1
|
Kivrak E, Kara P. Simultaneous detection of ovarian cancer related miRNA biomarkers with carboxylated graphene oxide modified electrochemical biosensor platform. Bioelectrochemistry 2025; 161:108806. [PMID: 39244915 DOI: 10.1016/j.bioelechem.2024.108806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/10/2024]
Abstract
Ovarian cancer, known as "silent killer", is a gynocological cancer with high mortality that usually diagnosed in the late stages. Gold standard immunoassay technique is evaluation of CA-125 levels which is not merely specific to ovarian cancer. Therefore, there is a need for sensitive determination of more specific biomarkers. miR-200 family is RNA nucleic acids that known to be upregulated in the presence of ovarian cancer. Since diagnosis based on a single biomarker is prone to generate misleading results, it is important to develop point-of-care systems that allow diagnosis of multiple miRNAs. Herein, an electrochemical nanobiosensor platform was developed for the multiplexed and simultaneous detection of miR-200c and miR-141. Biorecognition part was constitutued of methylene blue and ferrocene labeled hairpin DNA probes immobilized onto carboxylated graphene oxide modified pencil graphite electrodes. Their hybridization with miRNAs were examined upon "signal-off" approach using Square Wave Voltammetry. The platform demonstrated a linear detection range of 0.1 pM to 10 nM for both miR-141 and miR-200c, with low detection limits of 0.029 pM and 0.026 pM, respectively. We assume that the developed biosensor platform may pave the way in early diagnosis of the disease and the development of more effective treatment strategies.
Collapse
Affiliation(s)
- Ezgi Kivrak
- Faculty of Pharmacy, Department of Analytical Chemistry, Ege University, 35100 Izmir, Bornova, Turkey; Graduate School of Natural and Applied Sciences, Department of Biomedical Technologies, Ege University, 35100 Izmir, Bornova, Turkey
| | - Pinar Kara
- Faculty of Pharmacy, Department of Analytical Chemistry, Ege University, 35100 Izmir, Bornova, Turkey.
| |
Collapse
|
2
|
Yan J, Wang K, Liu H, Wang L, Li Y, Zhang G, Deng L. Construction of electrochemical biosensors based on MoSe 2@1T-MoS 2 heterojunction for the sensitive and rapid detection of miRNA-155 biomarker in breast cancer. Bioelectrochemistry 2023; 154:108541. [PMID: 37579553 DOI: 10.1016/j.bioelechem.2023.108541] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/16/2023]
Abstract
MiRNA-155 is a typical biomarker for breast cancer. Since its low concentration in the physiological environment and the limitations of conventional miRNA detection methods like Northern imprinting and RT-qPCR, convenient, real-time, and rapid detection methods are urgently needed. In this work, an electrochemical biosensor was constructed based on the flower-like MoSe2@1T-MoS2 heterojunction electrode material and specific RNA recognition probes, which can realize the rapid determination of miRNA-155 content with a wide detection range from 1 fM to 1 nM and a limit of detection (LOD) as low as 0.34 fM. Furthermore, the contents of miRNA-155 in blood samples of tumor-bearing mice and normal mice were measured as 724.93 pM and 21.42 pM, respectively by this biosensor, demonstrating its strong identification ability and miRNA-155 can be regarded as an ideal diagnostic marker. On this basis, a portable sensor platform was designed for on-site detection simulation and showed good recovery efficiency from 95.80% to 98.69%. Meanwhile, compared with the standard detection method RT-qPCR, the accuracy and reliability of the biosensor were verified, indicating that the biosensor has the potential to provide point-of-care testing (POCT) for the early diagnosis of breast cancer.
