1
|
Nasri F, Hosseini M, Taghdisi SM, Ganjali MR, Ramezani M. Design and application of an ultrasensitive and selective tobromycin electrochemiluminescence aptasensor using MXene /Ni/Sm-LDH-based nanocomposite. Mikrochim Acta 2024; 191:506. [PMID: 39097837 DOI: 10.1007/s00604-024-06536-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/29/2024] [Indexed: 08/05/2024]
Abstract
Using a chemiluminescence reaction between luminol and H2O2 in basic solution, an ultrasensitive electrochemiluminescence (ECL) aptasensor was developed for the determination of tobramycin (TOB), as an aminoglycoside antibiotic. Ti3C2/Ni/Sm-LDH-based nanocomposite effectively catalyzes the oxidation of luminol and decomposition of H2O2, leading to the formation of different reactive oxygen species (ROSs), thus amplifying the ECL signal intensity of luminol, which can be used for the determination of TOB concentration. To evaluate the performance of the electrochemiluminescence aptasensor and synthesized nanocomposite, different methods such as cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) analyses were performed. The considerable specific area, large number of active sites, and enhanced electron transfer reaction on this nanocomposite led to the development of an ECL aptasensor with high sensitivity and electrocatalytic activity. After optimizing the preparation method and analysis conditions, the aptasensor revealed a wide linear response ranging from 1.0 pM to 1.0 μM with a detection limit of 18 pM, displaying outstanding accuracy, specificity, and response stability. The developed ECL sensor was found to be applicable to the determination of TOB in human serum samples and is anticipated to possess excellent clinical potentials for detecting other antibiotics, as well.
Collapse
Affiliation(s)
- Farnaz Nasri
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, 1439817435, Iran
| | - Morteza Hosseini
- Nanobiosensors Lab, Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, 1439817435, Iran
- Medical Biomaterials Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, 1439817435, Iran.
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Bu L, Su C, Song Q, Jiang D, Shan X, Wang W, Chen Z. A molecularly imprinted polypyrrole electrochemiluminescence sensor based on a novel zinc-based metal-organic framework and chitosan for determination of enrofloxacin. Analyst 2023; 148:6087-6096. [PMID: 37916516 DOI: 10.1039/d3an01236k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Nowadays, bacterial resistance caused by the abuse of antibiotics has become a worldwide problem. In this work, a quinolone antibiotic, enrofloxacin (ENR), was rapidly monitored by combining a selective molecular imprinting polymer (MIP) with the electrochemiluminescence (ECL) method. Zn-PTC, a novel zinc-based metal-organic framework (MOF) that has a large specific surface area and ultra-high luminous efficiency, was used as the ECL luminophore. Chitosan (CHIT) was used to contact the specific surface area of molecularly imprinted polymer films and further improved the detection sensitivity. Subsequently, the molecularly imprinted polypyrrole was electropolymerized on the surface of the Zn-PTC and CHIT modified glassy carbon electrode (GCE). The specific sites that could target recombining ENR were shaped on the surface of MIP after extracting the ENR templates. The specific concentrations of ENR could be detected according to the difference in ECL intensity (ΔECL) between the eluting and rebinding of ENR. After optimization, a good linear response of ΔECL and a logarithm of specific ENR concentrations could be obtained in the range of 1.0 × 10-12-1.0 × 10-4 mol L-1, with a detection limit of 9.3 × 10-13 mol L-1 (S/N = 3). Notably, this study provided a rapid, convenient, and cheap method for the detection of ENR in actual samples.
Collapse
Affiliation(s)
- Liyin Bu
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, Jiangsu, China.
| | - Chang Su
- School of Materials Science and Engineering, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Qingyuan Song
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, Jiangsu, China.
| | - Ding Jiang
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, Jiangsu, China.
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, Jiangsu, China
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Xueling Shan
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, Jiangsu, China
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Wenchang Wang
- Analysis and Testing Center, NERC Biomass of Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Zhidong Chen
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, Jiangsu, China.
