1
|
Eyong ED, Iwara IA, Agwupuye EI, Agboola AR, Uti DE, Obio WA, Alum EU, Atangwho IJ. In vitro and in silico pharmaco-nutritional assessments of some lesser-known Nigerian nuts: Persea americana, Tetracarpidium conophorum, and Terminalia catappa. PLoS One 2025; 20:e0319756. [PMID: 40202972 PMCID: PMC11981145 DOI: 10.1371/journal.pone.0319756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 02/07/2025] [Indexed: 04/11/2025] Open
Abstract
Together with their nutritional qualities, the biosafety, antidiabetic, antioxidant, and anti-inflammatory effects of Tetracarpidium conophorum nuts, Persea americana seeds, and Terminalia cattapa kernels were evaluated in vitro and in silico. RBC membrane stabilisation for anti-inflammatory characteristics, antioxidant activities by ABTS, DPPH, H2O2, and nitric oxide scavenging assays, and α-glucosidase and α-amylase inhibitory assays conducted in vitro were used to evaluate the anti-diabetic activity. With an IC50 value of 208 μg/mL, P. americana showed the maximum amount of inhibition, according to the results, while T. catappa showed a somewhat lower degree of inhibition at 236 μg/mL. P. americana exhibited the highest degree of α-amylase inhibition, with an IC50 value of 312 µg/mL. T. catappa showed the strongest DPPH radical scavenging activity, while T. conophorum showed the highest ABTS radical scavenging activity. T. catappa showed the strongest effectiveness in neutralising hydrogen peroxide. In tests using human red blood cells, T. catappa showed the strongest inhibition of RBC hemolysis. While P. americana showed higher concentrations of copper, manganese, potassium, and calcium, T. catappa showed higher magnesium concentrations. T. catappa had considerably higher levels of ash, proteins, lipids, and carbohydrates than T. conophorum, which had the highest quantity of crude fibre, according to proximate analysis. Molecular docking experiments have revealed that plant extracts from P. americana, T. conophorum, and T. catappa have substantial binding affinities towards α-glucosidase and amylase. Pseudococaine, M-(1-methylbutyl) phenylmethylcarbamate, o-xylene, and 1-deoxynojirimycin were the four compounds that showed binding affinities that were higher than those of acarbose. Acarbose and nitrate were not as compatible with docking scores as compared to the compounds dimethyl phthalate, pseudococaine, M-(1-Methylbutyl)phenyl methylcarbamate, 2-chloro-3-oxohexanedioic acid, and methyl 2-chloro-5-nitrobenzoate. These results suggest that these plant extracts hold great potential for the creation of therapeutic medications that specifically target oxidative stress-related diseases like diabetes.
Collapse
Affiliation(s)
- Efah Denis Eyong
- Department of Biochemistry, Faculty of Basic Medical Science, College of Medical Sciences, University of Calabar, P.M.B, Calabar, Nigeria
| | - Iwara Aripko Iwara
- Department of Biochemistry, Faculty of Basic Medical Science, College of Medical Sciences, University of Calabar, P.M.B, Calabar, Nigeria
| | - Eyuwa Ignatius Agwupuye
- Department of Biochemistry, Faculty of Basic Medical Science, College of Medical Sciences, University of Calabar, P.M.B, Calabar, Nigeria
| | - Abdulhakeem Rotimi Agboola
- Department of Biochemistry, Faculty of Basic Medical Science, College of Medical Sciences, University of Calabar, P.M.B, Calabar, Nigeria
| | - Daniel Ejim Uti
- Department of Research and Publications, Kampala International University, Kampala, Uganda
- Department of Biochemistry, Faculty of Basic Medical Sciences, Federal University of Health Sciences, Otukpo, Benue, Nigeria.
| | - Wilson Arong Obio
- Department of Biochemistry, Faculty of Basic Medical Science, College of Medical Sciences, University of Calabar, P.M.B, Calabar, Nigeria
| | - Esther Ugo Alum
- Department of Research and Publications, Kampala International University, Kampala, Uganda
| | - Item Justin Atangwho
- Department of Biochemistry, Faculty of Basic Medical Science, College of Medical Sciences, University of Calabar, P.M.B, Calabar, Nigeria
| |
Collapse
|
2
|
Suresh V, Shamim MA, Ghosh V, Dave T, Jayan M, Verma A, Sanker V, Roy P, Bardhan M. SGLT2 Inhibitors in COVID-19: Umbrella Review, Meta-Analysis, and Bayesian Sensitivity Assessment. Diseases 2025; 13:67. [PMID: 40136608 PMCID: PMC11941288 DOI: 10.3390/diseases13030067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/27/2025] [Accepted: 02/01/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND Several studies have reported a reduced risk of COVID-19-related mortality in patients taking antidiabetic medications. This is an umbrella review, meta-analysis, and Bayesian sensitivity assessment of SGLT2 inhibitors (SGLT2is) in COVID-19 patients with type 2 diabetes mellitus (T2DM). METHODS A search was conducted on the MEDLINE (PubMed), EMBASE, Cochrane, and ClinicalTrials.gov databases on 5/12/2023. We performed an umbrella review of systematic reviews and meta-analyses on the effects of SGLT2is in T2DM patients with COVID-19 and critically appraised them using AMSTAR 2.0. Trials investigating SGLT2i use in COVID-19 patients post-hospitalisation and observational studies on prior SGLT2i use among COVID-19 patients were included in the meta-analysis, adhering to the PRISMA guidelines. RESULTS SGLT2is exhibited significantly lower odds of mortality (OR 0.67, 95% CI 0.53-0.84) and hospitalisation (OR 0.84, 0.75-0.94) in COVID-19 patients with T2DM. Bayesian sensitivity analyses corroborated most of the findings, with differences observed in hospitalisation and mortality outcomes. SGLT-2 inhibitors showed an OR of 1.20 (95% CI 0.64-2.27) for diabetic ketoacidosis. Publication bias was observed for hospitalisation, but not for mortality. The GRADE assessment indicated a low to very low quality of evidence because of the observational studies included. CONCLUSIONS The prophylactic use of SGLT2is reduces mortality and hospitalisation among COVID-19 patients, particularly in patients with diabetes. The utility of SGLT2is after hospitalisation is uncertain and warrants further investigation. A limited efficacy has been observed under critical conditions. Individualised assessment is crucial before integration into COVID-19 management.
Collapse
Affiliation(s)
- Vinay Suresh
- King George’s Medical University, Lucknow 226003, India
| | - Muhammad Aaqib Shamim
- Department of Pharmacology, All India Institute of Medical Sciences, Jodhpur 342005, India
| | - Victor Ghosh
- Andhra Medical College, Visakhapatnam 530002, India
| | - Tirth Dave
- Bukovinian State Medical University, 58002 Chernivtsi, Ukraine
| | - Malavika Jayan
- Department of Internal Medicine, Bangalore Medical College and Research Institute, Bangalore 560002, India
| | - Amogh Verma
- Department of Internal Medicine, Rama Medical College Hospital and Research Centre, Hapur 245304, India
| | - Vivek Sanker
- Department of Neurosurgery, Trivandrum Medical College Hospital, Trivandrum 695011, India
| | - Priyanka Roy
- Department of Labour, Government of West Bengal, Kolkata 700001, India
| | - Mainak Bardhan
- The Dr. John T. Macdonald Foundation, Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
3
|
Yaribeygi H, Kashian K, Moghaddam KI, Karim SR, Bagheri N, Karav S, Jamialahmadi T, Rizzo M, Sahebkar A. Hepatic effects of GLP-1 mimetics in diabetic milieu: A mechanistic review of involved pathways. J Diabetes Complications 2025; 39:108928. [PMID: 39644538 DOI: 10.1016/j.jdiacomp.2024.108928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/25/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Patients with diabetic are at a higher risk of developing hepatic disorders compared to non-diabetic individuals. This increased risk can be attributed to the diabetic environment, which triggers and exacerbates harmful pathways involved in both diabetic complications and hepatic disorders. Therefore, it is important to consider the use of antidiabetic agents that offer benefits beyond glycemic control and have positive effects on liver tissues. Glucagon-like peptide-1 (GLP-1) mimetics are a novel class of antidiabetic medications known for their potent blood sugar-lowering effects. Emerging evidence suggests that these drugs also have favorable effects on the liver. However, the precise effects and underlying mechanisms are not yet fully understood. In this review, we aim to provide a mechanistic perspective on the liver benefits of GLP-1 mimetics and outline the mediating mechanisms involved.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
| | - Kiana Kashian
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | | | | | - Narges Bagheri
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale 17100, Turkey
| | - Tannaz Jamialahmadi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Manfredi Rizzo
- School of Medicine, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (Promise), University of Palermo, Italy; Department of Biochemistry, Mohamed Bin Rashid University, Dubai, United Arab Emirates
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Zhou Q, Li G, Hang K, Li J, Yang D, Wang MW. Weight Loss Blockbuster Development: A Role for Unimolecular Polypharmacology. Annu Rev Pharmacol Toxicol 2025; 65:191-213. [PMID: 39259982 DOI: 10.1146/annurev-pharmtox-061324-011832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Obesity and type 2 diabetes mellitus (T2DM) impact more than 2.5 billion adults worldwide, necessitating innovative therapeutic approaches. Unimolecular polypharmacology, which involves designing single molecules to target multiple receptors or pathways simultaneously, has revolutionized treatment strategies. Blockbuster drugs such as tirzepatide and retatrutide have shown unprecedented success in managing obesity and T2DM, demonstrating superior efficacy compared to conventional single agonists. Tirzepatide, in particular, has garnered tremendous attention for its remarkable effectiveness in promoting weight loss and improving glycemic control, while offering additional cardiovascular and renal benefits. Despite their promises, such therapeutic agents also face challenges that include gastrointestinal side effects, patient compliance issues, and body weight rebound after cessation of the treatment. Nonetheless, the development of these therapies marks a significant leap forward, underscoring the transformative potential of unimolecular polypharmacology in addressing metabolic diseases and paving the way for future innovations in personalized medicine.
Collapse
Affiliation(s)
- Qingtong Zhou
- Research Center for Deepsea Bioresources, Sanya, Hainan, China
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Guanyi Li
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
- Research Center for Deepsea Bioresources, Sanya, Hainan, China
| | - Kaini Hang
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jie Li
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Dehua Yang
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Chemical Biology and The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China;
- Research Center for Deepsea Bioresources, Sanya, Hainan, China
| | - Ming-Wei Wang
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou, China
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo, Japan
- State Key Laboratory of Chemical Biology and The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China;
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Research Center for Deepsea Bioresources, Sanya, Hainan, China
- Translational Research Center for Structural Biology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Papakonstantinou I, Tsioufis K, Katsi V. Spotlight on the Mechanism of Action of Semaglutide. Curr Issues Mol Biol 2024; 46:14514-14541. [PMID: 39728000 DOI: 10.3390/cimb46120872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024] Open
Abstract
Initially intended to control blood glucose levels in patients with type 2 diabetes, semaglutide, a potent glucagon-like peptide 1 analogue, has been established as an effective weight loss treatment by controlling appetite. Integrating the latest clinical trials, semaglutide in patients with or without diabetes presents significant therapeutic efficacy in ameliorating cardiometabolic risk factors and physical functioning, independent of body weight reduction. Semaglutide may modulate adipose tissue browning, which enhances human metabolism and exhibits possible benefits in skeletal muscle degeneration, accelerated by obesity and ageing. This may be attributed to anti-inflammatory, mitochondrial biogenesis, antioxidant and autophagy-regulating effects. However, most of the supporting evidence on the mechanistic actions of semaglutide is preclinical, demonstrated in rodents and not actually confirmed in humans, therefore warranting caution in the interpretation. This article aims to explore potential innovative molecular mechanisms of semaglutide action in restoring the balance of several interlinking aspects of metabolism, pointing to distinct functions in inflammation and oxidative stress in insulin-sensitive musculoskeletal and adipose tissues. Moreover, possible applications in protection from infections and anti-aging properties are discussed. Semaglutide enhancement of the core molecular mechanisms involved in the progress of obesity and diabetes, although mostly preclinical, may provide a framework for future research applications in human diseases overall.
Collapse
Affiliation(s)
- Ilias Papakonstantinou
- 4th Department of Internal Medicine, Evangelismos General Hospital, 10676 Athens, Greece
| | - Konstantinos Tsioufis
- 1st Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 11527 Athens, Greece
| | - Vasiliki Katsi
- 1st Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 11527 Athens, Greece
| |
Collapse
|
6
|
Prasad K. Role of C-Reactive Protein, An Inflammatory Biomarker in The Development of Atherosclerosis and Its Treatment. Int J Angiol 2024; 33:271-281. [PMID: 39502349 PMCID: PMC11534478 DOI: 10.1055/s-0044-1788296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024] Open
Abstract
This article deals with the role of c-reactive protein (CRP) in the development of atherosclerosis and its treatment. CRP has a predictive value in ischemic heart disease, restenosis, coronary artery disease, aortic atherosclerosis, and cerebrovascular disease. This article deals with the synthesis and mechanism of CRP-induced atherosclerosis and its treatment. CRP increases the formation of numerous atherogenic biomolecules such as reactive oxygen species (ROS), cytokines (interleukin [IL]-1β and IL-6), cell adhesion molecules (intercellular adhesion molecule-1, vascular cell adhesion molecule-1, monocyte chemoattractant protein-1, activated complement C 5 , monocyte colony-stimulating factor, and numerous growth factors [insulin-like growth factor, platelet-derived growth factor, and transforming growth factor-β]). ROS mildly oxidizes low-density lipoprotein (LDL)-cholesterol to form minimally modified LDL which is further oxidized to form oxidized LDL. The above atherogenic biomolecules are involved in the development of atherosclerosis and has been described in detail in the text. This paper also deals with the treatment modalities for CRP-induced atherosclerosis which includes lipid-lowering drugs, antihypertensive drugs, antioxidants, aspirin, antidiabetic drugs, angiotensin-converting enzyme inhibitors, angiotensin II receptor blockers, regular physical activity, weight reduction, and stoppage of cigarette smoking. In conclusion, CRP induces atherosclerosis through increases in atherogenic biomolecules and the treatment modalities would prevent, regress, and slow the progression of CRP-induced atherosclerosis.
Collapse
Affiliation(s)
- Kailash Prasad
- Department of Physiology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
7
|
Weinberg Sibony R, Segev O, Dor S, Raz I. Overview of oxidative stress and inflammation in diabetes. J Diabetes 2024; 16:e70014. [PMID: 39435991 PMCID: PMC11494684 DOI: 10.1111/1753-0407.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 10/23/2024] Open
Abstract
The global prevalence of diabetes has increased significantly, leading to various complications and a negative impact on quality of life. Hyperglycemia hyperglycemic-induced oxidative stress (OS) and inflammation are closely associated with the development and progression of type 2 diabetes mellitus (T2D) and its complications. This review explores the effect of T2D on target organ damage and potential treatments to minimize this damage. The paper examines the pathophysiology of T2D, focusing on low-grade chronic inflammation and OS and on their impact on insulin resistance. The review discusses the role of inflammation and OS in the development of microvascular and macrovascular complications. The findings highlight the mechanisms by which inflammatory cytokines, stress kinases, and reactive oxygen species (ROS) interfere with insulin signaling pathways, leading to impaired glucose metabolism and organ dysfunction. Lifestyle interventions, including a balanced diet and exercise, can help reduce chronic inflammation and OS, thereby preventing and controlling T2D and its associated complications. Additionally, various antioxidants and anti-inflammatory agents show potential in reducing OS and inflammation. Some anti-diabetic drugs, like pioglitazone, metformin, and glucagon-like peptide-1 (GLP-1) agonists, may also have anti-inflammatory effects. Further research, including randomized controlled trials, is needed to evaluate the efficacy of these interventions.
