1
|
Estrada-Osorio DV, Escalona-Villalpando RA, Gurrola MP, Chaparro-Sánchez R, Rodríguez-Morales JA, Arriaga LG, Ledesma-García J. Abiotic, Hybrid, and Biological Electrocatalytic Materials Applied in Microfluidic Fuel Cells: A Comprehensive Review. ACS MEASUREMENT SCIENCE AU 2024; 4:25-41. [PMID: 38404496 PMCID: PMC10885332 DOI: 10.1021/acsmeasuresciau.3c00044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 02/27/2024]
Abstract
This article provides an overview of the work reported in the past decade in the field of microfluidic fuel cells. To develop appropriate research, the most commonly used electrocatalytic materials were considered and a new classification was proposed based on their nature: abiotic, hybrid, or biological. This classification allowed the authors to discern the information collected. In this sense, the types of electrocatalysts used for the oxidation of the most common fuels in different environments, such as glucose, ethanol, methanol, glycerol, and lactate, were presented. There are several phenomena presented in this article. This information gives an overview of where research is heading in the field of materials for electrocatalysis, regardless of the fuel used in the microfluidic fuel cell: the synthesis of abiotic and biological materials to obtain hybrid materials that allow the use of the best properties of each material.
Collapse
Affiliation(s)
- D. V. Estrada-Osorio
- División
de Investigación y Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Santiago de Querétaro, Querétaro 76010, México
| | - Ricardo A. Escalona-Villalpando
- División
de Investigación y Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Santiago de Querétaro, Querétaro 76010, México
| | - M. P. Gurrola
- CONACYT-Tecnológico
Nacional de México/Instituto Tecnológico de Chetumal, Avenida Insurgentes 330, Chetumal, Quintana Roo 77013, México
- Tecnológico
Nacional de México/Instituto Tecnológico de Chetumal, Avenida Insurgentes 330, Chetumal, Quintana Roo 77013, México
| | - Ricardo Chaparro-Sánchez
- Facultad
de Informática, Universidad Autónoma
de Querétaro, Santiago de
Querétaro, Querétaro 76010, México
| | - J. A. Rodríguez-Morales
- División
de Investigación y Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Santiago de Querétaro, Querétaro 76010, México
| | - L. G. Arriaga
- Centro
de Investigación y Desarrollo Tecnológico en Electroquímica, Pedro Escobedo, Querétaro 76703, México
| | - J. Ledesma-García
- División
de Investigación y Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Santiago de Querétaro, Querétaro 76010, México
| |
Collapse
|
2
|
Kurniati A, Puspaningsih NNT, Putri KDA, Damayanti M, Purwani NN, Rahmah SA, Purkan, Fujiyama K, Sakka M, Sakka K, Kimura T, Rohman A, Baktir A, Sanjaya RE. Heterologous fusion gene expression and characterization of a novel carbohydrate binding module (Cbm36) to laccase (Lcc2). BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
3
|
Dey B, Dutta T. Laccases: thriving the domain of Bio-electrocatalysis. Bioelectrochemistry 2022; 146:108144. [DOI: 10.1016/j.bioelechem.2022.108144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 12/19/2022]
|
4
|
Application of Electrically Conducting Nanocomposite Material Polythiophene@NiO/Frt/GOx as Anode for Enzymatic Biofuel Cells. MATERIALS 2020; 13:ma13081823. [PMID: 32290640 PMCID: PMC7215782 DOI: 10.3390/ma13081823] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/15/2020] [Accepted: 03/16/2020] [Indexed: 12/02/2022]
Abstract
In this work, nano-inspired nickel oxide nanoparticles (NiO) and polythiophene (Pth) modified bioanode was prepared for biofuel cell applications. The chemically prepared nickel oxide nanoparticles and its composite with polythiophene were characterized for elemental composition and microscopic characterization while using scanning electron microscopy. The electrochemical characterizations of polythiophene@NiO composite, biocompatible mediator ferritin (Frt) and glucose oxidase (GOx) catalyst modified glassy carbon (GC) electrode were carried out using cyclic voltammetry (CV), linear sweep voltammetry (LSV), and charge-discharge studies. The current density of Pth@NiO/Frt/GOx bioanode was found to be 5.4 mA/cm2. The bioanode exhibited a good bio-electrocatalytic activity towards the oxidation of the glucose. The experimental studies of the bioanode are justifying its employment in biofuel cells. This will cater a platform for the generation of sustainable energy for low temperature devices.