| |
Collapse
|
3
|
Niyitanga T, Khan MQ, Ahmad K, Khan RA. Fabrication of an Azithromycin Sensor. BIOSENSORS 2023; 13:986. [PMID: 37998161 PMCID: PMC10669414 DOI: 10.3390/bios13110986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
Azithromycin (AZY) is a well-known top-prioritized antibiotic and is used by humans in strong concentrations. However, the side effects of the AZY antibiotic may cause some serious and significant damage to humans and the environment. Thus, there is a need to develop effective and sensitive sensors to monitor accurate concentrations of AZY. In the last decade, electrochemistry-based sensors have received enormous attention from the scientific community because of their high sensitivity, selectivity, cost-effectiveness, fast response, rapid detection response, simple fabrication, and working principle. It is important to mention that electrochemical sensors rely on the properties of electrode modifiers. Hence, the selection of electrode materials is of great significance when designing and developing efficient and robust electrochemical sensors. In this study, we fabricated an AZY sensor by utilizing a molybdenum disulfide/titanium aluminum carbide (MoS2@Ti3AlC2) composite as the electrode material. The MoS2@Ti3AlC2 composite was synthesized via a simple sonication process. The synthesized MoS2@Ti3AlC2 composite was characterized using a powder X-ray diffraction (XRD) method to examine the phase purity and formation of the MoS2@Ti3AlC2 composite. Scanning electron microscopy (SEM) was used to study the surface morphological features of the prepared MoS2@Ti3AlC2 composite, whereas energy dispersive X-ray spectroscopy (EDAX) was adopted to determine the elemental composition of the prepared MoS2@Ti3AlC2 composite. The glassy carbon (GC) electrode was modified with the prepared MoS2@Ti3AlC2 composite and applied as the AZY sensor. The sensing performance of the MoS2@Ti3AlC2 composite-modified GC electrode was studied using linear sweep voltammetry. The sensor demonstrated excellent performance when determining AZY and showed a good detection limit of 0.009 µM with a sensitivity of 6.77 µA/µM.cm2.
Collapse
Affiliation(s)
- Theophile Niyitanga
- School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Mohd Quasim Khan
- Department of Chemistry, M.M.D.C, Moradabad, M.J.P. Rohilkhand University, Bareilly 244001, UP, India
| | - Khursheed Ahmad
- School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Rais Ahmad Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
4
|
Althomali RH, Hamoud Alshahrani S, Qasim Almajidi Y, Kamal Hasan W, Gulnoza D, Romero-Parra RM, Abid MK, Radie Alawadi AH, Alsalamyh A, Juyal A. Current Trends in Nanomaterials-Based Electrochemiluminescence Aptasensors for the Determination of Antibiotic Residues in Foodstuffs: A Comprehensive Review. Crit Rev Anal Chem 2023; 54:3252-3268. [PMID: 37480552 DOI: 10.1080/10408347.2023.2238059] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Veterinary pharmaceuticals have been recently recognized as newly emerging environmental contaminants. Indeed, because of their uncontrolled or overused disposal, we are now facing undesirable amounts of these constituents in foodstuff and its related human health concerns. In this context, developing a well-organized environmental and foodstuff screening toward antibiotic levels is of paramount importance to ensure the safety of food products as well as human health. In this case, with the development and progress of electric/photo detecting, nanomaterials, and nucleic acid aptamer technology, their incorporation-driven evolving electrochemiluminescence aptasensing strategy has presented the hopeful potentials in identifying the residual amounts of different antibiotics toward sensitivity, economy, and practicality. In this context, we reviewed the up-to-date development of ECL aptasensors with aptamers as recognition elements and nanomaterials as the active elements for quantitative sensing the residual antibiotics in foodstuff and agriculture-related matrices, dissected the unavoidable challenges, and debated the upcoming prospects.
Collapse
Affiliation(s)
- Raed H Althomali
- Department of Chemistry, College of Arts and Science, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | | | | | - Wajeeh Kamal Hasan
- Department of Radiology and Sonar Technologies, Al Rafidain University College, Bagdad, Iraq
| | - Djakhangirova Gulnoza
- Department of Food Products Technology, Tashkent Institute of Chemical Technology, Tashkent, Uzbekistan
| | | | - Mohammed Kadhem Abid
- Department of Anesthesia, College of Health & Medical Technology, Al-Ayen University, Thi-Qar, Iraq
| | | | - Ali Alsalamyh
- College of Technical Engineering, Imam Jafar Al-Sadiq University, Al-Muthanna, Iraq
| | - Ashima Juyal
- Division of Research & Innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| |
Collapse
|
5
|
Pan Y, Shan D, Ding L, Yang X, Wang J, Wu B, Ren H. Ultra-fast Redox Pulse for Stable Electrochemiluminescence on AuNP-Based Biosensors and Mechanism Investigation. Anal Chem 2023; 95:2975-2982. [PMID: 36576968 DOI: 10.1021/acs.analchem.2c04826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A novel sandwich-type biosensor denoted as "MIP-analyte-Ab" was constructed on a glassy carbon electrode modified with gold nanoparticles (AuNPs@GCE), which is dedicated to explore a general solution for electrochemical tests in a relatively high potential range on Au electrodes. In particular, parasitic reactions of Au oxidation severely hindered the electrochemiluminescence (ECL) reactions of the Ru(bpy)32+/tripropylamine (TPrA) system. In this work, we designed an ultra-fast redox pulse to alleviate reversible oxidation of Au with a potential range of -0.5 to 0.9 V. Stable ECL signals were generated in the last 3 ms of each run (RSD = 5.86%), and interesting mechanisms were revealed. The ultra-high-frequency sampler indicated that free diffusion of TPrA•+ was the rate-determining step at 0.9 V, and it followed a totally different route with ECL at 1.3 V. Furthermore, we proposed a particular ECL reaction route at 0.9 V with C5 desosamine of the analyte, azithromycin, involved for the first time, based on results of radical identification. We believe that our work paved the way for the application of Au-based sandwich-type biosensors in environmental monitoring.
