1
|
Cai C, Liu S, Liu Y, Huang S, Lu S, Liu F, Luo X, Zouboulis CC, Shi G. Paeoniflorin mitigates insulin-like growth factor 1-induced lipogenesis and inflammation in human sebocytes by inhibiting the PI3K/Akt/FoxO1 and JAK2/STAT3 signaling pathways. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:56. [PMID: 39349732 PMCID: PMC11442718 DOI: 10.1007/s13659-024-00478-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024]
Abstract
Insulin-like growth factor-1 (IGF-1) is considered as a pathogenic factor contributing to sebaceous gland dysfunction, which leads to acne vulgaris. Paeoniflorin (Pae), a bioactive monomer derived from total glycosides of paeony, has shown potential in treating various diseases. However, its anti-acne effects on human sebocytes are not well understood. In this study, we investigated the effects of Pae on acne development induced by IGF-1 in SZ95 sebocytes. Following IGF-1 stimulation, SZ95 sebocytes were exposed to Pae and then determined for proliferation, cell cycle, apoptosis, lipogenesis and pro-inflammatory cytokine secretion. We also analyzed the expression of proteins involved in the PI3K/Akt/FoxO1 and JAK2/STAT3 pathways. In vitro experiments demonstrated that Pae significantly inhibited colony formation, induced G1/S cell cycle arrest, promoted apoptosis, inhibited lipogenesis and cytokine synthesis in IGF-1-treated SZ95 sebocytes. Furthermore, Pae suppressed the phosphorylation of Akt, FoxO1, JAK2, and STAT3. Importantly, the sebo-suppressive and anti-inflammatory effects of Pae were enhanced by blocking PI3K and JAK2. In summary, our findings suggest that Pae has potent anti-proliferative and pro-apoptotic effects in SZ95 sebocytes. Additionally, Pae effectively protects against IGF-1-induced lipogenesis and inflammation by targeting the PI3K/Akt/FoxO1 and JAK2/STAT3 signaling pathways.
Collapse
Affiliation(s)
- Chuanchuan Cai
- Department of Dermatology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Si Liu
- Department of Cosmetic and Plastic Surgery, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Biomedical Innovation Center, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Yufeng Liu
- Department of Cosmetic and Plastic Surgery, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Biomedical Innovation Center, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Shaobin Huang
- Department of Cosmetic and Plastic Surgery, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Biomedical Innovation Center, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Shiya Lu
- Huamei-Bond International College, Guangzhou, 510520, China
| | - Fang Liu
- Department of Cosmetic and Plastic Surgery, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Biomedical Innovation Center, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Xiaohua Luo
- Department of Cosmetic and Plastic Surgery, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
- Biomedical Innovation Center, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Christos C Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Staedtisches Klinikum Dessau, Brandenburg Medical School Theodor Fontane and Faculty of Health Sciences Brandenburg, 06847, Dessau, Germany
| | - Ge Shi
- Department of Cosmetic and Plastic Surgery, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China.
- Biomedical Innovation Center, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China.
