occurred in 4 patients (13.33%) in the CPF group compared to none in the NB-UVB group. DISCUSSION Clobetasol propionate has been used in vitiligo in different vehicles, but never in foam. The data showed that CPF is effective and seems to be superior to NB-UVB phototherapy, with furthermore a good safety profile. CONCLUSION This new foam formulation of clobetasol propionate may expand the options currently available for vitiligo therapy; however, further investigations are needed to confirm our preliminary observations.
Collapse
|
20
|
Reich A, Mędrek K. Effects of narrow band UVB (311 nm) irradiation on epidermal cells. Int J Mol Sci 2013; 14:8456-66. [PMID: 23594996 PMCID: PMC3645754 DOI: 10.3390/ijms14048456] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 04/09/2013] [Accepted: 04/09/2013] [Indexed: 01/02/2023] Open
Abstract
Ultraviolet radiation (UVR) is known to be one of the most important environmental hazards acting on the skin. It was revealed that chronic exposure to UVR accelerates skin aging, induces immunosuppression and may lead to the development of skin cancers. On the other hand, UVR has been shown to be effective in the treatment of numerous skin diseases and thus, various phototherapy modalities have been developed to date. Narrow-band ultraviolet B (NB-UVB) emitting a light with a peak around 311 nm has been demonstrated to be effective in the treatment of various skin disorders; currently it is one of the most commonly used phototherapy devices. Despite NB-UVB has been developed more than 30 years ago, the exact mechanism of its therapeutic action remains poorly understood. To date, most of NB-UVB effects were attributed to its influence on immune cells; however, nearly 90% of NB-UVB irradiation is absorbed by epidermis and keratinocytes seem to be important players in mediating NB-UVB biological activity. Here, we have reviewed the current data about the influence of NB-UVB on epidermal cells, with a special emphasis on cell proliferation and death.
Collapse
Affiliation(s)
- Adam Reich
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, Chałubińskiego 1, Wrocław 50-368, Poland.
| | | |
Collapse
|
21
|
Lee CH, Wu SB, Hong CH, Yu HS, Wei YH. Molecular Mechanisms of UV-Induced Apoptosis and Its Effects on Skin Residential Cells: The Implication in UV-Based Phototherapy. Int J Mol Sci 2013; 14:6414-35. [PMID: 23519108 PMCID: PMC3634415 DOI: 10.3390/ijms14036414] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 03/13/2013] [Accepted: 03/15/2013] [Indexed: 12/31/2022] Open
Abstract
The human skin is an integral system that acts as a physical and immunological barrier to outside pathogens, toxicants, and harmful irradiations. Environmental ultraviolet rays (UV) from the sun might potentially play a more active role in regulating several important biological responses in the context of global warming. UV rays first encounter the uppermost epidermal keratinocytes causing apoptosis. The molecular mechanisms of UV-induced apoptosis of keratinocytes include direct DNA damage (intrinsic), clustering of death receptors on the cell surface (extrinsic), and generation of ROS. When apoptotic keratinocytes are processed by adjacent immature Langerhans cells (LCs), the inappropriately activated Langerhans cells could result in immunosuppression. Furthermore, UV can deplete LCs in the epidermis and impair their migratory capacity, leading to their accumulation in the dermis. Intriguingly, receptor activator of NF-κB (RANK) activation of LCs by UV can induce the pro-survival and anti-apoptotic signals due to the upregulation of Bcl-xL, leading to the generation of regulatory T cells. Meanwhile, a physiological dosage of UV can also enhance melanocyte survival and melanogenesis. Analogous to its effect in keratinocytes, a therapeutic dosage of UV can induce cell cycle arrest, activate antioxidant and DNA repair enzymes, and induce apoptosis through translocation of the Bcl-2 family proteins in melanocytes to ensure genomic integrity and survival of melanocytes. Furthermore, UV can elicit the synthesis of vitamin D, an important molecule in calcium homeostasis of various types of skin cells contributing to DNA repair and immunomodulation. Taken together, the above-mentioned effects of UV on apoptosis and its related biological effects such as proliferation inhibition, melanin synthesis, and immunomodulations on skin residential cells have provided an integrated biochemical and molecular biological basis for phototherapy that has been widely used in the treatment of many dermatological diseases.
Collapse
Affiliation(s)
- Chih-Hung Lee
- Department of Dermatology, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung 812, Taiwan; E-Mail:
- Department of Dermatology, Kaohsiung Medical University, Kaohsiung 807, Taiwan; E-Mail:
- Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Shi-Bei Wu
- Department of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan; E-Mail:
| | - Chien-Hui Hong
- Department of Dermatology, National Yang-Ming University, Taipei 112, Taiwan; E-Mail:
- Department of Dermatology, Kaohsiung Veterans General Hospital, Kaohsiung City 813, Taiwan
| | - Hsin-Su Yu
- Department of Dermatology, Kaohsiung Medical University, Kaohsiung 807, Taiwan; E-Mail:
- Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Yau-Huei Wei
- Department of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan; E-Mail:
- Department of Medicine, Mackay Medical College, New Taipei City 252, Taiwan
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +886-2-2826-7118; Fax: +886-2-2826-4843
| |
Collapse
|
22
|
Duan XS, Lu J, Ge ZH, Xing EH, Lu HT, Sun LX. Effects of T-cadherin expression on B16F10 melanoma cells. Oncol Lett 2013; 5:1205-1210. [PMID: 23599764 PMCID: PMC3629152 DOI: 10.3892/ol.2013.1164] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 01/16/2013] [Indexed: 12/24/2022] Open
Abstract
Melanoma is one of the most deadly skin cancers. T-cadherin is an atypical member of the cadherin superfamily as it lacks the transmembrane and cytoplasmic domains and is anchored to cell membranes through glycosylphosphatidylinositol (GPI) anchors. T-cadherin downregulation is associated with a poorer prognosis in various carcinomas, such as lung, ovarian, cervical and prostate cancer, while in the majority of cancer cell lines, T-cadherin re-expression inhibits cell proliferation and invasiveness, increases susceptibility in apoptosis and reduces tumor growth in in vivo models. The functional relevance of T-cadherin gene expression in melanoma progression remains to be clarified. The present study was designed for this purpose. The T-cadherin gene was transfected into B16F10 melanoma cells to express T-cadherin in the cells which were originally deficient in T-cadherin expression. The proliferation, invasiveness, apoptosis and cell cycle of the transfected B16F10 melanoma cells were analyzed. The present study showed that the expression of T-cadherin in B16F10 melanoma cells markedly reduced cell proliferation and permeation through Matrigel-coated membranes, representing invasiveness. The percentage of early apoptotic cells and cells in the G2/M phase of the cell cycle was markedly increased compared with either parental B16F10 (without transfection) or empty pEGFP-N1 (without T-cadherin gene)-transfected B16F10 cells, suggesting G2/M arrest, with similarity between the parental and empty pEGFP-N1-transfected B16F10 cells. T-cadherin is important in melanoma progression and may be a possible target for therapy in melanoma and certain other types of cancer.
Collapse
Affiliation(s)
- Xin-Suo Duan
- Departments of Dermatology, The Affiliated Hospital of Chengde Medical College, Chengde, Hebei 067000, P.R. China
| | | | | | | | | | | |
Collapse
|