Collapse
|
5
|
|
6
|
Application of eukaryotic and prokaryotic laccases in biosensor and biofuel cells: recent advances and electrochemical aspects. Appl Microbiol Biotechnol 2018; 102:10409-10423. [PMID: 30327832 DOI: 10.1007/s00253-018-9421-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 12/25/2022]
Abstract
Laccases exhibit a wide range of applications, especially in the electrochemical field, where they are regarded as a potential biotic component. Laccase-based biosensors have immense practical applications in the food, environmental, and medical fields. The application of laccases as biocathodes in enzymatic biofuel cells has promising potential in the preparation of implantable equipment. Extensive studies have been directed towards the potential role of fungal laccases as biotic components of electrochemical equipment. In contrast, the potential of prokaryotic laccases in electrochemistry has been not fully understood. However, there has been recent and rapid progress in the discovery and characterization of new types of prokaryotic laccases. In this review, we have comprehensively discussed the application of different sources of laccases as a biocatalytic component in various fields of application. Further, we described the potential of different types of laccases in bioelectrochemical applications.
Collapse
|
7
|
Voběrková S, Solčány V, Vršanská M, Adam V. Immobilization of ligninolytic enzymes from white-rot fungi in cross-linked aggregates. CHEMOSPHERE 2018; 202:694-707. [PMID: 29602102 DOI: 10.1016/j.chemosphere.2018.03.088] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 12/22/2017] [Accepted: 03/12/2018] [Indexed: 05/20/2023]
Abstract
Ligninolytic enzymes from white-rot fungi are widely used in biotechnological processes. However, the application of these enzymes as free enzymes is limited due to their instability and lack of reusability. Enzyme stabilization is therefore a major challenge in biocatalytic process research, and immobilization methods are desirable. Using cross-linked enzyme aggregates (CLEAs) such as magnetic CLEAs, porous-CLEAs and combi-CLEAs is a promising technique for overcoming these issues. Cross-linking methods can stabilize and immobilize enzymes by interconnecting enzyme molecules via multiple bonds using cross-linking agents such as glutaraldehyde. The high catalyst density and microporous assembly of CLEAs guarantee high catalyst activity, which, together with their long shelf life, operational stability, and reusability, provide a cost-efficient alternative to matrix-assisted immobilization approaches. Here, we review current progress in ligninolytic enzyme immobilization and provide a comprehensive review of CLEAs. Moreover, we summarize the use of these CLEAs for biocatalysis processes, bioremediation such as dye decolourization, wastewater treatment or pharmaceutically active compound elimination.
Collapse
Affiliation(s)
- Stanislava Voběrková
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
| | - Veronika Solčány
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
| | - Martina Vršanská
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
| | - Vojtěch Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00, Brno, Czech Republic.
| |
Collapse
|
8
|
Wu G, Gao Y, Zhao D, Ling P, Gao F. Methanol/Oxygen Enzymatic Biofuel Cell Using Laccase and NAD +-Dependent Dehydrogenase Cascades as Biocatalysts on Carbon Nanodots Electrodes. ACS APPLIED MATERIALS & INTERFACES 2017; 9:40978-40986. [PMID: 29088536 DOI: 10.1021/acsami.7b12295] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The efficient immobilization of enzymes on favorable supporting materials to design enzyme electrodes endowed with specific catalysis performances such as deep oxidation of biofuels, and direct electron transfer (DET)-type bioelectrocatalysis is highly desired for fabricating enzymatic biofuel cells (BFCs). In this study, carbon nanodots (CNDs) have been used as the immobilizing matrixes and electron relays of enzymes to construct (NAD+)-dependent dehydrogenase cascades-based bioanode for the deep oxidation of methanol and DET-type laccase-based biocathode for oxygen reduction to water. At the bioanode, multiplex enzymes including alcohol dehydrogenase, aldehyde dehydrogenase, and formate dehydrogenase are coimmobilized on CNDs electrode which is previously coated with in situ polymerized methylene blue as the electrocatalyst for oxidizing NADH to NAD+. At the biocathode, fungal laccase is directly cast on CNDs and facilitated DET reaction is allowed. As a result, a novel membrane-less methanol/O2 BFC has been assembled and displays a high open-circuit voltage of 0.71(±0.02) V and a maximum power density of 68.7 (±0.4) μW cm-2. These investigated features imply that CNDs may act as new conductive architectures to elaborate enzyme electrodes for further bioelectrochemical applications.