| |
Collapse
|
2
|
Li X, Zeng X, Kim D, Jiang J, Wei F, Zhang J, Chai B, Fu L, Lee Y, Kim C, Chen H. Krüppel-like factor 4 (KLF4) facilitates lipid production in immortalized human sebocytes via regulating the expression of SREBP1. Biochem Biophys Res Commun 2023; 667:146-152. [PMID: 37229823 DOI: 10.1016/j.bbrc.2023.05.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/10/2023] [Accepted: 05/13/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Acne is associated with the excessive production of sebum, a complex mixture of lipids, in the sebaceous glands. The transcription factor Krüppel-like factor 4 (KLF4) plays an important role in skin morphogenesis, but its role in sebum production by sebocytes is not well known. PURPOSE In this study, we investigated the possible action mechanism of KLF4 during calcium-induced lipogenesis in immortalized human sebocytes. METHODS Sebocytes were treated with calcium, and lipid production was confirmed by thin-layer chromatography (TLC) and Oil Red O staining. To investigate the effect of KLF4, sebocytes were transduced with the KLF4-overexpressing adenovirus, and then lipid production was evaluated. RESULTS Calcium treatment resulted in increased sebum production in terms of squalene synthesis in sebocytes. In addition, calcium increased the expression of lipogenic regulators such as sterol-regulatory element binding protein 1 (SREBP1), sterol-regulatory element binding protein 2 (SREBP2), and stearoyl-CoA desaturase (SCD). Similarly, the expression of KLF4 was increased by calcium in sebocytes. To investigate the effect of KLF4, we overexpressed KLF4 in sebocytes using recombinant adenovirus. As a result, KLF4 overexpression increased the expression of SREBP1, SREBP2, and SCD. Parallel to this result, lipid production was also increased by KLF4 overexpression. Chromatin immunoprecipitation revealed the binding of KLF4 to the SREBP1 promoter, indicating that KLF4 may directly regulate the expression of lipogenic regulators. CONCLUSION These results suggest that KLF4 is a novel regulator of lipid production in sebocytes.
Collapse
Affiliation(s)
- XueMei Li
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, 518060, China; Department of Dermatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China
| | - Xin Zeng
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, 518060, China; Department of Dermatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China
| | - DoYeon Kim
- Department of Dermatology, Chungnam National University School of Medicine, Chungnam National University Hospital, Daejeon, 35015, South Korea
| | - Jian Jiang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fen Wei
- Department of Dermatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China
| | - JingYu Zhang
- Department of Dermatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China; Shenzhen University Medical School, Shenzhen, 518060, China
| | - Bao Chai
- Department of Dermatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China; Department of Dermatology, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518052, China
| | - Li Fu
- Guangdong Province Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and Shenzhen University International Cancer Center, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Young Lee
- Department of Dermatology, Chungnam National University School of Medicine, Chungnam National University Hospital, Daejeon, 35015, South Korea
| | - ChangDeok Kim
- Department of Dermatology, Chungnam National University School of Medicine, Chungnam National University Hospital, Daejeon, 35015, South Korea.
| | - HongXiang Chen
- Department of Dermatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China; Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
3
|
Ramer R, Hinz B. Cannabinoid Compounds as a Pharmacotherapeutic Option for the Treatment of Non-Cancer Skin Diseases. Cells 2022; 11:4102. [PMID: 36552866 PMCID: PMC9777118 DOI: 10.3390/cells11244102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 12/23/2022] Open
Abstract
The endocannabinoid system has been shown to be involved in various skin functions, such as melanogenesis and the maintenance of redox balance in skin cells exposed to UV radiation, as well as barrier functions, sebaceous gland activity, wound healing and the skin's immune response. In addition to the potential use of cannabinoids in the treatment and prevention of skin cancer, cannabinoid compounds and derivatives are of interest as potential systemic and topical applications for the treatment of various inflammatory, fibrotic and pruritic skin conditions. In this context, cannabinoid compounds have been successfully tested as a therapeutic option for the treatment of androgenetic alopecia, atopic and seborrhoeic dermatitis, dermatomyositis, asteatotic and atopic eczema, uraemic pruritis, scalp psoriasis, systemic sclerosis and venous leg ulcers. This review provides an insight into the current literature on cannabinoid compounds as potential medicines for the treatment of skin diseases.