Collapse
Affiliation(s)
| | - Omri Segev
- Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - Saar Dor
- Faculty of MedicineBen‐Gurion University of the NegevBeer ShevaIsrael
| | - Itamar Raz
- Faculty of MedicineHebrew University of JerusalemJerusalemIsrael
- Diabetes Unit, Department of Endocrinology and MetabolismHadassah Medical CenterJerusalemIsrael
| |
Collapse
|
8
|
Yang Y, Zhao L, Wang Y, Liu C, Ke T. Effects of novel glucose-lowering drugs on the COVID-19 patients with diabetes: A network meta-analysis of clinical outcomes. Int J Diabetes Dev Ctries 2024; 44:426-436. [DOI: 10.1007/s13410-023-01228-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/27/2023] [Indexed: 01/03/2025] Open
Abstract
Abstract
Objective
This study aimed to assess the effects of sodium-glucose co-transporter inhibitors (SGLT2i), glucagon-like peptide-1 receptor agonists (GLP-1RA), and dipeptidyl peptidase-4 inhibitors (DPP4i) on individuals subjected to diabetes and COVID-19.
Methods
PubMed, Embase, Web of Science, and Cochrane Library were systematically searched to cover studies (except for case reports and review studies) published until August 30, 2022. The primary outcome was the mortality of people with diabetes and COVID-19. The secondary outcomes comprised the requiring intensive care unit (ICU) admission and mechanical ventilation. Two reviewers independently screened studies, abstracted data, and assessed risk-of-bias. Furthermore, the network meta-analyses (NMA) were conducted.
Results
A total of 12 trials were involved in the analysis. The OR and 95% CI of mortality for SGLT2i compared with SGLT2i + GLP-1RA and DPP4i reached 0.41 (0.17,0.97) and 0.69 (0.49,0.98), respectively. The OR and 95% CI of requiring mechanical ventilation for SGLT2i compared with the DPP4i reached 0.85 (0.75,0.97).
Conclusions
As revealed by the result of this study, SGLT2i is associated with the lower mortality rate in people with diabetes and COVID-19 among novel glucose-lowering drugs. And SGLT2i is linked to lower requiring mechanical ventilation. These findings can have a large impact on clinicians' decisions amid the COVID-19 pandemic.
Collapse
|
9
|
Yu S, Xu C, Tang X, Wang L, Hu L, Li L, Zhou X, Li Q. Exendin-4 blockade of T1R2/T1R3 activation improves Pseudomonas aeruginosa-related pneumonia in an animal model of chemically induced diabetes. Inflamm Res 2024; 73:1185-1201. [PMID: 38748233 PMCID: PMC11214611 DOI: 10.1007/s00011-024-01891-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/06/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
OBJECTIVE Poorly controlled diabetes frequently exacerbates lung infection, thereby complicating treatment strategies. Recent studies have shown that exendin-4 exhibits not only hypoglycemic but also anti-inflammatory properties. This study aimed to explore the role of exendin-4 in lung infection with diabetes, as well as its association with NOD1/NF-κB and the T1R2/T1R3 sweet taste receptor. METHODS 16HBE human bronchial epithelial cells cultured with 20 mM glucose were stimulated with lipopolysaccharide (LPS) isolated from Pseudomonas aeruginosa (PA). Furthermore, Sprague‒Dawley rats were fed a high-fat diet, followed by intraperitoneal injection of streptozotocin and intratracheal instillation of PA. The levels of TNF-α, IL-1β and IL-6 were evaluated using ELISAs and RT‒qPCR. The expression of T1R2, T1R3, NOD1 and NF-κB p65 was assayed using western blotting and immunofluorescence staining. Pathological changes in the lungs of the rats were observed using hematoxylin and eosin (H&E) staining. RESULTS At the same dose of LPS, the 20 mM glucose group produced more proinflammatory cytokines (TNF-α, IL-1β and IL-6) and had higher levels of T1R2, T1R3, NOD1 and NF-κB p65 than the normal control group (with 5.6 mM glucose). However, preintervention with exendin-4 significantly reduced the levels of the aforementioned proinflammatory cytokines and signaling molecules. Similarly, diabetic rats infected with PA exhibited increased levels of proinflammatory cytokines in their lungs and increased expression of T1R2, T1R3, NOD1 and NF-κB p65, and these effects were reversed by exendin-4. CONCLUSIONS Diabetic hyperglycemia can exacerbate inflammation during lung infection, promote the increase in NOD1/NF-κB, and promote T1R2/T1R3. Exendin-4 can ameliorate PA-related pneumonia with diabetes and overexpression of NOD1/NF-κB. Additionally, exendin-4 suppresses T1R2/T1R3, potentially through its hypoglycemic effect or through a direct mechanism. The correlation between heightened expression of T1R2/T1R3 and an intensified inflammatory response in lung infection with diabetes requires further investigation.
Collapse
Affiliation(s)
- Shanjun Yu
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570102, China
- Hainan Province Clinical Medical Center of Respiratory Disease, Haikou, Hainan, 570102, China
| | - Chaoqun Xu
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570102, China
- Emergency and Trauma College, Hainan Medical University, Haikou, Hainan, 579199, China
| | - Xiang Tang
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570102, China
- Hainan Province Clinical Medical Center of Respiratory Disease, Haikou, Hainan, 570102, China
| | - Lijun Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570102, China
- Hainan Province Clinical Medical Center of Respiratory Disease, Haikou, Hainan, 570102, China
| | - Lihua Hu
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570102, China
- Hainan Province Clinical Medical Center of Respiratory Disease, Haikou, Hainan, 570102, China
| | - Liang Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570102, China
- Hainan Province Clinical Medical Center of Respiratory Disease, Haikou, Hainan, 570102, China
| | - Xiangdong Zhou
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570102, China.
- Hainan Province Clinical Medical Center of Respiratory Disease, Haikou, Hainan, 570102, China.
| | - Qi Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570102, China.
- Hainan Province Clinical Medical Center of Respiratory Disease, Haikou, Hainan, 570102, China.
| |
Collapse
|
10
|
Song ZH, Huang QM, Xu SS, Zhou JB, Zhang C. The Effect of Antihyperglycemic Medications on COVID-19: A Meta-analysis and Systematic Review from Observational Studies. Ther Innov Regul Sci 2024; 58:773-787. [PMID: 38683419 DOI: 10.1007/s43441-024-00633-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/09/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Diabetes, a chronic disease worldwide, may be associated with a poorer prognosis in patients with coronavirus disease 2019 (COVID-19). While some antihyperglycemic medications may be beneficial, others may increase the risk of adverse clinical outcomes of COVID-19. We aimed to analyze the effect of antihyperglycemic medications on COVID-19. METHODS We searched the Web of Science, Cochrane Library, EMBASE, PubMed, and Scopus databases from December 2019 to June 2022 to identify literature related to patients with COVID-19 and type 2 diabetes mellitus (T2DM) treated with antihyperglycemic medications. RESULTS 56 studies were included in the analysis. Metformin (OR 0.66; 95% CI 0.58-0.74; p < 0.05), Glucagon-like peptide-1 receptor agonist (GLP-1ra) (OR 0.73; 95% CI 0.59-0.91; p < 0.05), and sodium-dependent glucose transporters 2 inhibitor (SGLT 2i) (OR 0.77; 95% CI 0.69-0.87; p < 0.05) were associated with lower mortality risk, while insulin was associated with increased mortality risk (OR 1.40; 95% CI 1.26-1.55; p < 0.05). Meanwhile, metformin (OR 0.65; 95% CI 0.50-0.85; p < 0.05) and GLP-1ra (OR 0.84; 95% CI 0.76-0.94; p < 0.05) were significantly associated with decreased severe manifestation risk. What's more, metformin (OR 0.77; 95% CI 0.62-0.96; p < 0.05), GLP-1ra (OR 0.86; 95% CI 0.81-0.92; p < 0.05), and SGLT 2i (OR 0.87; 95% CI 0.79-0.97; p < 0.05) were also associated with a decreased risk of hospitalization, but insulin were associated with an increased risk of hospitalization (OR 1.31; 95% CI 1.12-1.52; p < 0.05). Nevertheless, the results of the subgroup analyses showed that the effects of different glucose-lowering agents on COVID-19 may be related to in-hospital use or out-hospital use, elderly or non-elderly patients use, and different geography. CONCLUSION Metformin, GLP-1ra, and SGLT 2i have shown a positive effect on clinical outcomes in COVID-19, particularly in non-elderly individuals. However, insulin use may pose a higher risk, especially in elderly patients, so need with caution. Meanwhile, DPP-4i, TZD, α-GLUi, and sulfonylureas appeared to have a neutral effect. These results need to be validated in future clinical studies.
Collapse
Affiliation(s)
- Zhi-Hui Song
- Department of Pharmacy, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Qiao-Ming Huang
- Department of Pharmacy, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Shan-Shan Xu
- Department of Pharmacy, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jian-Bo Zhou
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| | - Chao Zhang
- Department of Pharmacy, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
11
|
Hernández-Guadarrama A, Díaz-Román MA, Linzaga-Elizalde I, Domínguez-Mendoza BE, Aguilar-Guadarrama AB. In Silico Analysis: Anti-Inflammatory and α-Glucosidase Inhibitory Activity of New α-Methylene-γ-Lactams. Molecules 2024; 29:1973. [PMID: 38731463 PMCID: PMC11085531 DOI: 10.3390/molecules29091973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/13/2024] Open
Abstract
The research about α-methylene-γ-lactams is scarce; however, their synthesis has emerged in recent years mainly because they are isosters of α-methylene-γ-lactones. This last kind of compound is structurally most common in some natural products' nuclei, like sesquiterpene lactones that show biological activity such as anti-inflammatory, anticancer, antibacterial, etc., effects. In this work, seven α-methylene-γ-lactams were evaluated by their inflammation and α-glucosidase inhibition. Thus, compounds 3-methylene-4-phenylpyrrolidin-2-one (1), 3-methylene-4-(p-tolyl)pyrrolidin-2-one (2), 4-(4-chlorophenyl)-3-methylenepyrrolidin-2-one (3), 4-(2-chlorophenyl)-3-methylenepyrrolidin-2-one (4), 5-ethyl-3-methylene-4-phenylpyrrolidin-2-one (5), 5-ethyl-3-methylene-4-(p-tolyl)pyrrolidin-2-one (6) and 4-(4-chlorophenyl)-5-ethyl-3-methylenepyrrolidin-2-one (7) were evaluated via in vitro α-glucosidase assay at 1 mM concentration. From this analysis, 7 exerts the best inhibitory effect on α-glucosidase compared with the vehicle, but it shows a low potency compared with the reference drug at the same dose. On the other side, inflammation edema was induced using TPA (12-O-tetradecanoylphorbol 13-acetate) on mouse ears; compounds 1-7 were tested at 10 µg/ear dose. As a result, 1, 3, and 5 show a better inhibition than indomethacin, at the same doses. This is a preliminary report about the biological activity of these new α-methylene-γ-lactams.
Collapse
Affiliation(s)
| | | | | | | | - A. Berenice Aguilar-Guadarrama
- Centro de Investigaciones Químicas, IICBA, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa, Cuernavaca 62209, Mexico; (A.H.-G.); (M.A.D.-R.); (I.L.-E.); (B.E.D.-M.)
| |
Collapse
|
12
|
Dimnjaković J, Buble T, Ivanko P, Poljičanin T, Karanović Štambuk S, Brborović H, Brborović O. Association of anti-diabetic drugs and covid-19 outcomes in patients with diabetes mellitus type 2 and chronic kidney disease: Nationwide registry analysis. PLoS One 2024; 19:e0301056. [PMID: 38536830 PMCID: PMC10971752 DOI: 10.1371/journal.pone.0301056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 03/08/2024] [Indexed: 01/03/2025] Open
Abstract
INTRODUCTION Patients with diabetes mellitus type 2 and chronic kidney disease (T2DM-CKD) have a 5 times higher risk of developing severe SARS-CoV-2 infection than those without these 2 diseases. The goal of this study is to provide information on T2DM-CKD and COVID-19 outcomes, with an emphasis on the association with anti-diabetic medications. METHODOLOGY Study is designed as a retrospective cohort analysis covering the years 2020 and 2021. Data from the National Diabetes Registry (CroDiab) were linked to hospital data, primary healthcare data, Causes of Death Registry data, the SARS-CoV-2 vaccination database, and the SARS-CoV-2 test results database. Study outcomes were cumulative incidence of SARS-CoV-2 positivity, COVID-19 hospitalizations, and COVID-19 deaths. For outcome predictors, logistic regression models were developed. RESULTS Of 231 796 patients with diabetes mellitus type 2 in the database, 7 539 were T2DM-CKD (3.25%). The 2-year cumulative incidences of all three studies' outcomes were higher in T2DM-CKD than in diabetes patients without CKD (positivity 18.1% vs. 14.4%; hospitalization 9.7% vs. 4.2%; death 3.3% vs. 1.1%, all p<0.001). For COVID-19 hospitalization, protective factors were SGLT-2 inhibitors use (OR 0.430; 95%CI 0.257-0.719) and metformin use (OR 0.769; 95% CI 0.643-0.920), risk factors were insulin use (1.411; 95%CI 1.167-1.706) and sulfonylureas use (OR 1.226; 95% CI 1.027-1.464). For SARS-CoV-2 positivity protective factors were SGLT-2 inhibitors (0.607; 95% CI 0.448-0.823), repaglinide use (OR 0.765; 95% CI 0.593-0.986) and metformin use (OR 0.857; 95% CI 0.770-0.994). DPP-4 inhibitors showed a non-significant decrease in risk for COVID-19 death (OR 0.761; 95% CI 0.568-1.019). CONCLUSION T2DM-CKD are heavily burdened by COVID-19 disease. Our results suggest no association between antidiabetic drugs and COVID-19 death outcome while SGLT-2 and metformin show to be protective against COVID-19 hospitalization and infection, repaglinide against infection, and insulin and sulfonylureas show to be risk factors for COVID-19 hospitalization and infection. Further research in T2DM-CKD is needed.
