1
|
Liu Q, Yang C, Qi J, Shen Q, Ye M, Li H, Zhang L. Bioactivities and Structure-Activity Relationships of Harmine and Its Derivatives: A Review. Chem Biodivers 2025:e202402953. [PMID: 40024888 DOI: 10.1002/cbdv.202402953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/28/2025] [Accepted: 02/28/2025] [Indexed: 03/04/2025]
Abstract
Natural products and their derivatives play a crucial role in treating various diseases. Harmine, a tricyclic β-carboline alkaloid isolated from the seeds of Peganum harmala L., has emerged as a promising therapeutic candidate owing to its multifaceted biological activities. Recent studies have further highlighted the enhanced therapeutic potential of harmine derivatives. To assess the current research landscape on harmine and its derivatives, we conducted a comprehensive analysis of studies published between 2019 and 2024 in scientific databases, such as PubMed, Web of Science, and Google Scholar. In this review, the possible applications of harmine and its derivatives were systematically illustrated, including biological activities, structure-activity relationships, and nanotechnology applications. Notably, the biological activities of harmine and its derivatives mainly contained antitumor, neuroprotective, antiparasitic, anti-inflammatory, and antidiabetic properties. In addition, structural modifications and the application of nanocarriers make harmine and its derivatives more druggable. The aim of this review is to summarize the recent advancements in harmine and its derivatives research, analyze emerging trends, and explore their clinical value.
Collapse
Affiliation(s)
- Qian Liu
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Cheng Yang
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Jiamin Qi
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Qiying Shen
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Mingxing Ye
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Hangying Li
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Yinchuan, China
- Ningxia Collaborative Innovation Center of Regional Characteristic Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China
| | - Liming Zhang
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
- Ningxia Collaborative Innovation Center of Regional Characteristic Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Yinchuan, China
| |
Collapse
|
2
|
Li HL, Li MJ, Xiong GQ, Cai J, Liao T, Zu XY. Silver Carp ( Hypophthalmichthys molitrix) Scale Collagen Peptides-1 (SCPs1) Inhibit Melanogenesis through Downregulation of the cAMP-CREB Signaling Pathway. Nutrients 2023; 15:nu15112449. [PMID: 37299410 DOI: 10.3390/nu15112449] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
The mechanism of silver carp scale collagen peptides (SCPs1) on melanogenesis and its mechanism of action were examined in mouse melanoma cells (B16). The cell viability and effects of SCPs1 on intracellular tyrosinase (TYR) activity and melanin, reactive oxygen species (ROS), glutathione (GSH) and cyclic adenosine monophosphate (cAMP) content were examined. The regulatory mechanism of SCPs1 on the cAMP response element-binding protein (CREB) signaling pathway was analyzed. The cell viability of the SCPs1 group was >80% (0.01-1 mg/mL) and the inhibitory rate of SCPs1 on B16 cell melanin increased in a dose-dependent manner. The highest inhibitory rate of SCPs1 on melanin content reaching 80.24%. SCPs1 significantly increased the GSH content and decreased the tyrosinase activity, as well as the content of ROS and cAMP. Western blot analysis showed that SCPs1 significantly inhibited melanocortin-1 receptor (MC1R) expression and CREB phosphorylation in the cAMP-CREB signaling pathway, leading to downregulation of microphthalmia-associated transcription factor (MITF) and the expression of TYR, TYR-related protein-1 (TRP-1) and TRP-2. SCPs1 also inhibited the expression of MC1R, MITF, TYR, TRP-1 and TRP-2 at the transcriptional level. Taken together, SCPs1 inhibited melanin synthesis through the downregulation of the cAMP-CREB signaling pathway. Fish-derived collagen peptides could potentially be applied in skin whitening products.
Collapse
Affiliation(s)
- Hai-Lan Li
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Mei-Jin Li
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Key Laboratory of Fermentation Engineering, Ministry of Education, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Guang-Quan Xiong
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Jun Cai
- Key Laboratory of Fermentation Engineering, Ministry of Education, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Tao Liao
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Xiao-Yan Zu
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| |
Collapse
|
3
|
Song Y, Chen S, Li L, Zeng Y, Hu X. The Hypopigmentation Mechanism of Tyrosinase Inhibitory Peptides Derived from Food Proteins: An Overview. Molecules 2022; 27:molecules27092710. [PMID: 35566061 PMCID: PMC9103514 DOI: 10.3390/molecules27092710] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 12/04/2022] Open
Abstract
Skin hyperpigmentation resulting from excessive tyrosinase expression has long been a problem for beauty lovers, which has not yet been completely solved. Although researchers are working on finding effective tyrosinase inhibitors, most of them are restricted, due to cell mutation and cytotoxicity. Therefore, functional foods are developing rapidly for their good biocompatibility. Food-derived peptides have been proven to display excellent anti-tyrosinase activity, and the mechanisms involved mainly include inhibition of oxidation, occupation of tyrosinase’s bioactive site and regulation of related gene expression. For anti-oxidation, peptides can interrupt the oxidative reactions catalyzed by tyrosinase or activate an enzyme system, including SOD, CAT, and GSH-Px to scavenge free radicals that stimulate tyrosinase. In addition, researchers predict that peptides probably occupy the site of the substrate by chelating with copper ions or combining with surrounding amino acid residues, ultimately inhibiting the catalytic activity of tyrosinase. More importantly, peptides reduce the tyrosinase expression content, primarily through the cAMP/PKA/CREB pathway, with PI3K/AKT/GSK3β, MEK/ERK/MITF and p38 MAPK/CREB/MITF as side pathways. The objective of this overview is to recap three main mechanisms for peptides to inhibit tyrosinase and the emerging bioinformatic technologies used in developing new inhibitors.
Collapse
Affiliation(s)
- Yuqiong Song
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.S.); (S.C.); (L.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Shengjun Chen
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.S.); (S.C.); (L.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Laihao Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.S.); (S.C.); (L.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yaoxun Zeng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China;
| | - Xiao Hu
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.S.); (S.C.); (L.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
- Correspondence:
| |
Collapse
|