Collapse
Affiliation(s)
| | - Burkhard Hinz
- Institute of Pharmacology and Toxicology, Rostock University Medical Centre, Schillingallee 70, D-18057 Rostock, Germany
| |
Collapse
|
4
|
Ahmed NS, Foote JB, Singh KK. Impaired Mitochondria Promote Aging-Associated Sebaceous Gland Dysfunction and Pathology. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:1546-1558. [PMID: 35948081 PMCID: PMC9667715 DOI: 10.1016/j.ajpath.2022.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/30/2022] [Accepted: 07/14/2022] [Indexed: 06/05/2023]
Abstract
Mitochondrial dysfunction is one of the hallmarks of aging. Changes in sebaceous gland (SG) function and sebum production have been reported during aging. This study shows the direct effects of mitochondrial dysfunction on SG morphology and function. A mitochondrial DNA (mtDNA) depleter mouse was used as a model for introducing mitochondrial dysfunction in the whole animal. The effects on skin SGs and modified SGs of the eyelid, lip, clitoral, and preputial glands were characterized. The mtDNA depleter mice showed gross morphologic and histopathologic changes in SGs associated with increased infiltration by mast cells, neutrophils, and polarized macrophages. Consistently, there was increased expression of proinflammatory cytokines. The inflammatory changes were associated with abnormal sebocyte accumulation of lipid, defective sebum delivery at the skin surface, and the up-regulation of key lipogenesis-regulating genes and androgen receptor. The mtDNA depleter mice expressed aging-associated senescent marker. Increased sebocyte proliferation and aberrant expression of stem cell markers were observed. These studies provide, for the first time, a causal link between mitochondrial dysfunction and abnormal sebocyte function within sebaceous and modified SGs throughout the whole body of the animal. They suggest that mtDNA depleter mouse may serve as a novel tool to develop targeted therapeutics to address SG disorders in aging humans.
Collapse
Affiliation(s)
- Noha S Ahmed
- Department of Genetics, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Dermatology, Zagazig University, Zagazig, Egypt
| | - Jeremy B Foote
- Department of Microbiology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama; Animal Resources Program, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Keshav K Singh
- Department of Genetics, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Pathology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Dermatology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
5
|
Ma Y, Kan C, Qiu H, Liu Y, Hou N, Han F, Shi J, Sun X. Transcriptomic Analysis Reveals the Protective Effects of Empagliflozin on Lipid Metabolism in Nonalcoholic Fatty Liver Disease. Front Pharmacol 2021; 12:793586. [PMID: 34992540 PMCID: PMC8724565 DOI: 10.3389/fphar.2021.793586] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/06/2021] [Indexed: 02/05/2023] Open
Abstract
Empagliflozin is a novel type of sodium-glucose cotransporter two inhibitor with diverse beneficial effects in the treatment of nonalcoholic fatty liver disease (NAFLD). Although empagliflozin impacts NAFLD by regulating lipid metabolism, the underlying mechanism has not been fully elucidated. In this study, we investigated transcriptional regulation pathways affected by empagliflozin in a mouse model of NAFLD. In this study, NAFLD was established in male C57BL/6J mice by administration of a high-fat diet; it was then treated with empagliflozin and whole transcriptome analysis was conducted. Gene expression levels detected by transcriptome analysis were then verified by quantitative real-time polymerase chain reaction, protein levels detected by Western Blot. Differential expression genes screened from RNA-Seq data were enriched in lipid metabolism and synthesis. The Gene Set Enrichment Analysis (GSEA) results showed decreased lipid synthesis and improved lipid metabolism. Empagliflozin improved NAFLD through enhanced triglyceride transfer, triglyceride lipolysis and microsomal mitochondrial β-oxidation. This study provides new insights concerning the mechanisms by which sodium-glucose cotransporter two inhibitors impact NAFLD, particularly in terms of liver lipid metabolism. The lipid metabolism-related genes identified in this experiment provide robust evidence for further analyses of the mechanism by which empagliflozin impacts NAFLD.