Collapse
Affiliation(s)
- Jelena Dimnjaković
- Division for Health Informatics and Biostatistics, Department for Biostatistics, Croatian Institute of Public Health, Zagreb, Croatia
| | - Tamara Buble
- Division for Health Informatics and Biostatistics, Department for Biostatistics, Croatian Institute of Public Health, Zagreb, Croatia
| | - Pero Ivanko
- Division for Health Informatics and Biostatistics, Department for Biostatistics, Croatian Institute of Public Health, Zagreb, Croatia
| | | | - Sandra Karanović Štambuk
- Department of Nephrology, Arterial Hypertension, Dialysis and Transplantation, University Hospital Centre Zagreb, Zagreb, Croatia
- Department of Internal Medicine, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Hana Brborović
- Department of Environmental and Occupational Health and Sports Medicine, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ognjen Brborović
- Department of Social Medicine and Organization of Health Care, School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
13
|
Villasenor M, Selzer AR. Preoperative Patient Evaluation: Newer Hypoglycemic Agents. Anesthesiol Clin 2024; 42:41-52. [PMID: 38278591 DOI: 10.1016/j.anclin.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
New medications in the treatment of diabetes are an active area of research and drug development. Although many hypoglycemic therapies have been in use for decades, new evidence continues to emerge highlighting benefits of these medications for other indications. In this article, the authors review the classes of newer hypoglycemic agents and summarize medications currently in phase 2 and 3 clinical trials. The literature to support specific recommendations for perioperative management is scant, however, where it exists, we have included it. In other instances, the authors have noted a reasonable approach based on pharmacokinetics and principles of perioperative medication management.
Collapse
Affiliation(s)
- Mario Villasenor
- Department of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Angela Roberts Selzer
- Department of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
14
|
Razavi SM, Arab ZN, Niknejad A, Hosseini Y, Fouladi A, Khales SD, Shahali M, Momtaz S, Butler AE, Sukhorukov VN, Jamialahmadi T, Abdolghaffari AH, Sahebkar A. Therapeutic effects of anti-diabetic drugs on traumatic brain injury. Diabetes Metab Syndr 2024; 18:102949. [PMID: 38308863 DOI: 10.1016/j.dsx.2024.102949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/05/2024]
Abstract
AIMS In this narrative review, we have analyzed and synthesized current studies relating to the effects of anti-diabetic drugs on traumatic brain injury (TBI) complications. METHODS Eligible studies were collected from Scopus, Google Scholar, PubMed, and Cochrane Library for clinical, in-vivo, and in-vitro studies published on the impact of anti-diabetic drugs on TBI. RESULTS Traumatic brain injury (TBI) is a serious brain disease that is caused by any type of trauma. The pathophysiology of TBI is not yet fully understood, though physical injury and inflammatory events have been implicated in TBI progression. Several signaling pathways are known to play pivotal roles in TBI injuries, including Nuclear factor erythroid 2-related factor 2 (Nrf2), High mobility group box 1 protein/Nuclear factor kappa B (HMGB1/NF-κB), Adiponectin, Mammalian Target of Rapamycin (mTOR), Toll-Like Receptor (TLR), Wnt/β-catenin, Janus Kinase/Signal Transducers and Activators of Transcription (JAK/STAT), Nod-like receptor protein3 (NLRP3) inflammasome, Phosphoglycerate kinase 1/Kelch-like ECH-associated protein 1 (PGK1/KEAP1)/Nrf2, and Mitogen-activated protein kinase (MAPK) . Recent studies suggest that oral anti-diabetic drugs such as biguanides, thiazolidinediones (TZDs), sulfonylureas (SUs), sodium-glucose cotransporter-2 inhibitors (SGLT2is), dipeptidyl peptidase-4 inhibitors (DPPIs), meglitinides, and alpha-glucosidase inhibitors (AGIs) could have beneficial effects in the management of TBI complications. These drugs may downregulate the inflammatory pathways and induce antioxidant signaling pathways, thus alleviating complications of TBI. CONCLUSION Based on this comprehensive literature review, antidiabetic medications might be considered in the TBI treatment protocol. However, evidence from clinical trials in patients with TBI is still warranted.
Collapse
Affiliation(s)
- Seyed Mehrad Razavi
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Zahra Najafi Arab
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Amirhossein Niknejad
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Yasamin Hosseini
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Abtin Fouladi
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran; School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saba Darban Khales
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mostafa Shahali
- School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeideh Momtaz
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran; Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland Bahrain, Adliya, Bahrain
| | - Vasily N Sukhorukov
- Institute of General Pathology and Pathophysiology, Moscow, Russia; Institute of Experimental Cardiology Named after Academician V.N. Smirnov, Federal State Budgetary Institution National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Moscow, Russia
| | - Tannaz Jamialahmadi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Hossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
15
|
Drakul M, Čolić M. Immunomodulatory activity of dipeptidyl peptidase-4 inhibitors in immune-related diseases. Eur J Immunol 2023; 53:e2250302. [PMID: 37732495 DOI: 10.1002/eji.202250302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/22/2023] [Accepted: 09/20/2023] [Indexed: 09/22/2023]
Abstract
Dipeptidyl peptidase-4 (DPP-4), also known as CD26, is a 110-kDa cell surface glycoprotein with enzymatic and signal transducing activity. DPP-4/CD26 is expressed by various cells, including CD4+ and CD8+ T cells, B cells, dendritic cells, macrophages, and NK cells. DPP-4 inhibitors (DPP-4i) were introduced to clinics in 2006 as new oral antihyperglycemic drugs approved for type 2 diabetes mellitus treatment. In addition to glucose-lowering effects, emerging data, from clinical studies and their animal models, suggest that DPP-4i could display anti-inflammatory and immunomodulatory effects as well, but the molecular and immunological mechanisms of these actions are insufficiently investigated. This review focuses on the modulatory activity of DPP-4i in the immune system and the possible application of DPP-4i in other immune-related diseases in patients with or without diabetes.
Collapse
Affiliation(s)
- Marija Drakul
- Medical Faculty Foča, University of East Sarajevo, Foča, Bosnia and Herzegovina
| | - Miodrag Čolić
- Medical Faculty Foča, University of East Sarajevo, Foča, Bosnia and Herzegovina
- Serbian Academy of Sciences and Arts, Belgrade, Serbia
| |
Collapse
|
16
|
Barron E, Khunti K, Wright AK, Ashcroft DM, Carr MJ, Rutter MK, Valabhji J. Impact of the COVID-19 pandemic on new diagnoses of type 2 diabetes in England. Diabetes Obes Metab 2023; 25:3424-3429. [PMID: 37489091 DOI: 10.1111/dom.15223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/27/2023] [Accepted: 07/06/2023] [Indexed: 07/26/2023]
Affiliation(s)
| | - Kamlesh Khunti
- Diabetes Research Centre, Leicester Diabetes Centre, University of Leicester, Leicester, UK
| | - Alison K Wright
- Centre for Pharmacoepidemiology and Drug Safety, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Darren M Ashcroft
- Centre for Pharmacoepidemiology and Drug Safety, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- NIHR Greater Manchester Patient Safety Research Collaboration (PSRC), University of Manchester, Manchester, UK
- Manchester Academic Health Science Centre, Manchester, UK
| | - Matthew J Carr
- Centre for Pharmacoepidemiology and Drug Safety, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- NIHR Greater Manchester Patient Safety Research Collaboration (PSRC), University of Manchester, Manchester, UK
- Manchester Academic Health Science Centre, Manchester, UK
| | - Martin K Rutter
- Manchester Academic Health Science Centre, Manchester, UK
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Diabetes, Endocrinology and Metabolism Centre, NIHR Manchester Biomedical Research Centre, Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Jonathan Valabhji
- NHS England, London, UK
- Department of Diabetes and Endocrinology, Imperial College Healthcare NHS Trust, London, UK
- Division of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| |
Collapse
|
17
|
Kow CS, Ramachandram DS, Hasan SS. The impact of preadmission/prediagnosis use of GLP-1 receptor agonists on COVID-19 mortality in patients with diabetes: A systematic review and meta-analysis. Health Sci Rep 2023; 6:e1549. [PMID: 37720167 PMCID: PMC10500111 DOI: 10.1002/hsr2.1549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/19/2023] Open
Affiliation(s)
- Chia Siang Kow
- Department of Pharmacy PracticeSchool of Pharmacy, International Medical UniversityKuala LumpurMalaysia
| | | | - Syed Shahzad Hasan
- Department of PharmacySchool of Applied Sciences, University of HuddersfieldHuddersfieldUK
- School of Biomedical Sciences & PharmacyUniversity of NewcastleCallaghanAustralia
| |
Collapse
|
18
|
Poledniczek M, Neumayer C, Kopp CW, Schlager O, Gremmel T, Jozkowicz A, Gschwandtner ME, Koppensteiner R, Wadowski PP. Micro- and Macrovascular Effects of Inflammation in Peripheral Artery Disease-Pathophysiology and Translational Therapeutic Approaches. Biomedicines 2023; 11:2284. [PMID: 37626780 PMCID: PMC10452462 DOI: 10.3390/biomedicines11082284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Inflammation has a critical role in the development and progression of atherosclerosis. On the molecular level, inflammatory pathways negatively impact endothelial barrier properties and thus, tissue homeostasis. Conformational changes and destruction of the glycocalyx further promote pro-inflammatory pathways also contributing to pro-coagulability and a prothrombotic state. In addition, changes in the extracellular matrix composition lead to (peri-)vascular remodelling and alterations of the vessel wall, e.g., aneurysm formation. Moreover, progressive fibrosis leads to reduced tissue perfusion due to loss of functional capillaries. The present review aims at discussing the molecular and clinical effects of inflammatory processes on the micro- and macrovasculature with a focus on peripheral artery disease.
Collapse
Affiliation(s)
- Michael Poledniczek
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (C.W.K.); (O.S.); (M.E.G.); (R.K.)
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria
| | - Christoph Neumayer
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna, 1090 Vienna, Austria;
| | - Christoph W. Kopp
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (C.W.K.); (O.S.); (M.E.G.); (R.K.)
| | - Oliver Schlager
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (C.W.K.); (O.S.); (M.E.G.); (R.K.)
| | - Thomas Gremmel
- Department of Internal Medicine I, Cardiology and Intensive Care Medicine, Landesklinikum Mistelbach-Gänserndorf, 2130 Mistelbach, Austria;
- Institute of Cardiovascular Pharmacotherapy and Interventional Cardiology, Karl Landsteiner Society, 3100 St. Pölten, Austria
| | - Alicja Jozkowicz
- Department of Medical Biotechnology, Faculty of Biophysics, Biochemistry and Biotechnology, Jagiellonian University, 31-007 Krakow, Poland;
| | - Michael E. Gschwandtner
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (C.W.K.); (O.S.); (M.E.G.); (R.K.)
| | - Renate Koppensteiner
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (C.W.K.); (O.S.); (M.E.G.); (R.K.)
| | - Patricia P. Wadowski
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (C.W.K.); (O.S.); (M.E.G.); (R.K.)
| |
Collapse
|
19
|
Batiha GES, Al-kuraishy HM, Al-Gareeb AI, Ashour NA, Negm WA. Potential role of tirzepatide towards Covid-19 infection in diabetic patients: a perspective approach. Inflammopharmacology 2023; 31:1683-1693. [PMID: 37208555 PMCID: PMC10198595 DOI: 10.1007/s10787-023-01239-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 04/21/2023] [Indexed: 05/21/2023]
Abstract
In Covid-19, variations in fasting blood glucose are considered a distinct risk element for a bad prognosis and outcome in Covid-19 patients. Tirazepatide (TZT), a dual glucagon-like peptide-1 (GLP-1)and glucose-dependent insulinotropic polypeptide (GIP) receptor agonist may be effective in managing Covid-19-induced hyperglycemia in diabetic and non-diabetic patients. The beneficial effect of TZT in T2DM and obesity is related to direct activation of GIP and GLP-1 receptors with subsequent improvement of insulin sensitivity and reduction of body weight. TZT improves endothelial dysfunction (ED) and associated inflammatory changes through modulation of glucose homeostasis, insulin sensitivity, and pro-inflammatory biomarkers release. TZT, through activation of the GLP-1 receptor, may produce beneficial effects against Covid-19 severity since GLP-1 receptor agonists (GLP-1RAs) have anti-inflammatory and pulmoprotective implications in Covid-19. Therefore, GLP-1RAs could effectively treat severely affected Covid-19 diabetic and non-diabetic patients. Notably, using GLP-1RAs in T2DM patients prevents glucose variability, a common finding in Covid-19 patients. Therefore, GLP-1RAs like TZT could be a therapeutic strategy in T2DM patients with Covid-19 to prevent glucose variability-induced complications. In Covid-19, the inflammatory signaling pathways are highly activated, resulting in hyperinflammation. GLP-1RAs reduce inflammatory biomarkers like IL-6, CRP, and ferritin in Covid-19 patients. Therefore, GLP-1RAs like TZ may be effective in Covid-19 patients by reducing the inflammatory burden. The anti-obesogenic effect of TZT may reduce Covid-19 severity by ameliorating body weight and adiposity. Furthermore, Covid-19 may induce substantial alterations in gut microbiota. GLP-1RA preserves gut microbiota and prevents intestinal dysbiosis. Herein, TZT, like other GLP-1RA, may attenuate Covid-19-induced gut microbiota alterations and, by this mechanism, may mitigate intestinal inflammation and systemic complications in Covid-19 patients with either T2DM or obesity. As opposed to that, glucose-dependent insulinotropic polypeptide (GIP) was reduced in obese and T2DM patients. However, activation of GIP-1R by TZT in T2DM patients improves glucose homeostasis. Thus, TZT, through activation of both GIP and GLP-1, may reduce obesity-mediated inflammation. In Covid-19, GIP response to the meal is impaired, leading to postprandial hyperglycemia and abnormal glucose homeostasis. Therefore, using TZT in severely affected Covid-19 patients may prevent the development of glucose variability and hyperglycemia-induced oxidative stress. Moreover, exaggerated inflammatory disorders in Covid-19 due to the release of pro-inflammatory cytokines like IL-1β, IL-6, and TNF-α may lead to systemic inflammation and cytokine storm development. Besides, GIP-1 inhibits expression of IL-1β, IL-6, MCP-1, chemokines and TNF-α. Therefore, using GIP-1RA like TZT may inhibit the onset of inflammatory disorders in severely affected Covid-19 patients. In conclusion, TZT, through activation of GLP-1 and GIP receptors, may prevent SARS-CoV-2-induced hyperinflammation and glucose variability in diabetic and non-diabetic patients.