Collapse
Affiliation(s)
- Jianhua Yan
- Medical College, Guangxi University, Nanning 530004, Guangxi, China
| | - Kaidi Wang
- Medical College, Guangxi University, Nanning 530004, Guangxi, China
| | - Hongjie Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Liwei Wang
- School of Marine Sciences, Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China.
| | - Yixiang Li
- Medical College, Guangxi University, Nanning 530004, Guangxi, China
| | - Guoqing Zhang
- Medical College, Guangxi University, Nanning 530004, Guangxi, China
| | - Li Deng
- Department of Obstetrics, the Second Affiliated Hospital of Guangxi Medical University, Nanning 530003, China
| |
Collapse
|
3
|
Pishbin E, Sadri F, Dehghan A, Kiani MJ, Hashemi N, Zare I, Mousavi P, Rahi A. Recent advances in isolation and detection of exosomal microRNAs related to Alzheimer's disease. ENVIRONMENTAL RESEARCH 2023; 227:115705. [PMID: 36958383 DOI: 10.1016/j.envres.2023.115705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/11/2023] [Accepted: 03/15/2023] [Indexed: 05/08/2023]
Abstract
Alzheimer's disease, a progressive neurological condition, is associated with various internal and external risk factors in the disease's early stages. Early diagnosis of Alzheimer's disease is essential for treatment management. Circulating exosomal microRNAs could be a new class of valuable biomarkers for early Alzheimer's disease diagnosis. Different kinds of biosensors have been introduced in recent years for the detection of these valuable biomarkers. Isolation of the exosomes is a crucial step in the detection process which is traditionally carried out by multi-step ultrafiltration. Microfluidics has improved the efficiency and costs of exosome isolation by implementing various effects and forces on the nano and microparticles in the microchannels. This paper reviews recent advancements in detecting Alzheimer's disease related exosomal microRNAs based on methods such as electrochemical, fluorescent, and SPR. The presented devices' pros and cons and their efficiencies compared with the gold standard methods are reported. Moreover, the application of microfluidic devices to detect Alzheimer's disease related biomarkers is summarized and presented. Finally, some challenges with the performance of novel technologies for isolating and detecting exosomal microRNAs are addressed.
Collapse
Affiliation(s)
- Esmail Pishbin
- Bio-microfluidics Laboratory, Department of Electrical Engineering and Information Technology, Iranian Research Organization for Science and Technology, Tehran, Iran
| | - Fatemeh Sadri
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Amin Dehghan
- School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Mohammad Javad Kiani
- School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Nader Hashemi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co. Ltd., Shiraz 7178795844, Iran
| | - Pegah Mousavi
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Amid Rahi
- Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
4
|
Chiorcea-Paquim AM. Advances in Electrochemical Biosensor Technologies for the Detection of Nucleic Acid Breast Cancer Biomarkers. SENSORS (BASEL, SWITZERLAND) 2023; 23:4128. [PMID: 37112468 PMCID: PMC10145521 DOI: 10.3390/s23084128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 06/19/2023]
Abstract
Breast cancer is the second leading cause of cancer deaths in women worldwide; therefore, there is an increased need for the discovery, development, optimization, and quantification of diagnostic biomarkers that can improve the disease diagnosis, prognosis, and therapeutic outcome. Circulating cell-free nucleic acids biomarkers such as microRNAs (miRNAs) and breast cancer susceptibility gene 1 (BRCA1) allow the characterization of the genetic features and screening breast cancer patients. Electrochemical biosensors offer excellent platforms for the detection of breast cancer biomarkers due to their high sensitivity and selectivity, low cost, use of small analyte volumes, and easy miniaturization. In this context, this article provides an exhaustive review concerning the electrochemical methods of characterization and quantification of different miRNAs and BRCA1 breast cancer biomarkers using electrochemical DNA biosensors based on the detection of hybridization events between a DNA or peptide nucleic acid probe and the target nucleic acid sequence. The fabrication approaches, the biosensors architectures, the signal amplification strategies, the detection techniques, and the key performance parameters, such as the linearity range and the limit of detection, were discussed.