Collapse
Affiliation(s)
- Yuting Ma
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Branch of Shandong Provincial Clinical Research Center for Diabetes and Metabolic Diseases, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Branch of Shandong Provincial Clinical Research Center for Diabetes and Metabolic Diseases, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Hongyan Qiu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Branch of Shandong Provincial Clinical Research Center for Diabetes and Metabolic Diseases, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Yongping Liu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Branch of Shandong Provincial Clinical Research Center for Diabetes and Metabolic Diseases, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Ningning Hou
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Branch of Shandong Provincial Clinical Research Center for Diabetes and Metabolic Diseases, Weifang, China
| | - Fang Han
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Junfeng Shi
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Branch of Shandong Provincial Clinical Research Center for Diabetes and Metabolic Diseases, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Branch of Shandong Provincial Clinical Research Center for Diabetes and Metabolic Diseases, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| |
Collapse
|
6
|
Oncogenic role of SOX9-DHCR24-cholesterol biosynthesis axis in IGH-BCL2 positive diffuse large B-cell lymphomas. Blood 2021; 139:73-86. [PMID: 34624089 PMCID: PMC8740888 DOI: 10.1182/blood.2021012327] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/29/2021] [Indexed: 11/21/2022] Open
Abstract
SOX9 plays an oncogenic role in germinal center B-cell type, IGH-BCL2+ DLBCL, by promoting cell proliferation and inhibiting apoptosis. SOX9 drives lymphomagenesis through upregulation of DHCR24, the key final enzyme in the cholesterol biosynthesis pathway.
Although oncogenicity of the stem cell regulator SOX9 has been implicated in many solid tumors, its role in lymphomagenesis remains largely unknown. In this study, SOX9 was overexpressed preferentially in a subset of diffuse large B-cell lymphomas (DLBCLs) that harbor IGH-BCL2 translocations. SOX9 positivity in DLBCL correlated with an advanced stage of disease. Silencing of SOX9 decreased cell proliferation, induced G1/S arrest, and increased apoptosis of DLBCL cells, both in vitro and in vivo. Whole-transcriptome analysis and chromatin immunoprecipitation–sequencing assays identified DHCR24, a terminal enzyme in cholesterol biosynthesis, as a direct target of SOX9, which promotes cholesterol synthesis by increasing DHCR24 expression. Enforced expression of DHCR24 was capable of rescuing the phenotypes associated with SOX9 knockdown in DLBCL cells. In models of DLBCL cell line xenografts, SOX9 knockdown resulted in a lower DHCR24 level, reduced cholesterol content, and decreased tumor load. Pharmacological inhibition of cholesterol synthesis also inhibited DLBCL xenograft tumorigenesis, the reduction of which is more pronounced in DLBCL cell lines with higher SOX9 expression, suggesting that it may be addicted to cholesterol. In summary, our study demonstrated that SOX9 can drive lymphomagenesis through DHCR24 and the cholesterol biosynthesis pathway. This SOX9-DHCR24-cholesterol biosynthesis axis may serve as a novel treatment target for DLBCLs.
Collapse
|
7
|
Ferredoxin reductase regulates proliferation, differentiation, cell cycle and lipogenesis but not apoptosis in SZ95 sebocytes. Exp Cell Res 2021; 405:112680. [PMID: 34090862 DOI: 10.1016/j.yexcr.2021.112680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 05/07/2021] [Accepted: 05/28/2021] [Indexed: 01/14/2023]
Abstract
Ferredoxin reductase (FDXR), a mitochondrial membrane-associated flavoprotein, is essential for electron transfer and modulates p53-dependent apoptosis in cancer cells.FDXR may be implicated in epidermal and sebocytic differentiation, but its explicit function in sebocytes remains to be elucidated. In the present study, immunohistochemistry revealed that FDXR expression was increased in sebaceous cells of acne lesions. FDXR, PPARγ, LXRα/β, SREBP1 and Sox9 expression was incremental during sebocyte differentiation. FDXR overexpression induced by Ad-GFP-FDXR infection enhanced differentiation, reactive oxygen species (ROS), lipogenesis and PPARγ expression, and consequnently inhibited proliferation in SZ95 sebocytes. Flow cytometry showed that FDXR overexpression induced significant blockade of G2/M phase but had no effect on sub-G1 (apoptotic) sebocytes. Insulin-like growth factor-1 (IGF-1)-induced FDXR and PPARγ expression and lipogenesis were abolished by pretreatment with PI3K inhibitor LY294002. These results suggest that FDXR overexpression might promote differentiation and lipogenesis via ROS production and suppress proliferation via G2/S blockade in SZ95 sebocytes. IGF-1 could facilitate differentiation and lipogenesis through PI3K/Akt/FDXR pathway. FDXR could serve as a potential marker of advanced sebaceous differentiation, and its overexpression may be involved in the development of acne lesions.