Collapse
Affiliation(s)
- Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, AlBeheira, P.O. Box 22511, Damanhour, Egypt
| | - Hayder M. Al-kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, AL-Mustansiriyia University, P.O. Box 14132, Baghdad, Iraq
| | - Ali I. Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, AL-Mustansiriyia University, P.O. Box 14132, Baghdad, Iraq
| | - Nada A. Ashour
- Department of Clinical Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, 31527 Egypt
| | - Walaa A. Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
20
|
Castro MC, Villagarcía HG, Schinella G, Massa ML, Francini F. Mechanism of preventive effects of exendin-4 and des-fluoro-sitagliptin in a murine model of fructose-induced prediabetes. Biochim Biophys Acta Mol Cell Biol Lipids 2023:159363. [PMID: 37429413 DOI: 10.1016/j.bbalip.2023.159363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/23/2023] [Accepted: 07/05/2023] [Indexed: 07/12/2023]
Abstract
Protective effects of exendin-4 (glucagon-like peptide-1 -GLP-1- receptor agonist) and des-fluoro-sitagliptin (dipeptidyl peptidase-4 inhibitor) on fructose-induced hepatic disturbances were evaluated in prediabetic rats. Complementary, a possible direct effect of exendin-4 in human hepatoblastoma-derived cell line HepG2 incubated with fructose in presence/absence of exendin-9-39 (GLP-1 receptor antagonist) was investigated. In vivo, after 21 days of fructose rich diet, we determined: glycemia, insulinemia, and triglyceridemia; hepatic fructokinase, AMP-deaminase, and G-6-P dehydrogenase (G-6-P DH) activities; carbohydrate-responsive element-binding protein (ChREBP) expression; triglyceride content and lipogenic gene expression (glycerol-3-phosphate acyltransferase -GPAT-, fatty acid synthase -FAS-, sterol regulatory element-binding protein-1c -SREBP-1c); oxidative stress and inflammatory markers expression. In HepG2 cells we measured fructokinase activity and triglyceride content. Hypertriglyceridemia, hyperinsulinemia, enhanced liver fructokinase, AMP-deaminase, and G-6-P DH activities, increased ChREBP and lipogenic genes expression, enhanced triglyceride level, oxidative stress and inflammatory markers recorded in fructose fed animals, were prevented by co-administration of either exendin-4 or des-fluoro-sitagliptin. Exendin-4 prevented fructose-induced increase in fructokinase activity and triglyceride contain in HepG2 cells. These effects were blunted co-incubating with exendin-9-39. The results demonstrated for the first time that exendin-4/des-fluro-sitagliptin prevented fructose-induced endocrine-metabolic oxidative stress and inflammatory changes probably acting on the purine degradation pathway. Exendin 9-39 blunted in vitro protective exendin-4 effects, thereby suggesting a direct effect of this compound on hepatocytes through GLP-1 receptor. Direct effect on fructokinase and AMP-deaminase activities, with a key role in the pathogenesis of liver dysfunction induced by fructose, suggests purine degradation pathway constitute a potential therapeutic objective for GLP-1 receptor agonists.
Collapse
Affiliation(s)
- María Cecilia Castro
- Centro de Endocrinología Experimental y Aplicada - CENEXA (UNLP-CONICET CCT LA PLATA CEAS CICPBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Street 60 and 120, La Plata 1900, Argentina.
| | - Hernán Gonzalo Villagarcía
- Centro de Endocrinología Experimental y Aplicada - CENEXA (UNLP-CONICET CCT LA PLATA CEAS CICPBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Street 60 and 120, La Plata 1900, Argentina.
| | - Guillermo Schinella
- Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Street 60 and 120, La Plata 1900, Argentina; Instituto de Ciencias de la Salud, UNAJ-CICPBA, Street Avenue Calchaqui 6200, Florencio Varela 1888, Argentina.
| | - María Laura Massa
- Centro de Endocrinología Experimental y Aplicada - CENEXA (UNLP-CONICET CCT LA PLATA CEAS CICPBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Street 60 and 120, La Plata 1900, Argentina.
| | - Flavio Francini
- Centro de Endocrinología Experimental y Aplicada - CENEXA (UNLP-CONICET CCT LA PLATA CEAS CICPBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Street 60 and 120, La Plata 1900, Argentina.
| |
Collapse
|
21
|
Gomes de Pinho Q, Daumas A, Benyamine A, Bertolino J, Ebbo M, Schleinitz N, Harlé JR, Jarrot PA, Kaplanski G, Berbis J, Boucekine M, Rossi P, Granel B. Predictors of Relapses or Recurrences in Patients With Giant Cell Arteritis: A Medical Records Review Study. J Clin Rheumatol 2023; 29:e25-e31. [PMID: 36727749 DOI: 10.1097/rhu.0000000000001942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Giant cell arteritis (GCA) is the most common systemic vasculitis in individuals aged ≥50 years. Its course is marked by a high relapse rate requiring long-term glucocorticoid use with its inherent adverse effects. We aimed to identify factors associated with relapses or recurrences in GCA at diagnosis. METHODS We reviewed the medical records of consecutive patients with GCA diagnosed between 2009 and 2019 and followed for at least 12 months. We recorded their characteristics at onset and during follow-up. Factors associated with relapses or recurrences were identified using multivariable analysis. RESULTS We included 153 patients, among whom 68% were female with a median age of 73 (47-98) years and a median follow-up of 32 (12-142) months. Seventy-four patients (48.4%) had at least 1 relapse or recurrence. Headache and polymyalgia rheumatica were the most frequent manifestations of relapses. The first relapse occurred at a median time of 13 months after the diagnosis, with a median dose of 5.5 (0-25) mg/d of glucocorticoids.In multivariable analysis, patients with relapses or recurrences had a higher frequency of cough and scalp tenderness at diagnosis (20.3% vs 5.1%; odds ratio [OR], 4.73; 95% confidence interval [CI], 1.25-17.94; p = 0.022; and 41.9% vs 29.1%; OR, 2.4; 95% CI, 1.07-5.39; p = 0.034, respectively). Patients with diabetes mellitus at diagnosis had fewer relapses or recurrences during follow-up (5.4% vs 19%; OR, 0.24; 95% CI, 0.07-0.83; p = 0.024). CONCLUSIONS Cough and scalp tenderness at diagnosis were associated with relapses or recurrences, whereas patients with diabetes experienced fewer relapses or recurrences.
Collapse
Affiliation(s)
- Quentin Gomes de Pinho
- From the Assistance Publique des Hôpitaux de Marseille, Hôpital Nord, Service de Médecine Interne
| | - Aurélie Daumas
- Assistance Publique des Hôpitaux de Marseille, Hôpital de la Timone, Service de Médecine Interne, Gériatrie et Thérapeutique
| | - Audrey Benyamine
- From the Assistance Publique des Hôpitaux de Marseille, Hôpital Nord, Service de Médecine Interne
| | - Julien Bertolino
- From the Assistance Publique des Hôpitaux de Marseille, Hôpital Nord, Service de Médecine Interne
| | - Mikaël Ebbo
- Assistance Publique des Hôpitaux de Marseille, Hôpital de la Timone, Service de Médecine Interne
| | - Nicolas Schleinitz
- Assistance Publique des Hôpitaux de Marseille, Hôpital de la Timone, Service de Médecine Interne
| | - Jean-Robert Harlé
- Assistance Publique des Hôpitaux de Marseille, Hôpital de la Timone, Service de Médecine Interne
| | - Pierre André Jarrot
- Assistance Publique des Hôpitaux de Marseille, Hôpital de la Conception, Service de Médecine Interne et Immunologie Clinique
| | - Gilles Kaplanski
- Assistance Publique des Hôpitaux de Marseille, Hôpital de la Conception, Service de Médecine Interne et Immunologie Clinique
| | - Julie Berbis
- Faculté de Médecine de la Timone, Laboratoire de Santé Publique, EA 3279, Centre d'Étude et de Recherche sur les Service de Santé et la Qualité de Vie, Aix-Marseille Université, Marseille, France
| | - Mohamed Boucekine
- Faculté de Médecine de la Timone, Laboratoire de Santé Publique, EA 3279, Centre d'Étude et de Recherche sur les Service de Santé et la Qualité de Vie, Aix-Marseille Université, Marseille, France
| | - Pascal Rossi
- From the Assistance Publique des Hôpitaux de Marseille, Hôpital Nord, Service de Médecine Interne
| | - Brigitte Granel
- From the Assistance Publique des Hôpitaux de Marseille, Hôpital Nord, Service de Médecine Interne
| |
Collapse
|
22
|
Yaribeygi H, Maleki M, Atkin SL, Kesharwani P, Jamialahmadi T, Sahebkar A. Anti‐inflammatory effects of sodium‐glucose cotransporter‐2 inhibitors in COVID‐19. IUBMB Life 2023. [DOI: 10.1002/iub.2719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/13/2023] [Indexed: 03/29/2023]
|
23
|
Verma S, Bhatta M, Davies M, Deanfield JE, Garvey WT, Jensen C, Kandler K, Kushner RF, Rubino DM, Kosiborod MN. Effects of once-weekly semaglutide 2.4 mg on C-reactive protein in adults with overweight or obesity (STEP 1, 2, and 3): Exploratory analyses of three randomised, double-blind, placebo-controlled, phase 3 trials. EClinicalMedicine 2023; 55:101737. [PMID: 36467859 PMCID: PMC9713290 DOI: 10.1016/j.eclinm.2022.101737] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/14/2022] [Accepted: 10/21/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Inflammation is a key driver of atherosclerotic cardiovascular disease. C-reactive protein (CRP), an established biomarker of inflammation, is commonly elevated in people with overweight/obesity. METHODS STEP 1, 2, and 3 were 68-week, placebo-controlled trials of semaglutide for weight management in participants with overweight/obesity, with (STEP 2) or without (STEP 1 and 3) type 2 diabetes. Change in serum CRP from baseline to week 68 was assessed as a prespecified secondary endpoint for semaglutide 2.4 mg versus placebo (STEP 1, 2, and 3) and versus semaglutide 1.0 mg (STEP 2). Post hoc assessments included change in CRP by baseline characteristics (bodyweight, body mass index [BMI], glycaemic status, CRP concentration); change in CRP-defined cardiovascular risk category (<1 [low], 1-3 [intermediate], and >3 mg/L [high]); and correlation between change in CRP and change in bodyweight, waist circumference, fasting serum insulin (STEP 1 and 3), fasting plasma glucose, and homeostatic model assessment of insulin resistance (HOMA-IR). FINDINGS The trials took place from June through November 2018 (STEP 1 and 2) and from August 2018 to April 2020 (STEP 3). In all trials, semaglutide 2.4 mg reduced CRP at week 68 versus placebo (estimated treatment difference [ETD; 95% CI] -44% [-49 to -39] in STEP 1, -39% [-46 to -30] in STEP 2, and -48% [-55 to -39] in STEP 3; all p < 0.05). In STEP 2, CRP reductions were greater with semaglutide 2.4 mg (-49%) than with 1.0 mg (-42%) but the difference did not reach statistical significance (ETD [95% CI] -12% [-23 to 1]; p = 0.06). Reductions in CRP occurred in parallel with bodyweight loss and were consistent regardless of baseline BMI/bodyweight/glycaemic status. More semaglutide-treated participants had reductions in CRP-defined cardiovascular risk versus those on placebo. Reductions in CRP were positively correlated with reductions in bodyweight, waist circumference, fasting plasma glucose, fasting serum insulin, and HOMA-IR (data not shown). INTERPRETATION In people with overweight/obesity, once-weekly semaglutide 2.4 mg and 1.0 mg reduced CRP concentration irrespective of baseline BMI/bodyweight/glycaemic status compared with placebo. These data suggest a potential anti-inflammatory role of semaglutide in obesity. FUNDING Novo Nordisk.
Collapse
Affiliation(s)
- Subodh Verma
- Division of Cardiac Surgery, St Michael's Hospital, University of Toronto, Toronto, ON, Canada
- Corresponding author. University of Toronto, St Michael's Hospital, 30 Bond St, 8th Floor, Bond Wing, Toronto, ON, M5B1W8, Canada.
| | | | - Melanie Davies
- Diabetes Research Centre, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Leicester, UK
| | - John E. Deanfield
- Institute of Cardiovascular Science, University College London, London, UK
| | - W. Timothy Garvey
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | - Robert F. Kushner
- Division of Endocrinology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Domenica M. Rubino
- Washington Center for Weight Management and Research, Arlington, VA, USA
| | - Mikhail N. Kosiborod
- Department of Cardiovascular Disease, Saint Luke's Mid America Heart Institute and University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| |
Collapse
|
24
|
da Cruz Freire JE, Júnior JEM, Pinheiro DP, da Cruz Paiva Lima GE, do Amaral CL, Veras VR, Madeira MP, Freire EBL, Ozório RG, Fernandes VO, Montenegro APDR, Montenegro RC, Colares JKB, Júnior RMM. Evaluation of the anti-diabetic drug sitagliptin as a novel attenuate to SARS-CoV-2 evidence-based in silico: molecular docking and molecular dynamics. 3 Biotech 2022; 12:344. [PMCID: PMC9640538 DOI: 10.1007/s13205-022-03406-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/30/2022] [Indexed: 11/09/2022] Open
Abstract
The current outbreak of COVID-19 cases worldwide has been responsible for a significant number of deaths, especially in hospitalized patients suffering from comorbidities, such as obesity, diabetes, hypertension. The disease not only has prompted an interest in the pathophysiology, but also it has propelled a massive race to find new anti-SARS-CoV-2 drugs. In this scenario, known drugs commonly used to treat other diseases have been suggested as alternative or complementary therapeutics. Herein we propose the use of sitagliptin, an inhibitor of dipeptidyl peptidase-4 (DPP4) used to treat type-II diabetes, as an agent to block and inhibit the activity of two proteases, 3CLpro and PLpro, related to the processing of SARS-CoV-2 structural proteins. Inhibition of these proteases may possibly reduce the viral load and infection on the host by hampering the synthesis of new viruses, thus promoting a better outcome. In silico assays consisting in the modeling of the ligand sitagliptin and evaluation of its capacity to interact with 3CLpro and PLpro through the prediction of the ligand bioactivity, molecular docking, overlapping of crystal structures, and molecular dynamic simulations were conducted. The experiments indicate that sitagliptin can interact and bind to both targets. However, this interaction seems to be stronger and more stable to 3CLpro (ΔG = −7.8 kcal mol−1), when compared to PLpro (ΔG = −7.5 kcal mol−1). This study suggests that sitagliptin may be suitable to treat COVID-19 patients, beyond its common use as an anti-diabetic medication. In vivo studies may further support this hypothesis.
Collapse
|
25
|
DeMarsilis A, Reddy N, Boutari C, Filippaios A, Sternthal E, Katsiki N, Mantzoros C. Pharmacotherapy of type 2 diabetes: An update and future directions. Metabolism 2022; 137:155332. [PMID: 36240884 DOI: 10.1016/j.metabol.2022.155332] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
Abstract
Type 2 diabetes (T2D) is a widely prevalent disease with substantial economic and social impact for which multiple conventional and novel pharmacotherapies are currently available; however, the landscape of T2D treatment is constantly changing as new therapies emerge and the understanding of currently available agents deepens. This review aims to provide an updated summary of the pharmacotherapeutic approach to T2D. Each class of agents is presented by mechanism of action, details of administration, side effect profile, cost, and use in certain populations including heart failure, non-alcoholic fatty liver disease, obesity, chronic kidney disease, and older individuals. We also review targets of novel therapeutic T2D agent development. Finally, we outline an up-to-date treatment approach that starts with identification of an individualized goal for glycemic control then selection, initiation, and further intensification of a personalized therapeutic plan for T2D.