Collapse
Affiliation(s)
- Ana-Maria Chiorcea-Paquim
- University of Coimbra, CEMMPRE, ARISE, Department of Chemistry, 3004-535 Coimbra, Portugal;
- Instituto Pedro Nunes, 3030-199 Coimbra, Portugal
| |
Collapse
|
5
|
Eksin E. An electrochemical assay for sensitive detection of Acinetobacter baumannii gene. Talanta 2022; 249:123696. [PMID: 35749906 DOI: 10.1016/j.talanta.2022.123696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 11/25/2022]
Abstract
A new genosensor, which allows sensitive and selective detection of Acinetobacter baumannii gene sequence was developed herein. In this assay, capture probe of Acinetobacter baumannii was immobilized on the surface of chitosan modified single-use pencil graphite electrodes (c-PGEs) to obtain Acinetobacter baumannii genosensor. Then, Acinetobacter baumannii target DNA sequence was recognized after solid-state hybridization on c-PGE genosensor by measuring guanine signal via differential pulse voltammetry (DPV). In order to improve hybridization efficiency, experimental parameters affecting all assay steps are studied and the analytical performance of the genosensor was tested. The low limit of detection (LOD) for Acinetobacter baumannii target DNA sequence was obtained as 1.86 nM with developed genosensor. The selectivity of the proposed assay was then tested in the presence of 1-base mismatch, or two different type of non-complementary sequences and no interference effect was observed. The proposed electrochemical assay protocol is easy, convenient, and rapid which can be a decent alternative to existing methods.
Collapse
Affiliation(s)
- Ece Eksin
- Biomedical Device Technology Program, Vocational School of Health Services, Izmir Democracy University, Izmir 35140, Turkey; Department of Analytical Chemistry, Faculty of Pharmacy, Ege University, Izmir 35100, Turkey.
| |
Collapse
|
6
|
Graphene-Oxide and Ionic Liquid Modified Electrodes for Electrochemical Sensing of Breast Cancer 1 Gene. BIOSENSORS 2022; 12:bios12020095. [PMID: 35200355 PMCID: PMC8870019 DOI: 10.3390/bios12020095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/29/2022] [Accepted: 01/30/2022] [Indexed: 12/23/2022]
Abstract
Graphene-oxide and ionic liquid composite-modified pencil graphite electrodes (GO-IL-PGEs) were developed and used as a sensing platform for breast cancer 1 (BRCA1) gene detection. The characterization of GO-IL modified electrodes was executed by scanning electron microscopy (SEM), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The nucleic-acid hybridization was monitored by a differential pulse voltammetry (DPV) technique by directly measuring the guanine oxidation signal without using any indicator. The effects of the IL concentration, the probe concentration, and the hybridization time were optimized to the biosensor response. The limit of detection (LOD) was calculated in the concentration range of 2–10 μg/mL for the BRCA1 gene and found to be 1.48 µg/mL. The sensitivity of the sensor was calculated as 1.49 µA mL/µg cm2. The developed biosensor can effectively discriminate the complementary target sequence in comparison to a three-base-mismatched sequence or the non-complementary one.
Collapse
|
7
|
Zhang YY, Guillon FX, Griveau S, Bedioui F, Lazerges M, Slim C. Evolution of nucleic acids biosensors detection limit III. Anal Bioanal Chem 2021; 414:943-968. [PMID: 34668044 DOI: 10.1007/s00216-021-03722-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/17/2021] [Accepted: 10/06/2021] [Indexed: 11/30/2022]
Abstract
This review is an update of two previous ones focusing on the limit of detection of electrochemical nucleic acid biosensors allowing direct detection of nucleic acid target (miRNA, mRNA, DNA) after hybridization event. A classification founded on the nature of the electrochemical transduction pathway is established. It provides an overall picture of the detection limit evolution of the various sensor architectures developed during the last three decades and a critical report of recent strategies.