Collapse
|
8
|
Mares L, Ramos L. Harderian SOX9: Molecular characterization and its dimorphic expression in hamster. Comp Biochem Physiol A Mol Integr Physiol 2021; 258:110981. [PMID: 34000431 DOI: 10.1016/j.cbpa.2021.110981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022]
Abstract
The molecular action of SOX9 can promote lipogenesis. Because the hamster Harderian gland (HG) synthesizes lipids and exhibits sexual dimorphism, this study aimed to identify and characterize Harderian SOX9. We examined the tissue distribution and expression profiles of SOX9 in hamster Mesocricetus auratus HGs. The full-length SOX9 cDNA sequence [3649-base pairs (bp)] contains an 81-bp 5' untranslated region (UTR), a 3' UTR of 2044-bp, an open reading frame (ORF) of 1524-bp, and a polyadenylation signal (AATAAA) at 19-bp upstream of poly(A) tail. The cDNA encodes a 507 amino acid protein containing the potential DNA-binding domain known as the HMG box. BLAST analysis revealed 99%, 99%, and 97% identity with the SOX9 of mouse, rat, and human, respectively. High expression levels were also observed in the testis, cerebellum, and hypothalamus. qPCR analysis demonstrated that SOX9 is expressed more abundantly in the HGs of males than in females. Sexually dimorphic expression of SOX9 suggests that differential expression between male and female HGs could be under the regulation of sex steroids. SOX9 might play a similar role in regulating exocrine secretions of lipids; these could occur downstream of FGF signaling - as found during embryogenesis - and/or androgen signaling.
Collapse
Affiliation(s)
- L Mares
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico
| | - L Ramos
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, Mexico.
| |
Collapse
|
9
|
Yang S, Kam WR, Liu Y, Ding J, Li Y, Sullivan DA. Comparative influence of differentiation and proliferation on gene expression in human meibomian gland epithelial cells. Exp Eye Res 2021; 205:108452. [PMID: 33493473 DOI: 10.1016/j.exer.2021.108452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/03/2020] [Accepted: 01/12/2021] [Indexed: 12/14/2022]
Abstract
We recently discovered that by changing environmental signals, differentiated immortalized human meibomian gland epithelial cells (IHMGECs) de-differentiate into proliferating cells. We also discovered that following exposure to appropriate stimuli, these proliferative cells re-differentiate into differentiated IHMGECs. We hypothesize that this plasticity of differentiated and proliferative IHMGECs is paralleled by very significant alterations in cellular gene expression. To begin to test this hypothesis, we compared the gene expression patterns of IHMGECs during differentiation and proliferation. IHMGECs were cultured for four days in either differentiating or proliferating media. After four days of culture, cells were processed for the analysis of gene expression by using Illumina BeadChips and bioinformatic software. Our study identified significant differences in the expression of more than 9200 genes in differentiated and proliferative IHMGECs. Differentiation was associated with significant increases in the expression of specific genes (e.g. S100 calcium binding protein P; 7,194,386-fold upregulation) and numerous ontologies (e.g. 83 biological process [bp] ontologies with ≥100 genes were upregulated), such as those related to development, transport and lysosomes. Proliferation also led to a significant rise in specific gene expressions (e.g. cathelicidin antimicrobial peptide; 859,100-fold upregulation) and many ontologies (115 biological process [bp] ontologies with ≥100 genes were upregulated), with most of the highly significant ontologies related to cell cycle (z scores > 13.9). Our findings demonstrate that gene expression in differentiated and proliferative IHMGECs is extremely different. These results may have significant implications for the regeneration of HMGECs and the reversal of MG dropout in MG dysfunction.