Collapse
Affiliation(s)
- Antea DeMarsilis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Niyoti Reddy
- Department of Medicine, School of Medicine, Boston University, Boston, USA
| | - Chrysoula Boutari
- Second Propedeutic Department of Internal Medicine, Hippocration Hospital, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Andreas Filippaios
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Elliot Sternthal
- Section of Endocrinology, VA Boston Healthcare System, Harvard Medical School, Boston, MA 02115, USA
| | - Niki Katsiki
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Sindos, Greece; School of Medicine, European University Cyprus, Nicosia, Cyprus.
| | - Christos Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA; Section of Endocrinology, VA Boston Healthcare System, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
26
|
Ouchi D, Vilaplana-Carnerero C, de Dios V, Giner-Soriano M, Morros R. Antidiabetic treatment and COVID-19 Outcomes: A population-based cohort study in primary health care in Catalonia during the first wave of the pandemic. Prim Care Diabetes 2022; 16:753-759. [PMID: 36216752 PMCID: PMC9531669 DOI: 10.1016/j.pcd.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/06/2022] [Accepted: 10/02/2022] [Indexed: 11/05/2022]
Abstract
AIMS To analyse if antidiabetic treatment was associated with better COVID-19 outcomes in type 2 diabetic patients, measured by hospital admission and mortality rates as severe outcomes. METHODS Cohort study including COVID-19 patients registered in the Primary Care electronic records, in March-June 2020, comparing exposed to metformin in monotherapy with exposed to any other antidiabetic. DATA SOURCE SIDIAP (Information System for Research in Primary Care), which captures clinical information of 5,8 million people from Catalonia, Spain. RESULTS We included 31,006 diabetic patients infected with COVID-19, 43.7% previously exposed to metformin, 45.5% of them in monotherapy. 16.4% were admitted to hospital and 15.1% died. Users of insulin in monotherapy (OR 1.29, 95% CI 1.11-1.50), combined with metformin (OR 1.38, 1.13-1.69) or IDPP4 alone (OR 1.29, 1.03-1.63) had higher risk of severe outcomes than those in metformin monotherapy. Users of any insulin (OR 1.61, 1.32-1.97) or combined with metformin (OR 1.69, 1.30-2.20) had a higher risk of mortality. CONCLUSIONS Patients receiving metformin monotherapy in our study showed a lower risk of hospitalization and death in comparison to those treated with other frequent antidiabetic agents. We cannot distinguish if better outcomes are related with the antidiabetic therapy or with other factors, such as metabolic control or interventions applied during the hospital admission.
Collapse
Affiliation(s)
- Dan Ouchi
- Fundació Institut Universitari per a la Recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain; Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, Spain
| | - Carles Vilaplana-Carnerero
- Fundació Institut Universitari per a la Recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain; Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, Spain
| | - Vanessa de Dios
- Department of Clinical Pharmacology, Medicines Area, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Maria Giner-Soriano
- Fundació Institut Universitari per a la Recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain; Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, Spain.
| | - Rosa Morros
- Fundació Institut Universitari per a la Recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain; Departament de Farmacologia, Terapèutica i Toxicologia, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, Spain; Institut Català de la Salut, Barcelona, Spain; Plataforma SCReN, UICEC IDIAP Jordi Gol, Barcelona, Spain
| |
Collapse
|
27
|
Theofilis P, Sagris M, Oikonomou E, Antonopoulos AS, Siasos G, Tsioufis K, Tousoulis D. The Anti-Inflammatory Effect of Novel Antidiabetic Agents. Life (Basel) 2022; 12:1829. [PMID: 36362984 PMCID: PMC9696750 DOI: 10.3390/life12111829] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/28/2022] [Accepted: 11/05/2022] [Indexed: 08/10/2023] Open
Abstract
The incidence of type 2 diabetes (T2DM) has been increasing worldwide and remains one of the leading causes of atherosclerotic disease. Several antidiabetic agents have been introduced in trying to regulate glucose control levels with different mechanisms of action. These agents, and sodium-glucose cotransporter-2 inhibitors in particular, have been endorsed by contemporary guidelines in patients with or without T2DM. Their widespread usage during the last three decades has raised awareness in the scientific community concerning their pleiotropic mechanisms of action, including their putative anti-inflammatory effect. In this review, we delve into the anti-inflammatory role and mechanism of the existing antidiabetic agents in the cardiovascular system and their potential use in other chronic sterile inflammatory conditions.
Collapse
Affiliation(s)
- Panagiotis Theofilis
- 1st Cardiology Department, “Hippokration” General Hospital, University of Athens Medical School, 11527 Athens, Greece
| | - Marios Sagris
- 3rd Cardiology Department, Thoracic Diseases Hospital “Sotiria”, University of Athens Medical School, 11527 Athens, Greece
| | - Evangelos Oikonomou
- 1st Cardiology Department, “Hippokration” General Hospital, University of Athens Medical School, 11527 Athens, Greece
- 3rd Cardiology Department, Thoracic Diseases Hospital “Sotiria”, University of Athens Medical School, 11527 Athens, Greece
| | - Alexios S. Antonopoulos
- 1st Cardiology Department, “Hippokration” General Hospital, University of Athens Medical School, 11527 Athens, Greece
| | - Gerasimos Siasos
- 1st Cardiology Department, “Hippokration” General Hospital, University of Athens Medical School, 11527 Athens, Greece
- 3rd Cardiology Department, Thoracic Diseases Hospital “Sotiria”, University of Athens Medical School, 11527 Athens, Greece
| | - Kostas Tsioufis
- 1st Cardiology Department, “Hippokration” General Hospital, University of Athens Medical School, 11527 Athens, Greece
| | - Dimitris Tousoulis
- 1st Cardiology Department, “Hippokration” General Hospital, University of Athens Medical School, 11527 Athens, Greece
| |
Collapse
|
28
|
Potential Therapeutic Benefits of Metformin Alone and in Combination with Sitagliptin in the Management of Type 2 Diabetes Patients with COVID-19. Pharmaceuticals (Basel) 2022; 15:ph15111361. [PMID: 36355535 PMCID: PMC9699540 DOI: 10.3390/ph15111361] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a potential risk factor for the development of COVID-19 and is associated with higher severity and mortality rates. T2DM patients are commonly treated with metformin monotherapy or metformin plus sitagliptin. In the present case-control, single-center cohort study, a total number of 112 T2DM patients suffering from COVID-19 and aged 44−62 years old were compared with 78 T2DM patients without COVID-19 and aged 42−56 years old. Both the patient group and the control group were allocated into four groups. Group A: T2DM patients with COVID-19 on metformin treatments plus standard therapy (n = 60); group B: T2DM patients with COVID-19 on metformin plus sitagliptin plus standard therapy (n = 52); group C: T2DM patients without COVID-19 on metformin treatments (n = 40); and group D: T2DM patients without COVID-19 on metformin plus sitagliptin (n = 38). The investigation duration was 2−3 weeks. Anthropometric measurements, serological and biochemical investigations, pulmonary radiological findings, and clinical outcomes were evaluated. Only 101 T2DM patients with COVID-19 continued the study, 71 (70.29%) with mild-moderate COVID-19 and 30 (29.7%) with severe COVID-19 were compared with 78 T2DM patients as a control. Inflammatory biomarkers (C reactive protein, ferritin, and procalcitonin), a lung injury biomarker (lactate dehydrogenase), and a coagulopathy biomarker (D-dimer) were elevated in severe COVID-19 patients compared with mild-moderate COVID-19 (p < 0.05) and T2DM patients (p < 0.05). However, metformin plus sitagliptin was more effective than metformin monotherapy in T2DM patients with COVID-19, as evidenced by the mitigation of oxidative stress, CT scan score, and clinical outcomes. The present study confirmed the protective effects of this combination against the development of COVID-19 severity, as most T2DM COVID-19 patients develop mild-moderate forms. Herein, the combination of metformin and sitagliptin may lead to more beneficial effects than metformin monotherapy.
Collapse
|
29
|
Salmen T, Pietroșel VA, Mihai BM, Bica IC, Teodorescu C, Păunescu H, Coman OA, Mihai DA, Pantea Stoian A. Non-Insulin Novel Antidiabetic Drugs Mechanisms in the Pathogenesis of COVID-19. Biomedicines 2022; 10:biomedicines10102624. [PMID: 36289885 PMCID: PMC9599217 DOI: 10.3390/biomedicines10102624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 12/03/2022] Open
Abstract
The present study aimed to analyse the published data and to realize an update about the use and pathogenesis of the novel antidiabetic drugs, respectively, dipeptidyl peptidase-4 inhibitors (DPP-4i), glucagon-like peptide-1 receptor agonists (GLP-1 Ra), and sodium-glucose co-transporter-2 inhibitors (SGLT-2i), in patients with type 2 diabetes mellitus (T2DM) and coronavirus disease (COVID-19). Literature research in the PubMed and Web of Science database was performed in order to identify relevant published clinical trials and meta-analyses that include information about the treatment with novel antidiabetic agents in patients with T2DM and COVID-19. A total of seven articles were included, and their primary and secondary outcomes were reported and analysed. DPP-4i has mixed results on mortality in T2DM patients with COVID-19 but with an overall slightly favourable or neutral effect, whereas GLP-1 Ra seems to have a rather beneficial impact, while SGLT-2i may be useful in acute illness. Even if there are limited data, they seem to have favourable efficacy and safety profiles. The available evidence is heterogenous and insufficient to evaluate if the benefits of non-insulin novel antidiabetic drugs in COVID-19 treatment are due to the improvement of glycaemic control or to their intrinsic anti-inflammatory effects but highlights their beneficial effects in the pathogenesis and evolution of the disease.
Collapse
Affiliation(s)
- Teodor Salmen
- Doctoral School, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Valeria-Anca Pietroșel
- Department of Diabetes, Nutrition and Metabolic Diseases, “Prof. Dr N.C.Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 030167 Bucharest, Romania
| | - Bianca-Margareta Mihai
- Doctoral School, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Ioana Cristina Bica
- Doctoral School, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Claudiu Teodorescu
- Doctoral School, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Horia Păunescu
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Oana Andreia Coman
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Correspondence: (O.A.C.); (D.-A.M.); Tel.: +40-755507110 (O.A.C.); +40-723591283 (D.-A.M.)
| | - Doina-Andrada Mihai
- Department of Diabetes, Nutrition and Metabolic Diseases, “Prof. Dr N.C.Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 030167 Bucharest, Romania
- Department of Diabetes, Nutrition and Metabolic Diseases, Carol Davila University of Medicine and Pharmacy, Bld. Eroii Sanitari No. 8, 050471 Bucharest, Romania
- Correspondence: (O.A.C.); (D.-A.M.); Tel.: +40-755507110 (O.A.C.); +40-723591283 (D.-A.M.)
| | - Anca Pantea Stoian
- Department of Diabetes, Nutrition and Metabolic Diseases, “Prof. Dr N.C.Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 030167 Bucharest, Romania
- Department of Diabetes, Nutrition and Metabolic Diseases, Carol Davila University of Medicine and Pharmacy, Bld. Eroii Sanitari No. 8, 050471 Bucharest, Romania
| |
Collapse
|
30
|
Tanase DM, Gosav EM, Anton MI, Floria M, Seritean Isac PN, Hurjui LL, Tarniceriu CC, Costea CF, Ciocoiu M, Rezus C. Oxidative Stress and NRF2/KEAP1/ARE Pathway in Diabetic Kidney Disease (DKD): New Perspectives. Biomolecules 2022; 12:biom12091227. [PMID: 36139066 PMCID: PMC9496369 DOI: 10.3390/biom12091227] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus (DM) is one of the most debilitating chronic diseases worldwide, with increased prevalence and incidence. In addition to its macrovascular damage, through its microvascular complications, such as Diabetic Kidney Disease (DKD), DM further compounds the quality of life of these patients. Considering DKD is the main cause of end-stage renal disease (ESRD) in developed countries, extensive research is currently investigating the matrix of DKD pathophysiology. Hyperglycemia, inflammation and oxidative stress (OS) are the main mechanisms behind this disease. By generating pro-inflammatory factors (e.g., IL-1,6,18, TNF-α, TGF-β, NF-κB, MCP-1, VCAM-1, ICAM-1) and the activation of diverse pathways (e.g., PKC, ROCK, AGE/RAGE, JAK-STAT), they promote a pro-oxidant state with impairment of the antioxidant system (NRF2/KEAP1/ARE pathway) and, finally, alterations in the renal filtration unit. Hitherto, a wide spectrum of pre-clinical and clinical studies shows the beneficial use of NRF2-inducing strategies, such as NRF2 activators (e.g., Bardoxolone methyl, Curcumin, Sulforaphane and their analogues), and other natural compounds with antioxidant properties in DKD treatment. However, limitations regarding the lack of larger clinical trials, solubility or delivery hamper their implementation for clinical use. Therefore, in this review, we will discuss DKD mechanisms, especially oxidative stress (OS) and NRF2/KEAP1/ARE involvement, while highlighting the potential of therapeutic approaches that target DKD via OS.
Collapse
Affiliation(s)
- Daniela Maria Tanase
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Evelina Maria Gosav
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Madalina Ioana Anton
- Department of Rheumatology and Physiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- I Rheumatology Clinic, Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Mariana Floria
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
- Correspondence:
| | - Petronela Nicoleta Seritean Isac
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Loredana Liliana Hurjui
- Department of Morpho-Functional Sciences II, Physiology Discipline, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Hematology Laboratory, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Claudia Cristina Tarniceriu
- Department of Morpho-Functional Sciences I, Discipline of Anatomy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Hematology Clinic, “Sf. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Claudia Florida Costea
- Department of Ophthalmology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- 2nd Ophthalmology Clinic, “Prof. Dr. Nicolae Oblu” Emergency Clinical Hospital, 700309 Iași, Romania
| | - Manuela Ciocoiu
- Department of Pathophysiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ciprian Rezus
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, “Sf. Spiridon” County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| |
Collapse
|
31
|
Mosenzon O, Capehorn MS, De Remigis A, Rasmussen S, Weimers P, Rosenstock J. Impact of semaglutide on high-sensitivity C-reactive protein: exploratory patient-level analyses of SUSTAIN and PIONEER randomized clinical trials. Cardiovasc Diabetol 2022; 21:172. [PMID: 36056351 PMCID: PMC9440529 DOI: 10.1186/s12933-022-01585-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/27/2022] [Indexed: 12/15/2022] Open
Abstract
Background Exploratory analysis to determine the effect of semaglutide versus comparators on high-sensitivity C-reactive protein (hsCRP) in subjects with type 2 diabetes. Methods Trials of once-weekly subcutaneous (SUSTAIN 3) and once-daily oral (PIONEER 1, 2, 5) semaglutide with hsCRP data were analyzed. Subjects with type 2 diabetes (N = 2482) received semaglutide (n = 1328) or comparators (placebo, n = 339; exenatide extended-release, n = 405; empagliflozin, n = 410). hsCRP ratio to baseline at end-of-treatment was analyzed overall, by clinical cutoff (< 1.0, ≥ 1.0 to ≤ 3.0, or > 3.0 mg/L), by tertile, and by estimated glomerular filtration rate in PIONEER 5 (a trial which was conducted in a population with type 2 diabetes and chronic kidney disease [CKD]). Mediation analyses assessed the effect of change in glycated hemoglobin (HbA1c) and/or change in body weight (BW) on hsCRP reductions. Results Geometric mean baseline hsCRP was similar across trials (range 2.7–3.0 mg/L). Semaglutide reduced hsCRP levels by clinical cutoffs and tertiles from baseline to end-of-treatment in all trials versus comparators (estimated treatment ratios [ETRs] versus comparators: 0.70–0.76; p < 0.01) except versus placebo in PIONEER 5 (ETR [95% CI]: 0.83 [0.67–1.03]; p > 0.05). The effect of semaglutide on hsCRP was partially mediated (20.6–61.8%) by change in HbA1c and BW. Conclusions Semaglutide reduced hsCRP ratios-to-baseline versus comparators in subjects with type 2 diabetes (not significant with CKD). This effect was partially mediated via reductions in HbA1c and BW and potentially by a direct effect of semaglutide. Semaglutide appears to have an anti-inflammatory effect, which is being further investigated in ongoing trials. Trial registrations: ClinicalTrials.gov identifiers: NCT01885208 (first registered June 2013), NCT02906930 (first registered September 2016), NCT02863328 (first registered August 2016), NCT02827708 (first registered July 2016). Supplementary Information The online version contains supplementary material available at 10.1186/s12933-022-01585-7.