Collapse
Affiliation(s)
- Guozhi Wu
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Optical Probes and Bioelectrocatalysis (LOPAB), College of Chemistry and Materials Science, Anhui Normal University , Wuhu 241000, P.R. China
| | - Yue Gao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Optical Probes and Bioelectrocatalysis (LOPAB), College of Chemistry and Materials Science, Anhui Normal University , Wuhu 241000, P.R. China
| | - Dan Zhao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Optical Probes and Bioelectrocatalysis (LOPAB), College of Chemistry and Materials Science, Anhui Normal University , Wuhu 241000, P.R. China
| | - Pinghua Ling
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Optical Probes and Bioelectrocatalysis (LOPAB), College of Chemistry and Materials Science, Anhui Normal University , Wuhu 241000, P.R. China
| | - Feng Gao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Optical Probes and Bioelectrocatalysis (LOPAB), College of Chemistry and Materials Science, Anhui Normal University , Wuhu 241000, P.R. China
| |
Collapse
|
9
|
Hybrid Bioelectrocatalytic Reduction of Oxygen at Anthracene-modified Multi-walled Carbon Nanotubes Decorated with Ni90Pd10 Nanoparticles. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.08.112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Affiliation(s)
- Nicolas Mano
- CNRS, CRPP, UPR 8641, 33600 Pessac, France
- University of Bordeaux, CRPP, UPR 8641, 33600 Pessac, France
| | - Anne de Poulpiquet
- Aix Marseille Univ., CNRS, BIP, 31, chemin Aiguier, 13402 Marseille, France
| |
Collapse
|
11
|
Huo W, Zeng H, Yang Y, Zhang Y. Performance of glucose/O2 enzymatic fuel cell based on supporting electrodes over-coated by polymer-nanogold particle composite with entrapped enzymes. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Yang Y, Zeng H, Huo WS, Zhang YH. Direct Electrochemistry and Catalytic Function on Oxygen Reduction Reaction of Electrodes Based on Two Kinds of Magnetic Nano-particles with Immobilized Laccase Molecules. J Inorg Organomet Polym Mater 2016. [DOI: 10.1007/s10904-016-0464-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
13
|
A High Redox Potential Laccase from Pycnoporus sanguineus RP15: Potential Application for Dye Decolorization. Int J Mol Sci 2016; 17:ijms17050672. [PMID: 27164083 PMCID: PMC4881498 DOI: 10.3390/ijms17050672] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/04/2016] [Accepted: 04/28/2016] [Indexed: 11/16/2022] Open
Abstract
Laccase production by Pycnoporus sanguineus RP15 grown in wheat bran and corncob under solid-state fermentation was optimized by response surface methodology using a Central Composite Rotational Design. A laccase (Lacps1) was purified and characterized and the potential of the pure Lacps1 and the crude culture extract for synthetic dye decolorization was evaluated. At optimal conditions (eight days, 26 °C, 18% (w/w) milled corncob, 0.8% (w/w) NH4Cl and 50 mmol·L−1 CuSO4, initial moisture 4.1 mL·g−1), the laccase activity reached 138.6 ± 13.2 U·g−1. Lacps1 was a monomeric glycoprotein (67 kDa, 24% carbohydrate). Optimum pH and temperature for the oxidation of 2,2’-azino-bis(3-ethylbenzthiazoline-6-sulfonate) (ABTS) were 4.4 and 74.4 °C, respectively. Lacps1 was stable at pH 3.0–8.0, and after two hours at 55–60 °C, presenting high redox potential (0.747 V vs. NHE). ABTS was oxidized with an apparent affinity constant of 147.0 ± 6.4 μmol·L−1, maximum velocity of 413.4 ± 21.2 U·mg−1 and catalytic efficiency of 3140.1 ± 149.6 L·mmol−1·s−1. The maximum decolorization percentages of bromophenol blue (BPB), remazol brilliant blue R and reactive blue 4 (RB4), at 25 or 40 °C without redox mediators, reached 90%, 80% and 60%, respectively, using either pure Lacps1 or the crude extract. This is the first study of the decolorization of BPB and RB4 by a P. sanguineus laccase. The data suggested good potential for treatment of industrial dye-containing effluents.
Collapse
|