Collapse
Affiliation(s)
- Shan Yang
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; Schepens Eye Research Institute of Massachusetts Eye and Ear, And Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| | - Wendy R Kam
- Schepens Eye Research Institute of Massachusetts Eye and Ear, And Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Yang Liu
- Schepens Eye Research Institute of Massachusetts Eye and Ear, And Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Juan Ding
- Schepens Eye Research Institute of Massachusetts Eye and Ear, And Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Department of Ophthalmology & Visual Sciences, UMass Memorial Medical Center, Worcester, MA, USA
| | - Ying Li
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China.
| | - David A Sullivan
- Schepens Eye Research Institute of Massachusetts Eye and Ear, And Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
A Mixture of Tocopherol Acetate and L-Menthol Synergistically Promotes Hair Growth in C57BL/6 Mice. Pharmaceutics 2020; 12:pharmaceutics12121234. [PMID: 33353178 PMCID: PMC7766712 DOI: 10.3390/pharmaceutics12121234] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 01/14/2023] Open
Abstract
Oral finasteride and topical minoxidil are single components approved by the US FDA for treating hair loss. Some other compounds originating from natural products are also traditionally used for promoting hair growth. In this study, observations of treated keratinocyte cells were used to demonstrate that tocopherol acetate, L-menthol, and stevioside exert an effect on cell regeneration. Furthermore, these were topically applied to the shaved skin of C57BL/6 mice to observe their effects on hair growth. A mixture of tocopherol acetate, L-menthol, and stevioside showed the highest potential for promoting hair growth in vivo. In in vivo experiments, the mixture of tocopherol acetate, L-menthol, and stevioside was more effective than tocopherol acetate or L-menthol alone in promoting hair growth. The transcriptome analysis of skin from the dorsal side of a mouse treated with tocopherol acetate or L-menthol versus vehicle revealed key changes in keratin, keratin-associated protein, forkhead box, sonic hedgehog, fibroblast growth factor 10, desmoglein 4, deoxyribonuclease 1-like 2, and cadherin 3, known to play roles in promoting hair growth.
Collapse
|
11
|
Ma Y, Shepherd J, Zhao D, Bollu LR, Tahaney WM, Hill J, Zhang Y, Mazumdar A, Brown PH. SOX9 Is Essential for Triple-Negative Breast Cancer Cell Survival and Metastasis. Mol Cancer Res 2020; 18:1825-1838. [PMID: 32661114 DOI: 10.1158/1541-7786.mcr-19-0311] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/21/2020] [Accepted: 07/06/2020] [Indexed: 12/16/2022]
Abstract
Triple-negative breast cancer (TNBC) has the worst prognosis of all breast cancers, and lacks effective targeted treatment strategies. Previously, we identified 33 transcription factors highly expressed in TNBC. Here, we focused on six sex determining region Y-related HMG-box (SOX) transcription factors (SOX4, 6, 8, 9, 10, and 11) highly expressed in TNBCs. Our siRNA screening assay demonstrated that SOX9 knockdown suppressed TNBC cell growth and invasion in vitro. Thus, we hypothesized that SOX9 is an important regulator of breast cancer survival and metastasis, and demonstrated that knockout of SOX9 reduced breast tumor growth and lung metastasis in vivo. In addition, we found that loss of SOX9 induced profound apoptosis, with only a slight impairment of G1 to S progression within the cell cycle, and that SOX9 directly regulates genes controlling apoptosis. On the basis of published CHIP-seq data, we demonstrated that SOX9 binds to the promoter of apoptosis-regulating genes (tnfrsf1b, fadd, tnfrsf10a, tnfrsf10b, and ripk1), and represses their expression. SOX9 knockdown upregulates these genes, consistent with the induction of apoptosis. Analysis of available CHIP-seq data showed that SOX9 binds to the promoters of several epithelial-mesenchymal transition (EMT)- and metastasis-regulating genes. Using CHIP assays, we demonstrated that SOX9 directly binds the promoters of genes involved in EMT (vim, cldn1, ctnnb1, and zeb1) and that SOX9 knockdown suppresses the expression of these genes. IMPLICATIONS: Our studies identified the SOX9 protein as a "master regulator" of breast cancer cell survival and metastasis, and provide preclinical rationale to develop SOX9 inhibitors for the treatment of women with metastatic triple-negative breast cancer.