Collapse
Affiliation(s)
- Ofri Mosenzon
- Diabetes Unit, Department of Endocrinology and Metabolism, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, PO Box 12000, Jerusalem, Israel.
| | | | | | | | | | | |
Collapse
|
32
|
Ferrannini G, Lund LH, Benson L, Rizzo M, Almahmeed W, Rosano GMC, Savarese G, Cosentino F. Association between use of novel glucose-lowering drugs and COVID-19 hospitalization and death in patients with type 2 diabetes: a nationwide registry analysis. EUROPEAN HEART JOURNAL. CARDIOVASCULAR PHARMACOTHERAPY 2022; 9:10-17. [PMID: 35963647 PMCID: PMC9384777 DOI: 10.1093/ehjcvp/pvac044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/01/2022] [Accepted: 08/09/2022] [Indexed: 02/03/2023]
Abstract
AIMS Type 2 diabetes (T2DM) in patients with coronavirus disease-19 (COVID-19) is associated with a worse prognosis. We separately investigated the associations between the use of sodium-glucose cotransporter 2 inhibitors (SGLT2i), glucagon-like peptide-1 receptor agonists (GLP-1 RA), and dipeptidyl peptidase-4 inhibitors (DPP-4i), and the risk of COVID-19 hospitalization and death. METHODS AND RESULTS Patients with T2DM registered in the Swedish National Patient Registry and alive on 1 February 2020 were included. 'Incident severe COVID-19' was defined as the first hospitalization and/or death from COVID-19. A modified Poisson regression approach was applied to a 1:1 propensity score-matched population receiving vs. not receiving SGLT2i, GLP-1 RA, and DPP-4i to analyse the associations between their use and (I) incident severe COVID-19 and (II) risk of 30-day mortality in patients hospitalized for COVID-19.Among 344 413 patients, 39 172 (11%) were treated with SGLT2i, 34 290 (10%) with GLP-1 RA, and 53 044 (15%) with DPP-4i; 9538 (2.8%) had incident severe COVID-19 by 15 May 2021. SGLT2i and DPP-4i were associated with a 10% and 11% higher risk of incident severe COVID-19, respectively, whereas there was no association for GLP-1 RA. DPP-4i was also associated with a 10% higher 30-day mortality in patients hospitalized for COVID-19, whereas there was no association for SGLT2i and GLP-1 RA. CONCLUSION SGLT2i and DPP-4i use were associated with a higher risk of incident severe COVID-19. DPP-4i use was associated with higher 30-day mortality in patients with COVID-19, whereas SGLT2i use was not. No increased risk for any outcome was observed with GLP-1 RA.
Collapse
Affiliation(s)
- Giulia Ferrannini
- Division of Cardiology, Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Lars H Lund
- Division of Cardiology, Department of Medicine, Karolinska Institute, Stockholm, Sweden,Heart and Vascular Theme, Karolinska University Hospital, Stockholm, Sweden
| | - Lina Benson
- Division of Cardiology, Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Manfredi Rizzo
- School of Medicine, ProMISE Department, University of Palermo, Palermo, Italy
| | - Wael Almahmeed
- Heart and Vascular Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, UAE
| | - Giuseppe M C Rosano
- Centre for Clinical and Basic Research, IRCCS San Raffaele Roma, Rome, Italy
| | | | | |
Collapse
|
33
|
Triggle CR, Mohammed I, Bshesh K, Marei I, Ye K, Ding H, MacDonald R, Hollenberg MD, Hill MA. Metformin: Is it a drug for all reasons and diseases? Metabolism 2022; 133:155223. [PMID: 35640743 DOI: 10.1016/j.metabol.2022.155223] [Citation(s) in RCA: 133] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/22/2022] [Accepted: 05/25/2022] [Indexed: 12/15/2022]
Abstract
Metformin was first used to treat type 2 diabetes in the late 1950s and in 2022 remains the first-choice drug used daily by approximately 150 million people. An accumulation of positive pre-clinical and clinical data has stimulated interest in re-purposing metformin to treat a variety of diseases including COVID-19. In polycystic ovary syndrome metformin improves insulin sensitivity. In type 1 diabetes metformin may help reduce the insulin dose. Meta-analysis and data from pre-clinical and clinical studies link metformin to a reduction in the incidence of cancer. Clinical trials, including MILES (Metformin In Longevity Study), and TAME (Targeting Aging with Metformin), have been designed to determine if metformin can offset aging and extend lifespan. Pre-clinical and clinical data suggest that metformin, via suppression of pro-inflammatory pathways, protection of mitochondria and vascular function, and direct actions on neuronal stem cells, may protect against neurodegenerative diseases. Metformin has also been studied for its anti-bacterial, -viral, -malaria efficacy. Collectively, these data raise the question: Is metformin a drug for all diseases? It remains unclear as to whether all of these putative beneficial effects are secondary to its actions as an anti-hyperglycemic and insulin-sensitizing drug, or result from other cellular actions, including inhibition of mTOR (mammalian target for rapamycin), or direct anti-viral actions. Clarification is also sought as to whether data from ex vivo studies based on the use of high concentrations of metformin can be translated into clinical benefits, or whether they reflect a 'Paracelsus' effect. The environmental impact of metformin, a drug with no known metabolites, is another emerging issue that has been linked to endocrine disruption in fish, and extensive use in T2D has also raised concerns over effects on human reproduction. The objectives for this review are to: 1) evaluate the putative mechanism(s) of action of metformin; 2) analyze the controversial evidence for metformin's effectiveness in the treatment of diseases other than type 2 diabetes; 3) assess the reproducibility of the data, and finally 4) reach an informed conclusion as to whether metformin is a drug for all diseases and reasons. We conclude that the primary clinical benefits of metformin result from its insulin-sensitizing and antihyperglycaemic effects that secondarily contribute to a reduced risk of a number of diseases and thereby enhancing healthspan. However, benefits like improving vascular endothelial function that are independent of effects on glucose homeostasis add to metformin's therapeutic actions.
Collapse
Affiliation(s)
- Chris R Triggle
- Department of Pharmacology, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar; Department of Medical Education, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar.
| | - Ibrahim Mohammed
- Department of Medical Education, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar
| | - Khalifa Bshesh
- Department of Medical Education, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar
| | - Isra Marei
- Department of Pharmacology, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar
| | - Kevin Ye
- Department of Biomedical Physiology & Kinesiology, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Hong Ding
- Department of Pharmacology, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar; Department of Medical Education, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar
| | - Ross MacDonald
- Distribution eLibrary, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar
| | - Morley D Hollenberg
- Department of Physiology & Pharmacology, a Cumming School of Medicine, University of Calgary, T2N 4N1, Canada
| | - Michael A Hill
- Dalton Cardiovascular Research Center, Department of Medical Pharmacology & Physiology, School of Medicine, University of Missouri, Columbia 65211, MO, USA
| |
Collapse
|
34
|
Bagwe PV, Bagwe PV, Ponugoti SS, Joshi SV. Peptide-Based Vaccines and Therapeutics for COVID-19. Int J Pept Res Ther 2022; 28:94. [PMID: 35463185 PMCID: PMC9017722 DOI: 10.1007/s10989-022-10397-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2022] [Indexed: 12/20/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been prevalent in the humans since 2019 and has given rise to a pandemic situation. With the discovery and ongoing use of drugs and vaccines against SARS-CoV-2, there is still no surety of its complete suppression of this disease or if there is a need for additional booster doses. There is an urgent need for alternative treatment strategies against COVID-19. Peptides and peptidomimetics have several advantages as therapeutic agents because of their target selectivity, better interactions, and lower toxicity. Minor structural alterations to peptides can help prevent their fast metabolism and provide long-action. This comprehensive review provides an overview of different peptide-based vaccines and therapeutics against SARS-CoV-2. It discusses the design and mechanism of action of the peptide-based vaccines, peptide immunomodulators, anti-inflammatory agents, and peptides as entry inhibitors of SARS-CoV-2. Moreover, the mechanism of action, sequences and current clinical trial studies are also summarized. The review also discusses the future aspects of peptide-based vaccines and therapeutics for COVID-19. Graphical Abstract
Collapse
Affiliation(s)
- Pritam V. Bagwe
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, Maharashtra 400019 India
| | - Priyal V. Bagwe
- Vaccine Nanotechnology Laboratory, Center for Drug Delivery and Research, College of Pharmacy, Mercer University, Atlanta, GA 30341 USA
| | - Sai Srinivas Ponugoti
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, Maharashtra 400019 India
| | - Shreerang V. Joshi
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, Maharashtra 400019 India
| |
Collapse
|
35
|
Faridvand Y, Kazemzadeh H, Vahedian V, Mirzajanzadeh P, Nejabati HR, Safaie N, Maroufi NF, Pezeshkian M, Nouri M, Jodati A. Dapagliflozin attenuates high glucose-induced endothelial cell apoptosis and inflammation through AMPK/SIRT1 activation. Clin Exp Pharmacol Physiol 2022; 49:643-651. [PMID: 35274762 DOI: 10.1111/1440-1681.13638] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 10/30/2021] [Accepted: 11/18/2021] [Indexed: 11/29/2022]
Abstract
Hyperglycemia is a major cause of pathophysiological processes such as oxidative stress, inflammation, and apoptosis in diabetes. Dapagliflozin (DAPA), a novel hypoglycemic drug, has been shown to have anti-apoptotic, anti-inflammatory, and antioxidant effects in multiple experimental studies. In this study, we investigated the protective effects of DAPA in the hyperglycemic condition to identify associated molecular mechanisms. HUVEC endothelial cells were treated with 40 mM glucose for 72h to establish in vitro high glucose (HG) condition model, and then additional groups co-treated with or without DAPA before glucose treatment. Then, cell viability, reactive oxygen species (ROS), proinflammatory cytokines (IL-6 and TNF-α), apoptosis, and SIRT1 expression were measured. The results showed that DAPA pretreatment resulted in increased cell viability. Additionally, DAPA pretreatment decreased endothelial ROS, IL-6, and TNF-α levels in endothelial cells subjected to HG conditions. Moreover, DAPA pretreatment significantly prevented HG-induced apoptosis and caspase-3 activity in HUVECs. Furthermore, DAPA increased the expression of SIRT1, PGC-1α, and increased the phosphorylation levels of AMPK (p-AMPK) in a set of HG conditions in HUVEC cells. However, the endothelial protective effects of DAPA were abolished when cells were subjected to the SIRT1 inhibitor (EX-527) and AMPK inhibitor (Compound C). These findings suggest that DAPA can abrogate HG-induced endothelial cell dysfunction by AMPK/SIRT1 pathway up-regulation. Therefore, suggesting that the activation of AMPK/SIRT1 axis by DAPA may be a novel target for the treatment of HG-induced endothelial cell injury. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yousef Faridvand
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Kazemzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Vahedian
- Researchers Club of Tums Preclinical Core Facility (TPCF), Tehran University of Medical Sciences, Tehran, Iran
| | | | - Hamid Reza Nejabati
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasser Safaie
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Fathi Maroufi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Pezeshkian
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmadreza Jodati
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
36
|
Ahamada MM, Jia Y, Wu X. Macrophage Polarization and Plasticity in Systemic Lupus Erythematosus. Front Immunol 2022; 12:734008. [PMID: 34987500 PMCID: PMC8721097 DOI: 10.3389/fimmu.2021.734008] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/08/2021] [Indexed: 12/14/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease that attacks almost every organ. The condition mostly happens to adults but is also found in children, and the latter have the most severe manifestations. Among adults, females, especially non-Caucasian, are mostly affected. Even if the etiology of SLE remains unclear, studies show a close relation between this disease and both genetics and environment. Despite the large number of published articles about SLE, we still do not have a clear picture of its pathogenesis, and no specific drug has been found to treat this condition effectively. The implication of macrophages in SLE development is gaining ground, and studying it could answer these gaps. Indeed, both in vivo and in vitro studies increasingly report a strong link between this disease and macrophages. Hence, this review aims to explore the role of macrophages polarization and plasticity in SLE development. Understanding this role is of paramount importance because in-depth knowledge of the connection between macrophages and this systemic disease could clarify its pathogenesis and provide a foundation for macrophage-centered therapeutic approaches.
Collapse
Affiliation(s)
- Mariame Mohamed Ahamada
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yang Jia
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaochuan Wu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
37
|
Nyland JE, Raja-Khan NT, Bettermann K, Haouzi PA, Leslie DL, Kraschnewski JL, Parent LJ, Grigson PS. Diabetes, Drug Treatment, and Mortality in COVID-19: A Multinational Retrospective Cohort Study. Diabetes 2021; 70:2903-2916. [PMID: 34580086 PMCID: PMC8660979 DOI: 10.2337/db21-0385] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/31/2021] [Indexed: 12/14/2022]
Abstract
Patients with type 2 diabetes mellitus (T2DM) are at increased risk of severe coronavirus disease 2019 (COVID-19) outcomes possibly because of dysregulated inflammatory responses. Glucose-regulating medications, such as glucagon-like peptide 1 receptor (GLP-1R) agonists, dipeptidyl peptidase 4 (DPP-4) inhibitors, and pioglitazone, are known to have anti-inflammatory effects that may improve outcomes in patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In a multinational retrospective cohort study, we used the TriNetX COVID-19 Research Network of 56 large health care organizations to examine these medications in relation to the incidence of hospital admissions, respiratory complications, and mortality within 28 days after a COVID-19 diagnosis. After matching for age, sex, race, ethnicity, BMI, and significant comorbidities, use of GLP-1R agonists and/or pioglitazone was associated with significant reductions in hospital admissions (GLP-1R: 15.7% vs. 23.5%, risk ratio [RR] 0.67 [95% CI 0.57-0.79; P < 0.001]; pioglitazone: 20.0% vs. 28.2%; RR 0.71 [95% CI 0.54-0.93; P = 0.01]). Use of GLP-1R agonists was also associated with reductions in respiratory complications (15.3% vs. 24.9%, RR 0.62 [95% CI 0.52-0.73]; P < 0.001) and incidence of mortality (1.9% vs. 3.3%, RR 0.58 [95% CI 0.35-0.97]; P = 0.04). Use of DPP-4 inhibitors was associated with a reduction in respiratory complications (24.0% vs. 29.2%, RR 0.82 [95% CI 0.74-0.90]; P < 0.001), and continued use of DPP-4 inhibitors after hospitalization was associated with a decrease in mortality compared with those who discontinued use (9% vs. 19%, RR 0.45 [95% CI 0.28-0.72]; P < 0.001). In conclusion, use of glucose-regulating medications, such as GLP-1R agonists, DPP-4 inhibitors, or pioglitazone, may improve COVID-19 outcomes for patients with T2DM; randomized clinical trials are needed to further investigate this possibility.
