Chen T, Zhao B, Liu Y, Wang R, Yang Y, Yang L, Dong C. MITF-M regulates melanogenesis in mouse melanocytes.
J Dermatol Sci 2018;
90:253-262. [PMID:
29496358 DOI:
10.1016/j.jdermsci.2018.02.008]
[Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 02/06/2018] [Accepted: 02/14/2018] [Indexed: 11/17/2022]
Abstract
BACKGROUND
Although the impact of the microphthalamia-associated transcription factor (Mitf) signaling pathway on melanocytes progression has been extensively studied, the specific molecular mechanisms behind MITF-M-enhanced melanin production in melanocytes still need to be clarified.
METHODS
In this study, we analyzed the levels of Mitf-M in skin tissues of different coat mice in order to further reveal the relationship between Mitf-M and skin pigmentation. To address the function of Mitf-M on melanogenesis, we have used an overexpression system and combined morphological and biochemical methods to investigate its localization in different coat color mice and pigmentation-related genes' expression in mouse melanocytes.
RESULTS
The qRT-PCR assay and Western blotting analysis revealed that Mitf-M mRNA and protein were synthesized in all tested mice skin samples, with the highest expression level in brown skin, a moderate expression level in grey skin and the lowest expression level in black skin. Simultaneously, immunofluorescence staining revealed that MITF-M was mainly expressed in the hair follicle matrix and inner and outer root sheath in the skin tissues with different coat colors. Furthermore, overexpression of MITF-M led to increased melanin content and variable pigmentation-related gene expression.
CONCLUSION
These results directly demonstrate that MITF-M not only influences melanogenesis, but also determines the progression of melanosomal protein in mouse melanocytes.
Collapse