1
|
Almpanidou S, Vachliotis ID, Goulas A, Polyzos SA. The potential role of adipokines and hepatokines in age-related ocular diseases. Metabol Open 2025; 26:100365. [PMID: 40330313 PMCID: PMC12053655 DOI: 10.1016/j.metop.2025.100365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 04/02/2025] [Accepted: 04/14/2025] [Indexed: 05/08/2025] Open
Abstract
Age-related ocular diseases, including diabetic retinopathy (DR), age-related macular degeneration (AMD), cataract and glaucoma may lead to visual impairment and even to blindness. Metabolic diseases, such as obesity and metabolic dysfunction-associated steatotic liver disease (MASLD) have emerged as potential risk factors of age-related ocular diseases, especially DR. Visceral adiposity has been associated with increased risk of DR and AMD in most clinical studies, although body mass index has to-date provided conflicting association with DR and AMD. In addition, obesity is recognized as a risk factor of cataract and glaucoma. Similarly to obesity, MASLD appears to be associated with DR in patients with type 1 diabetes mellitus, but probably not in those with type 2 diabetes mellitus. A potential positive association between MASLD and AMD, glaucoma and cataract is supported by limited evidence to-date, thus needing further investigation. Altered secretion patterns of adipokines (adiponectin, leptin, lipocalin-2, resistin) and hepatokines [adropin, fetuin-A, fibroblast growth factor (FGF)-21, retinol binding protein (RBP)-4] seem to disrupt ocular homeostasis and contribute to the development of age-related ocular diseases in the context of obesity and MASLD. In this regard, novel adipokine-based and hepatokine-based therapies may be added to the treatment options for ocular diseases in the future. This narrative review aimed to summarize evidence on the interconnection of obesity and MASLD with age-related ocular diseases, with a specific focus on the roles of adipokines and hepatokines as mediators of these potential associations.
Collapse
Affiliation(s)
- Stavroula Almpanidou
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ilias D. Vachliotis
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Antonis Goulas
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stergios A. Polyzos
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
2
|
Li G, Wang L, Feng F. A systematic meta-analysis of the prevalence of diabetic retinopathy. Technol Health Care 2025; 33:1560-1570. [PMID: 39973877 DOI: 10.1177/09287329241295877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
BackgroundDiabetic retinopathy (DR), the primary retinal vascular consequence of diabetes mellitus (DM) among people of working age worldwide, is the primary cause of vision impairment and blindness. Despite increasing understanding of the prevalence of DM as a significant public health concern in China, the world's most populous developing nation, there is much to discover about the epidemiology of DR.ObjectiveThis work uses a systematic review and meta-analysis to determine the total prevalence of diabetic retinopathy (DR) in China.MethodsUsing common keywords, we looked up published research on the prevalence of DR in diabetic patients using Google Scholar, PubMed, and Scopus from their founding until 2023. Using random effects models, pooled estimates of DR prevalence and the associated 95% confidence intervals (CI) were computed. Fifteen articles covering 4837 patients with different forms of diabetes were analyzed. The Egger tests refuted the publication bias assumption for the prevalence of DR (P = 0.825, P = 0.057, respectively). Significant heterogeneity was seen in the prevalence of DR (P < 0.01, I2 = 92% and τ2 = 0.0082), PDR (P < 0.01, I2 = 97% and τ2 = 0.0072), and NPDR (P < 0.01, I2 = 84% and τ2 = 0.0039), according to the results of I2 and τ2 statistics.ResultsThe combined prevalence of PDR was 24% (95% CI: 19-28), NPDR was 31% (95% CI: 27-35), and DR was 55% (95% CI: 63-71).Conclusions: In summary, DR's prevalence appears slightly higher than that of other studies, with a greater incidence of NPDR. This study emphasises the need for DR screening and treatment in individuals with diabetes.