Collapse
Affiliation(s)
- Jennifer E Nyland
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA
| | - Nazia T Raja-Khan
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA
| | - Kerstin Bettermann
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA
| | - Philippe A Haouzi
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA
| | - Douglas L Leslie
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA
| | | | - Leslie J Parent
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA
| | - Patricia Sue Grigson
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA
| |
Collapse
|
38
|
Hegazy WAH, Rajab AAH, Abu Lila AS, Abbas HA. Anti-diabetics and antimicrobials: Harmony of mutual interplay. World J Diabetes 2021; 12:1832-1855. [PMID: 34888011 PMCID: PMC8613656 DOI: 10.4239/wjd.v12.i11.1832] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/26/2021] [Accepted: 10/25/2021] [Indexed: 02/06/2023] Open
Abstract
Diabetes is one of the four major non-communicable diseases, and appointed by the world health organization as the seventh leading cause of death worldwide. The scientists have turned over every rock in the corners of medical sciences in order to come up with better understanding and hence more effective treatments of diabetes. The continuous research on the subject has elucidated the role of immune disorders and inflammation as definitive factors in the trajectory of diabetes, assuring that blood glucose adjustments would result in a relief in the systemic stress leading to minimizing inflammation. On a parallel basis, microbial infections usually take advantage of immunity disorders and propagate creating a pro-inflammatory environment, all of which can be reversed by antimicrobial treatment. Standing at the crossroads between diabetes, immunity and infection, we aim in this review at projecting the interplay between immunity and diabetes, shedding the light on the overlapping playgrounds for the activity of some antimicrobial and anti-diabetic agents. Furthermore, we focused on the anti-diabetic drugs that can confer antimicrobial or anti-virulence activities.
Collapse
Affiliation(s)
- Wael A H Hegazy
- Department of Microbiology and Immunology, Zagazig University, Zagzig 44519, Egypt
| | - Azza A H Rajab
- Department of Microbiology and Immunology, Zagazig University, Zagzig 44519, Egypt
| | - Amr S Abu Lila
- Department of Pharmaceutics, Zagazig University, Faculty of Pharmacy, Zagzig 44519, Egypt
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
| | - Hisham A Abbas
- Department of Microbiology and Immunology, Zagazig University, Zagzig 44519, Egypt
| |
Collapse
|
39
|
Steenblock C, Schwarz PEH, Ludwig B, Linkermann A, Zimmet P, Kulebyakin K, Tkachuk VA, Markov AG, Lehnert H, de Angelis MH, Rietzsch H, Rodionov RN, Khunti K, Hopkins D, Birkenfeld AL, Boehm B, Holt RIG, Skyler JS, DeVries JH, Renard E, Eckel RH, Alberti KGMM, Geloneze B, Chan JC, Mbanya JC, Onyegbutulem HC, Ramachandran A, Basit A, Hassanein M, Bewick G, Spinas GA, Beuschlein F, Landgraf R, Rubino F, Mingrone G, Bornstein SR. COVID-19 and metabolic disease: mechanisms and clinical management. Lancet Diabetes Endocrinol 2021; 9:786-798. [PMID: 34619105 PMCID: PMC8489878 DOI: 10.1016/s2213-8587(21)00244-8] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/02/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023]
Abstract
Up to 50% of the people who have died from COVID-19 had metabolic and vascular disorders. Notably, there are many direct links between COVID-19 and the metabolic and endocrine systems. Thus, not only are patients with metabolic dysfunction (eg, obesity, hypertension, non-alcoholic fatty liver disease, and diabetes) at an increased risk of developing severe COVID-19 but also infection with SARS-CoV-2 might lead to new-onset diabetes or aggravation of pre-existing metabolic disorders. In this Review, we provide an update on the mechanisms of how metabolic and endocrine disorders might predispose patients to develop severe COVID-19. Additionally, we update the practical recommendations and management of patients with COVID-19 and post-pandemic. Furthermore, we summarise new treatment options for patients with both COVID-19 and diabetes, and highlight current challenges in clinical management.
Collapse
Affiliation(s)
- Charlotte Steenblock
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Peter E H Schwarz
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Paul Langerhans Institute Dresden, Helmholtz Center Munich, University Hospital Carl Gustav Carus, Dresden, Germany; German Center for Diabetes Research, Neuherberg, Germany
| | - Barbara Ludwig
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; DFG-Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany; Paul Langerhans Institute Dresden, Helmholtz Center Munich, University Hospital Carl Gustav Carus, Dresden, Germany; German Center for Diabetes Research, Neuherberg, Germany; Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich, Zurich, Switzerland
| | - Andreas Linkermann
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Paul Zimmet
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Konstantin Kulebyakin
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia; Institute for Regenerative Medicine, Medical Research and Education Centre, Lomonosov Moscow State University, Moscow, Russia
| | - Vsevolod A Tkachuk
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia; Institute for Regenerative Medicine, Medical Research and Education Centre, Lomonosov Moscow State University, Moscow, Russia
| | - Alexander G Markov
- Department of General Physiology, St Petersburg State University, St Petersburg, Russia
| | | | - Martin Hrabě de Angelis
- German Center for Diabetes Research, Neuherberg, Germany; Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany; School of Life Sciences, Technische Universität München, Freising, Germany
| | - Hannes Rietzsch
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Roman N Rodionov
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Kamlesh Khunti
- Diabetes Research Centre, University of Leicester, Leicester, UK
| | - David Hopkins
- Department of Diabetes, School of Life Course Science and Medicine, Kings College London, London, UK
| | - Andreas L Birkenfeld
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Department of Diabetes, School of Life Course Science and Medicine, Kings College London, London, UK; Department of Diabetology, Endocrinology and Nephrology, University Hospital Tübingen, Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich, University of Tübingen, Tübingen, Germany; Deutsches Zentrum für Diabetesforschung, Neuherberg, Germany
| | - Bernhard Boehm
- Department of Endocrinology, Tan Tock Seng Hospital, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Richard I G Holt
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Jay S Skyler
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - J Hans DeVries
- Amsterdam UMC, Internal Medicine, University of Amsterdam, Amsterdam, Netherlands; Profil Institute for Metabolic Research, Neuss, Germany
| | - Eric Renard
- Department of Endocrinology, Diabetes, Nutrition, Montpellier University Hospital, Montpellier, France; Institute of Functional Genomics, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Robert H Eckel
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Bruno Geloneze
- Obesity and Comorbidities Research Center, Universidade de Campinas, Campinas, Brazil
| | - Juliana C Chan
- Department of Medicine and Therapeutics, Hong Kong Institute of Diabetes and Obesity, Hong Kong Special Administrative Region, China; Li Ka Shing Institute of Health Science, Chinese University of Hong Kong and Prince of Wales Hospital, Hong Kong Special Administrative Region, China
| | - Jean Claude Mbanya
- Department of Internal Medicine and Specialties, Faculty of Medicine and Biomedical Sciences, University of Yaoundé, Yaounde, Cameroon
| | - Henry C Onyegbutulem
- Endocrine, Diabetes and Metabolic Unit, Department of Internal Medicine, Nile University of Nigeria-Asokoro Hospital, Abuja, Nigeria
| | - Ambady Ramachandran
- India Diabetes Research Foundation, Dr A Ramachandran's Diabetes Hospitals, Chennai, India
| | - Abdul Basit
- Baqai Institute of Diabetology and Endocrinology, Baqai Medical University, Karachi, Pakistan
| | - Mohamed Hassanein
- Dubai Hospital, Dubai Health Authority and Gulf Medical University, Dubai, United Arab Emirates
| | - Gavin Bewick
- Department of Diabetes, School of Life Course Science and Medicine, Kings College London, London, UK
| | - Giatgen A Spinas
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich, Zurich, Switzerland
| | - Felix Beuschlein
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich, Zurich, Switzerland
| | | | - Francesco Rubino
- Department of Diabetes, School of Life Course Science and Medicine, Kings College London, London, UK; Bariatric and Metabolic Surgery, King's College Hospital, London, UK
| | - Geltrude Mingrone
- Department of Diabetes, School of Life Course Science and Medicine, Kings College London, London, UK; Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Università Cattolica del Sacro Cuore, Rome, Italy
| | - Stefan R Bornstein
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Paul Langerhans Institute Dresden, Helmholtz Center Munich, University Hospital Carl Gustav Carus, Dresden, Germany; German Center for Diabetes Research, Neuherberg, Germany; Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich, Zurich, Switzerland; Department of Diabetes, School of Life Course Science and Medicine, Kings College London, London, UK.
| |
Collapse
|
40
|
Winiarska A, Knysak M, Nabrdalik K, Gumprecht J, Stompór T. Inflammation and Oxidative Stress in Diabetic Kidney Disease: The Targets for SGLT2 Inhibitors and GLP-1 Receptor Agonists. Int J Mol Sci 2021; 22:10822. [PMID: 34639160 PMCID: PMC8509708 DOI: 10.3390/ijms221910822] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 12/17/2022] Open
Abstract
The incidence of type 2 diabetes (T2D) has been increasing worldwide, and diabetic kidney disease (DKD) remains one of the leading long-term complications of T2D. Several lines of evidence indicate that glucose-lowering agents prevent the onset and progression of DKD in its early stages but are of limited efficacy in later stages of DKD. However, sodium-glucose cotransporter-2 inhibitors (SGLT2i) and glucagon-like peptide-1 receptor (GLP-1R) agonists were shown to exert nephroprotective effects in patients with established DKD, i.e., those who had a reduced glomerular filtration rate. These effects cannot be solely attributed to the improved metabolic control of diabetes. In our review, we attempted to discuss the interactions of both groups of agents with inflammation and oxidative stress—the key pathways contributing to organ damage in the course of diabetes. SGLT2i and GLP-1R agonists attenuate inflammation and oxidative stress in experimental in vitro and in vivo models of DKD in several ways. In addition, we have described experiments showing the same protective mechanisms as found in DKD in non-diabetic kidney injury models as well as in some tissues and organs other than the kidney. The interaction between both drug groups, inflammation and oxidative stress appears to have a universal mechanism of organ protection in diabetes and other diseases.
Collapse
Affiliation(s)
- Agata Winiarska
- Department of Nephrology, Hypertension and Internal Medicine, University of Warmia and Mazury in Olsztyn, 10-516 Olsztyn, Poland; (A.W.); (M.K.)
| | - Monika Knysak
- Department of Nephrology, Hypertension and Internal Medicine, University of Warmia and Mazury in Olsztyn, 10-516 Olsztyn, Poland; (A.W.); (M.K.)
| | - Katarzyna Nabrdalik
- Department of Internal Medicine, Diabetology and Nephrology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 41-800 Zabrze, Poland; (K.N.); (J.G.)
| | - Janusz Gumprecht
- Department of Internal Medicine, Diabetology and Nephrology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 41-800 Zabrze, Poland; (K.N.); (J.G.)
| | - Tomasz Stompór
- Department of Nephrology, Hypertension and Internal Medicine, University of Warmia and Mazury in Olsztyn, 10-516 Olsztyn, Poland; (A.W.); (M.K.)
| |
Collapse
|
41
|
Rizvi AA, Stoian AP, Lessan N, Rizzo M. Endocrinology in the Time of COVID-19: A Rapid Evolution of Knowledge and Care. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:805. [PMID: 34441011 PMCID: PMC8399077 DOI: 10.3390/medicina57080805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 08/04/2021] [Indexed: 12/16/2022]
Abstract
American singer-writer and visual artist Bob Dylan produced the song "The Times They Are a-Changin" in the 1960s, which became a rallying cry for the civil rights and anti-war movements in that decade [...].
Collapse
Affiliation(s)
- Ali A. Rizvi
- Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA;
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of South Carolina School of Medicine Columbia, Columbia, SC 29208, USA;
| | - Anca Pantea Stoian
- Diabetes, Nutrition and Metabolic Diseases Department, Faculty of General Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Nader Lessan
- The Research Institute, Imperial College London Diabetes Centre, Abu Dhabi, United Arab Emirates;
| | - Manfredi Rizzo
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of South Carolina School of Medicine Columbia, Columbia, SC 29208, USA;
- Diabetes, Nutrition and Metabolic Diseases Department, Faculty of General Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (Promise), University of Palermo, 90133 Palermo, Italy
| |
Collapse
|
42
|
Sarkar S, Das D, Borsingh Wann S, Kalita J, Manna P. Is diabetes mellitus a wrongdoer to COVID-19 severity? Diabetes Res Clin Pract 2021; 178:108936. [PMID: 34217771 PMCID: PMC8247195 DOI: 10.1016/j.diabres.2021.108936] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 05/25/2021] [Accepted: 06/29/2021] [Indexed: 01/08/2023]
Abstract
The coronavirus disease 19 (COVID-19) has turned out to be a pandemic in short period of time due to the high transmissibility of its causative agent, severe acute respiratory syndrome coronavirus 2. Various reports have suggested the promising link between overexpression of angiotensin converting enzyme 2 (ACE2) and COVID-19 pathogenesis. The severity of COVID-19 pathophysiology is greatly depended on several comorbidities, like hypertension, diabetes mellitus (DM), respiratory and cardiovascular disease, out of which DM has emerged as a major risk factor. The current review focuses on the link among the expression of ACE2, use of ACE inhibitors (ACEIs) and angiotensin II type 1 receptor blockers (ARBs), and risk of COVID-19 pathogenesis in DM. The review also emphasizes on synergistic detrimental effect of DM and COVID-19 on the immune system in provoking uncontrolled cytokine storm which eventually leads to lethal consequences. Finally, several possible therapeutic strategies have been highlighted to reduce the excess of risk associated with COVID-19 in people with DM.