Collapse
Affiliation(s)
- Yanxia Ma
- Department of Clinical Cancer Prevention, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Jonathan Shepherd
- Department of Clinical Cancer Prevention, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Dekuang Zhao
- Department of Clinical Cancer Prevention, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Lakshmi Reddy Bollu
- Department of Clinical Cancer Prevention, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - William M Tahaney
- Department of Clinical Cancer Prevention, The University of Texas M.D. Anderson Cancer Center, Houston, Texas.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Jamal Hill
- Department of Clinical Cancer Prevention, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Yun Zhang
- Department of Clinical Cancer Prevention, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Abhijit Mazumdar
- Department of Clinical Cancer Prevention, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Powel H Brown
- Department of Clinical Cancer Prevention, The University of Texas M.D. Anderson Cancer Center, Houston, Texas. .,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas.,Department of Breast Medical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW This review will update the pediatric provider on recent data on the pathogenesis and treatment of acne in adolescent patients. A special focus was made to summarize recent guidelines and fill in several identified practice gaps. RECENT FINDINGS Our understanding of the pathogenesis of acne is greatly expanding and data is emerging to tie diet, particularly the role of IGF-1 with inflammation in acne. Additionally, stronger recommendations to limit antibiotic usage in acne are being made worldwide. Although retinoids are considered the base of most effective acne treatment strategies, data suggests that all providers need to emphasize their importance in maintenance of acne. SUMMARY An effective acne management strategy targets multiple pathogenic factors in acne, using a retinoid as the foundation. Systemic antibiotics for moderate-to-severe acne should be used for acute management, then discontinued at 3-4 months, while maintaining on topical treatments. If therapy is ineffective, alternate treatments, such as combined oral contraceptives in females or isotretinoin, should be promptly employed to prevent prolonged psychological impact and cutaneous scarring.
Collapse
|
13
|
Schneider MR, Zouboulis CC. Primary sebocytes and sebaceous gland cell lines for studying sebaceous lipogenesis and sebaceous gland diseases. Exp Dermatol 2018; 27:484-488. [DOI: 10.1111/exd.13513] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Marlon R. Schneider
- German Federal Institute for Risk Assessment (BfR); German Centre for the Protection of Laboratory Animals (Bf3R); Berlin Germany
| | - Christos C. Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology; Dessau Medical Center; Brandenburg Medical School Theodore Fontane; Dessau Germany
| |
Collapse
|
14
|
Differentiation Model Establishment and Differentiation-Related Protein Screening in Primary Cultured Human Sebocytes. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7174561. [PMID: 29850553 PMCID: PMC5907408 DOI: 10.1155/2018/7174561] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 03/06/2018] [Indexed: 12/13/2022]
Abstract
Sebocyte differentiation is a continuous process, but its potential molecular mechanism remains unclear. We aimed to establish a novel sebocyte differentiation model using human primary sebocytes and to identify the expression profiles of differentiation-associated proteins. Primary human sebocytes were cultured on Sebomed medium supplemented with 2% serum for 7 days. Flow cytometry showed that S phase cells were decreased time-dependently, while G1 and subG1 (apoptosis) phase cells increased under serum starvation. Transmission electron microscopy and Oil Red O staining revealed a gradual increase of intracellular lipid accumulation. Expression of proliferation marker was diminished, while expression of differentiation, apoptosis, and lipogenic markers elevated gradually during 7-day culture. iTRAQ analysis identified 3582 expressed proteins in this differentiation model. Compared with day 0, number of differentially expressed proteins was 132, 54, 321, and 96 at days 1, 3, 5, and 7, respectively. Two overexpressed proteins (S100 calcium binding protein P and ferredoxin reductase) and 2 downexpressed proteins (adenosine deaminase and keratin 10) were further confirmed by Western blot and immunohistochemistry.
Collapse
|