Collapse
Affiliation(s)
- Guang Li
- Ophthalmology Department, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, China
| | - Ledan Wang
- Ophthalmology Department, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, China
| | - Feifei Feng
- Ophthalmology Department, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, China
| |
Collapse
|
3
|
Hasanpour-Segherlou Z, Butler AA, Candelario-Jalil E, Hoh BL. Role of the Unique Secreted Peptide Adropin in Various Physiological and Disease States. Biomolecules 2024; 14:1613. [PMID: 39766320 PMCID: PMC11674490 DOI: 10.3390/biom14121613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Adropin, a secreted peptide hormone identified in 2008, plays a significant role in regulating energy homeostasis, glucose metabolism, and lipid metabolism. Its expression is linked to dietary macronutrient intake and is influenced by metabolic syndrome, obesity, diabetes, and cardiovascular diseases. Emerging evidence suggests that adropin might be a biomarker for various conditions, including metabolic syndrome, coronary artery disease, and hypertensive disorders complicating pregnancy. In cerebrovascular diseases, adropin demonstrates protective effects by reducing blood-brain barrier permeability, brain edema, and infarct size while improving cognitive and sensorimotor functions in ischemic stroke models. The protective effects of adropin extend to preventing endothelial damage, promoting angiogenesis, and mitigating inflammation, making it a promising therapeutic target for cardiovascular and neurodegenerative diseases. This review provides a comprehensive overview of adropin's multifaceted roles in physiological and pathological conditions, as well as our recent work demonstrating adropin's role in subarachnoid hemorrhage-mediated neural injury and delayed cerebral infarction.
Collapse
Affiliation(s)
| | - Andrew A. Butler
- Department of Pharmacology and Physiological Sciences, Saint Louis University, Saint Louis, MO 63104, USA;
| | - Eduardo Candelario-Jalil
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
| | - Brian L. Hoh
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
| |
Collapse
|
4
|
Rooban S, Arul Senghor K, Vinodhini V, Kumar J. Adropin: A crucial regulator of cardiovascular health and metabolic balance. Metabol Open 2024; 23:100299. [PMID: 39045137 PMCID: PMC11263719 DOI: 10.1016/j.metop.2024.100299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/25/2024] Open
Abstract
Adropin, a peptide discovered in 2008, has gained recognition as a key regulator of cardiovascular health and metabolic balance. Initially identified for its roles in energy balance, lipid metabolism, and glucose regulation, adropin has also been found to improve cardiovascular health by enhancing endothelial function, modulating lipid profiles, and reducing oxidative stress. These protective mechanisms suggest that adropin may be able to help prevent conditions such as atherosclerosis, hypertension, and other cardiovascular diseases. Research has established connections between adropin and cardiovascular risk factors, such as obesity, insulin resistance, and dyslipidemia, positioning it as a valuable biomarker for evaluating cardiovascular disease risk. New studies highlight adropin's diagnostic and prognostic significance, showing that higher levels are linked to better cardiovascular outcomes, while lower levels are associated with a higher risk of cardiovascular diseases. This review aims to summarize current knowledge on adropin, emphasizing its significance as a promising focus in the intersection of cardiovascular health and metabolic health. By summarizing the latest research findings, this review aims to offer insights into the potential applications of adropin in both clinical practice and research, leading to a deeper understanding of its role in maintaining cardiovascular and metabolic health.
Collapse
Affiliation(s)
- S. Rooban
- Department of Biochemistry, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203, Kanchipuram, Chennai, Tamil Nadu, India
| | - K.A. Arul Senghor
- Department of Biochemistry, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203, Kanchipuram, Chennai, Tamil Nadu, India
| | - V.M. Vinodhini
- Department of Biochemistry, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203, Kanchipuram, Chennai, Tamil Nadu, India
| | - J.S. Kumar
- Department of General Medicine, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203, Kanchipuram, Chennai, Tamil Nadu, India
| |
Collapse
|
5
|
Liu Y, Lu CY, Zheng Y, Zhang YM, Qian LL, Li KL, Tse G, Wang RX, Liu T. Role of angiotensin receptor-neprilysin inhibitor in diabetic complications. World J Diabetes 2024; 15:867-875. [PMID: 38766431 PMCID: PMC11099356 DOI: 10.4239/wjd.v15.i5.867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/31/2023] [Accepted: 03/25/2024] [Indexed: 05/10/2024] Open
Abstract
Diabetes mellitus is a prevalent disorder with multi-system manifestations, causing a significant burden in terms of disability and deaths globally. Angio-tensin receptor-neprilysin inhibitor (ARNI) belongs to a class of medications for treating heart failure, with the benefits of reducing hospitalization rates and mortality. This review mainly focuses on the clinical and basic investigations related to ARNI and diabetic complications, discussing possible physiological and molecular mechanisms, with insights for future applications.