Collapse
Affiliation(s)
- Sanjib Sarkar
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Dibyendu Das
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sawlang Borsingh Wann
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jatin Kalita
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Research Planning and Business Development Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India.
| | - Prasenjit Manna
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
43
|
Tamura RE, Said SM, de Freitas LM, Rubio IGS. Outcome and death risk of diabetes patients with Covid-19 receiving pre-hospital and in-hospital metformin therapies. Diabetol Metab Syndr 2021; 13:76. [PMID: 34256824 PMCID: PMC8275913 DOI: 10.1186/s13098-021-00695-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND COVID-19 has stroke Brazil harshly, deaths by COVID-19 in Brazil represent almost 13% of the total deaths by COVID-19 in the world, even though Brazilian population represents only 2.6% of the world population. Our aim in this study was to evaluate death and intubation outcomes and risk factors associated with COVID-19, and treatment options focusing on diabetes patients and the use of metformin pre-admission and during hospitalization. METHODS In this Brazilian single-center study we evaluated 1170 patients hospitalized due to COVID-19. Diabetes patients (n = 188) were divided based on their use of pre-hospital and in-hospital metformin (non-met-group and met-group). RESULTS In the total cohort most comorbidities were risk factors for orotracheal intubation and death. The use of chloroquine/hydroxychloroquine was significantly associated with increased death and intubation risk in uni- and multivariate analysis. Diabetes patients showed worst clinical feature compared with non-diabetes patients. In-hospital non-met-group had increased mortality (20.5%) compared to met-group (3.5%) (p = 0.0002) and univariable cox proportion hazard regression indicated in-hospital metformin reduced mortality (HR = 0.325, p = 0.035). Patients that used pre-hospital metformin showed lower severity parameters at hospital admission. (met-group: 2.45 ± 2.5; non-met-group: 4.25 ± 3.4). In all the groups older patients showed more severe clinical conditions and high risk of death and intubation. CONCLUSION Even though this is a single-center study, results from other reports have shown a similar trend, indicating that patients that used metformin during hospitalization have a better prognosis and reduced risk of death.
Collapse
Affiliation(s)
- Rodrigo Esaki Tamura
- Department of Biological Sciences, Federal University of São Paulo, Rua Pedro de Toledo 669, 11º Andar, Diadema, SP, Brazil
- Laboratory of Cancer Molecular Biology, Federal University of Sao Paulo, São Paulo, SP, Brazil
| | - Said Muhammad Said
- Thyroid Molecular Sciences Laboratory, Federal University of Sao Paulo, São Paulo, SP, Brazil
- Santa Catarina Hospital, São Paulo, Brazil
| | - Leticia Mussin de Freitas
- Department of Biological Sciences, Federal University of São Paulo, Rua Pedro de Toledo 669, 11º Andar, Diadema, SP, Brazil
| | - Ileana Gabriela Sanchez Rubio
- Department of Biological Sciences, Federal University of São Paulo, Rua Pedro de Toledo 669, 11º Andar, Diadema, SP, Brazil.
- Thyroid Molecular Sciences Laboratory, Federal University of Sao Paulo, São Paulo, SP, Brazil.
- Laboratory of Cancer Molecular Biology, Federal University of Sao Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
44
|
Abstract
The poor prognosis in patients with diabetes mellitus who contract COVID-19 urged physicians to question routine drug treatment for people with type 2 diabetes mellitus. What treatment should we prioritize? So far only observational studies are available, although complementary interventional studies are needed to address this issue.
Collapse
Affiliation(s)
- Samy Hadjadj
- l'institut du thorax, CNRS, INSERM, CHU Nantes, Université de Nantes, Nantes, France.
| | - Matthieu Wargny
- Clinique des données, INSERM CIC 1413, CHU Nantes, Nantes, France
- l'institut du thorax, CNRS, INSERM, CHU Nantes, Université de Nantes, Nantes, France
| |
Collapse
|
45
|
Patoulias D, Papadopoulos C, Boulmpou A, Doumas M. Meta-analysis of the hallmark cardiovascular and renal outcome trials addressing the risk for respiratory tract infections with sodium-glucose co-transporter-2 inhibitors: Implications for the COVID-19 pandemic. Diabetes Obes Metab 2021; 23:1696-1700. [PMID: 33606909 PMCID: PMC8014812 DOI: 10.1111/dom.14359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/05/2021] [Accepted: 02/16/2021] [Indexed: 12/30/2022]
Affiliation(s)
- Dimitrios Patoulias
- Second Propedeutic Department of Internal MedicineAristotle University of Thessaloniki, General Hospital “Hippokration”ThessalonikiGreece
| | - Christodoulos Papadopoulos
- Third Department of CardiologyAristotle University of Thessaloniki, General Hospital “Hippokration”ThessalonikiGreece
| | - Aristi Boulmpou
- Third Department of CardiologyAristotle University of Thessaloniki, General Hospital “Hippokration”ThessalonikiGreece
| | - Michael Doumas
- Second Propedeutic Department of Internal MedicineAristotle University of Thessaloniki, General Hospital “Hippokration”ThessalonikiGreece
- Veterans Affairs Medical CenterGeorge Washington UniversityWashingtonDistrict of ColumbiaUSA
| |
Collapse
|
46
|
Anti-inflammatory Effects of Empagliflozin and Gemigliptin on LPS-Stimulated Macrophage via the IKK/NF- κB, MKK7/JNK, and JAK2/STAT1 Signalling Pathways. J Immunol Res 2021; 2021:9944880. [PMID: 34124273 PMCID: PMC8192181 DOI: 10.1155/2021/9944880] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/06/2021] [Accepted: 05/20/2021] [Indexed: 12/13/2022] Open
Abstract
Background Sodium-glucose cotransporter 2 (SGLT2) and dipeptidyl peptidase-4 (DPP-4) inhibitors are glucose-lowering drugs whose anti-inflammatory properties have recently become useful in tackling metabolic syndromes in chronic inflammatory diseases, including diabetes and obesity. We investigated whether empagliflozin (SGLT2 inhibitor) and gemigliptin (DPP-4 inhibitor) improve inflammatory responses in macrophages, identified signalling pathways responsible for these effects, and studied whether the effects can be augmented with dual empagliflozin and gemigliptin therapy. Methods RAW 264.7 macrophages were first stimulated with lipopolysaccharide (LPS), then cotreated with empagliflozin, gemigliptin, or empagliflozin plus gemigliptin. We conducted quantitative RT-PCR (qRT-PCR) to determine the most effective anti-inflammatory doses without cytotoxicity. We performed ELISA and qRT-PCR for inflammatory cytokines and chemokines and flow cytometry for CD80, the M1 macrophage surface marker, to evaluate the anti-inflammatory effects of empagliflozin and gemigliptin. NF-κB, MAPK, and JAK2/STAT signalling pathways were examined via Western blotting to elucidate the molecular mechanisms of anti-inflammation. Results LPS-stimulated CD80+ M1 macrophages were suppressed by coincubation with empagliflozin, gemigliptin, and empagliflozin plus gemigliptin, respectively. Empagliflozin and gemigliptin (individually and combined) inhibited prostaglandin E2 (PGE2) release and COX-2, iNOS gene expression in LPS-stimulated RAW 264.7 macrophages. These three treatments also attenuated the secretion and mRNA expression of proinflammatory cytokines, such as TNF-α, IL-1β, IL-6, and IFN-γ, and proinflammatory chemokines, such as CCL3, CCL4, CCL5, and CXCL10. All of them blocked NF-κB, JNK, and STAT1/3 phosphorylation through IKKα/β, MKK4/7, and JAK2 signalling. Conclusions Our study demonstrated the anti-inflammatory effects of empagliflozin and gemigliptin via IKK/NF-κB, MKK7/JNK, and JAK2/STAT1 pathway downregulation in macrophages. In all cases, combined empagliflozin and gemigliptin treatment showed greater anti-inflammatory properties.
Collapse
|
47
|
Endothelin antagonism and sodium glucose Co-transporter 2 inhibition. A potential combination therapeutic strategy for COVID-19. Pulm Pharmacol Ther 2021; 69:102035. [PMID: 33933611 PMCID: PMC8084922 DOI: 10.1016/j.pupt.2021.102035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 03/30/2021] [Accepted: 04/22/2021] [Indexed: 02/08/2023]
Abstract
The novel coronavirus 2019 (COVID-19) infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a global pandemic that requires a multi-faceted approach to tackle this unprecedent health crisis. Therapeutics to treat COVID-19 are an integral part of any such management strategy and there is a substantial unmet need for treatments for individuals most at risk of severe disease. This perspective review provides rationale of a combined therapeutic regimen of selective endothelin-A (ET-A) receptor antagonism and sodium glucose co-transporter-2 (SGLT-2) inhibition to treat COVID-19. Endothelin is a potent vasoconstrictor with pro-inflammatory and atherosclerotic effects. It is upregulated in a number of conditions including acute respiratory distress syndrome and cardiovascular disease. Endothelin mediates vasocontractility via endothelin (ET-A and ET-B) receptors on vascular smooth muscle cells (VSMCs). ET-B receptors regulate endothelin clearance and are present on endothelial cells, where in contrast to their role on VSMCs, mediate vasodilation. Therefore, selective endothelin-A (ET-A) receptor inhibition is likely the optimal approach to attenuate the injurious effects of endothelin and may reduce ventilation-perfusion mismatch and pulmonary inflammation, whilst improving pulmonary haemodynamics and oxygenation. SGLT-2 inhibition may dampen inflammatory cytokines, reduce hyperglycaemia if present, improve endothelial function, cardiovascular haemodynamics and cellular bioenergetics. This combination therapeutic approach may therefore have beneficial effects to mitigate both the pulmonary, metabolic and cardiorenal manifestations of COVID-19. Given these drug classes include medicines licensed to treat heart failure, diabetes and pulmonary hypertension respectively, information regarding their safety profile is established. Randomised controlled clinical trials are the best way to determine efficacy and safety of these medicines in COVID-19.
Collapse
|
48
|
Belančić A, Kresović A, Troskot Dijan M. Glucagon-like peptide-1 receptor agonists in the era of COVID-19: Friend or foe? Clin Obes 2021; 11:e12439. [PMID: 33423388 PMCID: PMC7995087 DOI: 10.1111/cob.12439] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/17/2020] [Accepted: 12/26/2020] [Indexed: 01/08/2023]
Abstract
The aim of the present manuscript is to discuss on potential pros and cons of glucagon-like peptide-1 receptor agonists (GLP-1RAs) as glucose-lowering agents during COVID-19 pandemic, and what is more to evaluate them as potential candidates for the treatment of patients, affected by COVID-19 infection, with or even without diabetes mellitus type 2. Besides being important glucose-lowering agents, GLP-1RAs pose promising anti-inflammatory and anti-obesogenic properties, pulmonary protective effects, as well as beneficial impact on gut microbiome composition. Hence, taking everything previously mentioned into consideration, GLP-1RAs seem to be potential candidates for the treatment of patients, affected by COVID-19 infection, with or even without type 2 diabetes mellitus, as well as excellent antidiabetic (glucose-lowering) agents during COVID-19 pandemic times.
Collapse
Affiliation(s)
- Andrej Belančić
- Department of Clinical PharmacologyUniversity Hospital Centre RijekaRijekaCroatia
| | - Andrea Kresović
- Division of Gastroenterology, Department of Internal MedicineUniversity Hospital Centre RijekaRijekaCroatia
| | - Marija Troskot Dijan
- Division of Endocrinology, Diabetes and Metabolic Diseases, Department of Internal MedicineUniversity Hospital Centre RijekaRijekaCroatia
| |
Collapse
|
49
|
Berlie HD, Kale-Pradhan PB, Orzechowski T, Jaber LA. Mechanisms and Potential Roles of Glucose-Lowering Agents in COVID-19: A Review. Ann Pharmacother 2021; 55:1386-1396. [PMID: 33657863 DOI: 10.1177/1060028021999473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE To explore mechanistic benefits of glucose-lowering agents that extend beyond glycemic control with the potential to mitigate coronavirus disease 2019 (COVID-19) complications. DATA SOURCES The following PubMed literature search terms were used from July 2020 to January 2, 2021: diabetes, COVID-19, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), glucose-lowering agents, and pharmacology. STUDY SELECTION AND DATA EXTRACTION English-language studies reporting on the association between diabetes, COVID-19 adverse outcomes, and the potential roles of glucose-lowering agents were reviewed. DATA SYNTHESIS Selected glucose-lowering agents have benefits beyond glycemic control, with the potential to reduce the risks of severe complications during SARS-CoV-2 infection. Key benefits include anti-inflammatory, anticoagulant, immune modulating, and enzyme/receptor effects. RELEVANCE TO PATIENT CARE AND CLINICAL PRACTICE This review summarizes the current knowledge of glucose-lowering agents and their potential roles in COVID-19 outcomes. Considering beneficial mechanisms on COVID-19 outcomes that extend beyond glycemic control as well as safety profiles, current data suggest that dipeptidyl peptidase-IV (DPP-IV) inhibitors and metformin may have the most promise and warrant further investigation. CONCLUSIONS Certain glucose-lowering agents may offer additional benefits beyond glucose control-namely, by modulating the mechanisms contributing to adverse outcomes related to COVID-19 in patients with diabetes. DPP-IV inhibitors and metformin appear to have the most promise. However, current published literature on diabetes medications and COVID-19 should be interpreted with caution. Most published studies are retrospective and consist of convenience samples, and some lack adequate analytical approaches with confounding biases. Ongoing trials aim to evaluate the effects of glucose-lowering agents in reducing the severity of COVID-19 outcomes.
Collapse
Affiliation(s)
- Helen D Berlie
- Wayne State University, Detroit, MI, USA.,Health Centers Detroit Medical Group, Detroit, MI, USA
| | | | | | | |
Collapse
|
50
|
Scheen AJ. DPP-4 inhibition and COVID-19: From initial concerns to recent expectations. DIABETES & METABOLISM 2021; 47:101213. [PMID: 33249199 PMCID: PMC7690941 DOI: 10.1016/j.diabet.2020.11.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/15/2020] [Indexed: 12/18/2022]
Abstract
Dipeptidyl peptidase-4 inhibitors (DPP-4is) have gained a key place in the management of type 2 diabetes mellitus (T2DM) essentially because of their good safety profile even in the frail population. DPP-4, originally known as 'T-cell antigen CD26', is expressed in many immune cells and regulates their functions, so the initial concern over the use of DPP-4is was the possible increased susceptibility to infections. Furthermore, because of the high affinity between human DPP-4 and the spike (S) receptor-binding domain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), it was suspected that this virus, responsible for coronavirus disease 2019 (COVID-19), might be able to use the DPP-4 enzyme as a functional receptor to gain entry into the host. However, DPP-4is also exert anti-inflammatory effects, which could be beneficial in patients exposed to cytokine storms due to COVID-19. Yet, when observational (mostly retrospective) studies compared clinical outcomes in DPP-4i users vs non-users among diabetes patients with COVID-19, the overall results regarding the risk of progression towards more severe forms of the disease and mortality were heterogeneous, thereby precluding any definite conclusions. Nevertheless, new expectations have arisen following recent reports of significant reductions in admissions to intensive care units and mortality in DPP-4i users. However, given the limitations inherent in such observational studies, any available results should be considered, at best, as hypothetical and only suggestive of potentially substantial benefits with DPP-4is in diabetes patients with COVID-19. While the safe use of DPP-4is in COVID-19 patients appears to be an acceptable hypothesis, all such positive findings still need to be confirmed in randomized controlled trials (a few of which are currently ongoing) before any recommendations can be made for clinical practice.
Collapse
Affiliation(s)
- André J Scheen
- Division of Diabetes, Nutrition and Metabolic Disorders, CHU Liège, Liège, Belgium; Division of Clinical Pharmacology, Centre for Interdisciplinary Research on Medicines (CIRM), Liège University, Liège, Belgium.
| |
Collapse
|