Collapse
Affiliation(s)
- Yuan Yuan Zhang
- Institute of Chemistry for Life and Health Sciences (iCLeHS), Synthesis, Electrochemistry, Imaging and Analytical Systems for Diagnosis (SEISAD) Team, PSL Research University, CNRS, Chimie ParisTech, 75231, Paris, France
| | - François-Xavier Guillon
- Institute of Chemistry for Life and Health Sciences (iCLeHS), Synthesis, Electrochemistry, Imaging and Analytical Systems for Diagnosis (SEISAD) Team, PSL Research University, CNRS, Chimie ParisTech, 75231, Paris, France
| | - Sophie Griveau
- Institute of Chemistry for Life and Health Sciences (iCLeHS), Synthesis, Electrochemistry, Imaging and Analytical Systems for Diagnosis (SEISAD) Team, PSL Research University, CNRS, Chimie ParisTech, 75231, Paris, France
| | - Fethi Bedioui
- Institute of Chemistry for Life and Health Sciences (iCLeHS), Synthesis, Electrochemistry, Imaging and Analytical Systems for Diagnosis (SEISAD) Team, PSL Research University, CNRS, Chimie ParisTech, 75231, Paris, France.
| | - Mathieu Lazerges
- Faculté de Pharmacie de Paris, Faculté de Santé, Université de Paris, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Cyrine Slim
- Institute of Chemistry for Life and Health Sciences (iCLeHS), Synthesis, Electrochemistry, Imaging and Analytical Systems for Diagnosis (SEISAD) Team, PSL Research University, CNRS, Chimie ParisTech, 75231, Paris, France.
| |
Collapse
|
8
|
Kalogianni DP. Nanotechnology in emerging liquid biopsy applications. NANO CONVERGENCE 2021; 8:13. [PMID: 33934252 PMCID: PMC8088419 DOI: 10.1186/s40580-021-00263-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/23/2021] [Indexed: 05/17/2023]
Abstract
Liquid biopsy is considered as the most attractive alternative to traditional tissue biopsies. The major advantages of this approach lie in the non-invasive procedure, the rapidness of sample collection and the potential for early cancer diagnosis and real-time monitoring of the disease and the treatment response. Nanotechnology has dynamically emerged in a wide range of applications in the field of liquid biopsy. The benefits of using nanomaterials for biosensing include high sensitivity and detectability, simplicity in many cases, rapid analysis, the low cost of the analysis and the potential for portability and personalized medicine. The present paper reports on the nanomaterial-based methods and biosensors that have been developed for liquid biopsy applications. Most of the nanomaterials used exhibit great analytical performance; moreover, extremely low limits of detection have been achieved for all studied targets. This review will provide scientists with a comprehensive overview of all the nanomaterials and techniques that have been developed for liquid biopsy applications. A comparison of the developed methods in terms of detectability, dynamic range, time-length of the analysis and multiplicity, is also provided.
Collapse
|
9
|
Wang J, Wen J, Yan H. Recent Applications of Carbon Nanomaterials for microRNA Electrochemical Sensing. Chem Asian J 2020; 16:114-128. [DOI: 10.1002/asia.202001260] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Jiameng Wang
- College of Pharmaceutical Science Hebei University Institute of Life Science and Green Development, Key Laboratory of Pharmaceutical Quality Control of Hebei Province Baoding 071002 P. R. China
| | - Jia Wen
- College of Pharmaceutical Science Hebei University Institute of Life Science and Green Development, Key Laboratory of Pharmaceutical Quality Control of Hebei Province Baoding 071002 P. R. China
| | - Hongyuan Yan
- College of Pharmaceutical Science Hebei University Institute of Life Science and Green Development, Key Laboratory of Pharmaceutical Quality Control of Hebei Province Baoding 071002 P. R. China
- College of Public Health Hebei University Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education Baoding 071002 P. R. China
| |
Collapse
|
10
|