Collapse
Affiliation(s)
- Ying Liu
- Department of Cardiology, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Cun-Yu Lu
- Department of Cardiology, Xuzhou No. 1 Peoples Hospital, Xuzhou 221005, Jiangsu Province, China
| | - Yi Zheng
- Department of Cardiology, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Yu-Min Zhang
- Department of Cardiology, Wuxi 9th People’s Hospital Affiliated to Soochow University, Wuxi 214062, Jiangsu Province, China
| | - Ling-Ling Qian
- Department of Cardiology, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi 214023, Jiangsu Province, China
| | - Ku-Lin Li
- Department of Cardiology, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi 214023, Jiangsu Province, China
| | - Gary Tse
- Department of Cardiology, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
- School of Nursing and Health Studies, Metropolitan University, Hong Kong 999077, China
- Kent and Medway Medical School, Kent CT2 7NT, Canterbury, United Kingdom
| | - Ru-Xing Wang
- Department of Cardiology, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi 214023, Jiangsu Province, China
| | - Tong Liu
- Department of Cardiology, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| |
Collapse
|
6
|
D’Onofrio L, Amendolara R, Mignogna C, Leto G, Tartaglione L, Mazzaferro S, Maddaloni E, Buzzetti R. Lack of Association between Serum Chitotriosidase Activity and Arterial Stiffness in Type 2 Diabetes without Cardiovascular Complications. Int J Mol Sci 2023; 24:15809. [PMID: 37958794 PMCID: PMC10648693 DOI: 10.3390/ijms242115809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Chitotriosidase (CHIT), a mammalian chitinase secreted by neutrophils and activated macrophages, is increased in both cardiovascular disease (CVD) and type 2 diabetes (T2D). Arterial stiffness rises early in T2D and increases the risk of CVD. The aim of this study is to evaluate CHIT activity as an early biomarker of arterial stiffness in people with T2D free from overt vascular complications. In this cross-sectional study, arterial stiffness as measured using standard pulse wave velocity (PWV) was evaluated in 174 people with T2D without overt vascular disease. Then, we measured CHIT serum activity with an electrochemiluminescence assay in two subgroups of participants: 35 with the highest (high-PWV) and 40 with the lowest (low-PWV) PWV values. CHIT activity was no different between the low-PVW and high-PWV groups (12.7 [9.6-17.9] vs. 11.4 [8.8-15.0] nmol/mL/h, respectively). Compared with the low-PWV group, the high-PWV participants were older (p < 0.001); had a longer duration of diabetes (p = 0.03); higher ankle-brachial index ABI (p = 0.04), systolic blood pressure (p = 0.002), diastolic blood pressure (p = 0.005), fasting blood glucose (p = 0.008), and HbA1c (p = 0.005); and lower eGFR (p = 0.03) and body mass index (BMI) (p = 0.01). No association was present with sex, duration of diabetes, age, BMI, peripheral blood pressure, laboratory parameters, and glucose-lowering medications or ongoing antihypertensive therapy. Although no association was found, this study provides novel data about the association of CHIT activity with CVD, focusing on a specific outcome (arterial stiffness) in a well-defined population of subjects with T2D without established CVD.
Collapse
Affiliation(s)
- Luca D’Onofrio
- Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (L.D.); (R.A.); (C.M.); (E.M.)
| | - Rocco Amendolara
- Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (L.D.); (R.A.); (C.M.); (E.M.)
| | - Carmen Mignogna
- Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (L.D.); (R.A.); (C.M.); (E.M.)
| | - Gaetano Leto
- Diabetes Unit, Department of Medical-Surgical Sciences and Biotechnologies, Santa Maria Goretti Hospital, Sapienza University of Rome, 04100 Latina, Italy;
| | - Lida Tartaglione
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy; (L.T.); (S.M.)
| | - Sandro Mazzaferro
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy; (L.T.); (S.M.)
| | - Ernesto Maddaloni
- Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (L.D.); (R.A.); (C.M.); (E.M.)
| | - Raffaella Buzzetti
- Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (L.D.); (R.A.); (C.M.); (E.M.)
| |
Collapse
|
7
|
Soltani S, Beigrezaei S, Malekahmadi M, Clark CCT, Abdollahi S. Circulating levels of adropin and diabetes: a systematic review and meta-analysis of observational studies. BMC Endocr Disord 2023; 23:73. [PMID: 37029398 PMCID: PMC10080945 DOI: 10.1186/s12902-023-01327-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/21/2023] [Indexed: 04/09/2023] Open
Abstract
OBJECTIVE Adropin, a newly identified regulatory protein has garnered attention given its potential role in metabolism regulation, especially glucose metabolism and insulin resistance. However, studies on the association between adropin and type 2 diabetes mellitus (T2DM) are equivocal. The aim of this study is to assess the association between serum adropin levels and T2DM using a systematic review and meta-analysis of observational studies. METHODS PubMed, Scopus, ISI Web of science, and Google Scholar were searched, up to August 2022, for studies that reported the association between serum levels of adropin in adults with T2DM compared to a control group without diabetes. A random-effect model was used to compute the pooled weighted mean difference (WMD) with 95% confidence intervals (CI). RESULTS Meta-analysis of 15 studies (n = 2813 participants) revealed that the serum adropin concentrations were significantly lower in patients with T2DM compared with the control group (WMD= -0.60 ng/mL, 95% CI: -0.70 to -0.49; I2 = 99.5%). Subgroup analysis also found lower concentration of adropin in patients with T2DM who were otherwise healthy compared to a control group (n = 9; WMD=-0.04 ng/ml, 95% CI= -0.06 to -0.01, p = 0.002; I2 = 96.4). CONCLUSIONS Our study showed adropin levels are lower in patients with diabetes compared to a control group without diabetes. However, the limitations of observational studies challenge the validity of the results, and further investigations are needed to confirm the veracity of these findings and additionally explore possible mechanisms.
Collapse
Affiliation(s)
- Sepideh Soltani
- Yazd Cardiovascular Research Center, Non-communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sara Beigrezaei
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahsa Malekahmadi
- Research Center for Gastroenterology and Liver Disease, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Cain C T Clark
- Centre for Intelligent Healthcare, Coventry University, Coventry, CV1 5FB, UK
| | - Shima Abdollahi
- Department of Nutrition, School of Public Health, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| |
Collapse
|
8
|
Adropin’s Role in Energy Homeostasis and Metabolic Disorders. Int J Mol Sci 2022; 23:ijms23158318. [PMID: 35955453 PMCID: PMC9369016 DOI: 10.3390/ijms23158318] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 01/27/2023] Open
Abstract
Adropin is a novel 76-amino acid-peptide that is expressed in different tissues and cells including the liver, pancreas, heart and vascular tissues, kidney, milk, serum, plasma and many parts of the brain. Adropin, encoded by the Enho gene, plays a crucial role in energy homeostasis. The literature review indicates that adropin alleviates the degree of insulin resistance by reducing endogenous hepatic glucose production. Adropin improves glucose metabolism by enhancing glucose utilization in mice, including the sensitization of insulin signaling pathways such as Akt phosphorylation and the activation of the glucose transporter 4 receptor. Several studies have also demonstrated that adropin improves cardiac function, cardiac efficiency and coronary blood flow in mice. Adropin can also reduce the levels of serum triglycerides, total cholesterol and low-density lipoprotein cholesterol. In contrast, it increases the level of high-density lipoprotein cholesterol, often referred to as the beneficial cholesterol. Adropin inhibits inflammation by reducing the tissue level of pro-inflammatory cytokines such as tumor necrosis factor alpha and interleukin-6. The protective effect of adropin on the vascular endothelium is through an increase in the expression of endothelial nitric oxide synthase. This article provides an overview of the existing literature about the role of adropin in different pathological conditions.