Hosu O, Lettieri M, Papara N, Ravalli A, Sandulescu R, Cristea C, Marrazza G. Colorimetric multienzymatic smart sensors for hydrogen peroxide, glucose and catechol screening analysis. Talanta 2019; 204:525-532. [DOI: 10.1016/j.talanta.2019.06.041] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/06/2019] [Accepted: 06/10/2019] [Indexed: 12/27/2022]
|
11
|
Kim K, Park P, Lee JH. Cost-effective monitoring of microRNA-205 applied as a biomarker using G-quadruplex DNAzyme and 1,1'-oxalyldiimidazole chemiluminescence. J Pharm Biomed Anal 2019; 175:112780. [PMID: 31351249 DOI: 10.1016/j.jpba.2019.112780] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 12/13/2022]
Abstract
Trace levels of microRNA-205, known as a biomarker of lung cancer, in human serum was quantified for the first-time using G-quadruplex DNAzyme linked to detection complementary probe and 1,1'-oxalyldiimidazole chemiluminescence (ODI-CL). First, capture complementary probes immobilized on the surface of paramagnetic bead selectively bound with microRNA-205 existing in human serum. Then, with the addition of detection complementary probe linked to hemin aptamer, a complex linked to hemin aptamer was formed with the completion of hybridization between microRNA-205 and two complementary probes. With the addition of hemin in the solution, finally, a complex linked to G-quadruplex DNAzyme was formed from the interaction of hemin aptamer and hemin. Resorufin, luminescent dye, was formed from the reaction of Amplex Red and H2O2 in the presence of the complex linked to DNAzyme acting as a horseradish peroxidase (HRP)-mimicking enzyme. The concentration of resorufin formed from the reaction was dependent on the concentration of microRNA-205 in human serum. Thus, the brightness of resorufin emitted in ODI-CL reaction was enhanced with the increase of microRNA-205. The limit of detection (LOD) of the biosensor with ODI-CL detection, capable of sensing microRNA-205 (dynamic range: 0.4-62.5 nM), was as low as 0.13 nM. It was confirmed that the biosensor can quantify trace levels of microRNA-205 with statistically acceptable accuracy, precision, and recovery.
Collapse
Affiliation(s)
- Kyungeun Kim
- Luminescent MD, LLC, Hagerstown, MD 21742, United States
| | - Prestan Park
- Luminescent MD, LLC, Hagerstown, MD 21742, United States
| | - Ji Hoon Lee
- Luminescent MD, LLC, Hagerstown, MD 21742, United States.
| |
Collapse
|
12
|
Tang H, Zhu J, Wang D, Li Y. Dual-signal amplification strategy for miRNA sensing with high sensitivity and selectivity by use of single Au nanowire electrodes. Biosens Bioelectron 2019; 131:88-94. [DOI: 10.1016/j.bios.2019.02.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/15/2019] [Accepted: 02/01/2019] [Indexed: 12/15/2022]
|
13
|
Abstract
High-throughput profiling/sensing of nucleic acids has recently emerged as a highly promising strategy for the early diagnosis and improved prognosis of a broad range of pathologies, most notably cancer. Among the potential biomarker candidates, microRNAs (miRNAs), a class of non-coding RNAs of 19-25 nucleotides in length, are of particular interest due to their role in the post-transcriptional regulation of gene expression. Developing miRNA sensing technologies that are quantitative, ultrasensitive and highly specific has proven very challenging because of their small size, low natural abundance and the high degree of sequence similarity among family members. When compared to optical based methods, electrochemical sensors offer many advantages in terms of sensitivity and scalability. This non-comprehensive review aims to break-down and highlight some of the most promising strategies for electrochemical sensing of microRNA biomarkers.
Collapse
Affiliation(s)
- Philip Gillespie
- Department of Bioengineering, Imperial College London, South Kensington Campus, London, SW72AZ, UK.
| | - Sylvain Ladame
- Department of Bioengineering, Imperial College London, South Kensington Campus, London, SW72AZ, UK.
| | - Danny O'Hare
- Department of Bioengineering, Imperial College London, South Kensington Campus, London, SW72AZ, UK.
| |
Collapse
|