Collapse
|
9
|
Xie X, Bai G, Qiang D, Zhang L, Liu H, He YT, Zhang X. Changes in serum copeptin in the early onset of type 2 diabetes. Facets (Ott) 2022. [DOI: 10.1139/facets-2022-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Copeptin (C-terminal fragment of pro-arginine vasopressin) levels change as fasting plasma glucose (FPG) and blood pressure change. To explore the clinical significance of changes in copeptin levels in development of type 2 diabetes mellitus (T2DM), we enrolled patients undergoing physical health examinations who met diagnostic criteria for prediabetes and T2DM. Subjects were divided into eight subgroups based on FPG levels and presence or absence of hypertension, including: a normal group (NGT), FPG < 5.6 mmol/L; prediabetes A, 5.6 mmol/L ≤ FPG < 6.1 mmol/L; prediabetes B, 6.1 mmol/L ≤ FPG < 7.0 mmol/L; and T2DM, FPG ≥ 7.0 mmol/L; participants were further into two subgroups by whether they had hypertension or not. Measures included biochemical indicators, fasting insulin (FINS), and copeptin. Copeptin levels in prediabetes A, prediabetes B, and T2DM groups increased significantly compared to NGT group ( P < 0.01). No significant differences were found in copeptin levels between normal blood pressure and hypertension subgroups in all four groups. Copeptin levels correlated positively with systolic blood pressure, glycosylated hemoglobin (HbA1c), FPG, FINS, and insulin resistance index (HOMA-IR; P < 0.05–0.001), and negatively with insulin secretion index ( P < 0.05–0.001). Stepwise regression analysis revealed that copeptin levels correlated independently with elevated HbA1c and aggravated HOMA-IR ( P < 0.001). Increase in copeptin levels may aggravate insulin resistance, finally leading to T2DM.
Collapse
Affiliation(s)
- Xiaomin Xie
- Department of Endocrinology: The First People’s Hospital of Yinchuan, Yinchuan 750001, China
| | - Guirong Bai
- Department of Endocrinology: The First People’s Hospital of Yinchuan, Yinchuan 750001, China
| | - Dan Qiang
- Department of Endocrinology: The First People’s Hospital of Yinchuan, Yinchuan 750001, China
| | - Li Zhang
- Department of Endocrinology: The First People’s Hospital of Yinchuan, Yinchuan 750001, China
| | - Huili Liu
- Department of Endocrinology: The First People’s Hospital of Yinchuan, Yinchuan 750001, China
| | - Yan Ting He
- Department of Endocrinology: The First People’s Hospital of Yinchuan, Yinchuan 750001, China
| | - Xiaojuan Zhang
- Department of Endocrinology: The First People’s Hospital of Yinchuan, Yinchuan 750001, China
| |
Collapse
|
10
|
Varikasuvu SR, Reddy EP, Thangappazham B, Varshney S, Das VL, Munikumar M. Adropin levels and its associations as a fat-burning hormone in patients with polycystic ovary syndrome: a correlational meta-analysis. Gynecol Endocrinol 2021; 37:879-884. [PMID: 34241553 DOI: 10.1080/09513590.2021.1950136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
AIMS Adropin is a peptide hormone with potential implications in patients with polycystic ovary syndrome (PCOS). The aim of this meta-analysis was to compare the circulating (serum/plasma) and follicular fluid adropin levels between human PCOS patients and non-PCOS controls. METHODS Relevant studies were retrieved by online database and manual searching. The standardized mean differences (SMDs) with 95% confidence intervals (CIs) were obtained by a random-effects meta-analysis. Meta-analysis of correlations was performed for the associations of adropin with anthropometric, lipid, insulin resistance and hormonal covariates. The funnel plot analysis with Begg's and Egger's tests was used for publication bias. RESULTS A total of 9 studies were included in this meta-analysis. The results indicated that the adropin levels were significantly decreased in PCOS patients as compared to non-PCOS controls (SMD = -1.87, 95% CI = -2.55 to -1.18, p < .0001). This decrease was more evident in overweight PCOS patients than their normoweight counterparts (SMD = -0.55, 95% CI = -0.80 to -0.30, p < .0001). A one-study leave-out sensitivity analysis indicated that no single study had a significant influence on the overall outcome, suggesting the robustness of this meta-analysis. There were significant associations of decreased adropin levels with the body mass index, dyslipidemia and insulin resistance in PCOS. CONCLUSION Adropin levels are significantly reduced in PCOS patients compared to controls, and this decrease was more evident in overweight PCOS patients.
Collapse
Affiliation(s)
| | - E Prabhakar Reddy
- Department of Biochemistry, Bharath Medical College and Hospital (BIHER), Chennai, India
| | | | | | - Vanita Lal Das
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Deoghar, India
| | - Manne Munikumar
- Clinical division, ICMR-National Institute of Nutrition, Hyderabad, India
| |
Collapse
|