Collapse
Affiliation(s)
- Yao Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, China
| | - Dan Shan
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing210094, China
| | - Lili Ding
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, China
| | - Xudong Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, China
| | - Jinfeng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, China
| |
Collapse
|
6
|
Mostafazadeh R, Karimi-Maleh H, Ghaffarinejad A, Tajabadi F, Hamidian Y. Highly sensitive electrochemical sensor based on carbon paste electrode modified with graphene nanoribbon-CoFe 2O 4@NiO and ionic liquid for azithromycin antibiotic monitoring in biological and pharmaceutical samples. APPLIED NANOSCIENCE 2023; 13:1-10. [PMID: 36710715 PMCID: PMC9870783 DOI: 10.1007/s13204-023-02773-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/13/2023] [Indexed: 01/25/2023]
Abstract
In this report, Azithromycin (Azi) antibiotic was measured by carbon paste electrode (CPE) improved by graphene nanoribbon-CoFe2O4@NiO nanocomposite and 1-hexyl-3 methylimidazolium hexafluorophosphate (HMIM PF6) as an ionic liquid binder. The electrochemical behavior of Azi on the graphene nanoribbon-CoFe2O4@NiO/HMIM PF6/CPE is investigated by voltammetric methods, and the results showed that the modifiers improve the conductivity and electrochemical activity of the CPE. According to obtained data, the electrochemical behavior of Azi is related to pH. under optimum conditions, the sensor has linear ranges from 10 µM to 2 mM with a LOD of 0.66 µM. The effect of scan rate and chronoamperometry were studied, which showed that the Azi electro-oxidation is diffusion controlled with the diffusion coefficient of 9.22 × 10-6 cm2/s. The reproducibility (3.15%), repeatability (2.5%), selectivity, and stability (for 30 days) tests were investigated, which results were acceptable. The actual sample analysis confirmed that the proposed sensor is an appropriate electrochemical tool for Azi determination in urine and Azi capsule.
Collapse
Affiliation(s)
- Reza Mostafazadeh
- Research Laboratory of Real Samples Analysis, Faculty of Chemistry, Iran University of Science and Technology (IUST), Tehran, 1684613114 Iran
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, PO Box 31787-316, Karaj, Iran
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, Xiyuan Ave, P.O. Box 611731, Chengdu, People’s Republic of China
| | - Ali Ghaffarinejad
- Research Laboratory of Real Samples Analysis, Faculty of Chemistry, Iran University of Science and Technology (IUST), Tehran, 1684613114 Iran
- Electroanalytical Chemistry Research Center, Iran University of Science and Technology (IUST), Tehran, 1684613114 Iran
| | - Fariba Tajabadi
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, PO Box 31787-316, Karaj, Iran
| | - Yasamin Hamidian
- Department of Chemistry, K. N. Toosi University of Technology, Tehran, 16315-1618 Iran
| |
Collapse
|
7
|
Recent Advances in Molecularly Imprinted Polymers for Antibiotic Analysis. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010335. [PMID: 36615529 PMCID: PMC9822428 DOI: 10.3390/molecules28010335] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/16/2022] [Accepted: 12/18/2022] [Indexed: 01/04/2023]
Abstract
The abuse and residues of antibiotics have a great impact on the environment and organisms, and their determination has become very important. Due to their low contents, varieties and complex matrices, effective recognition, separation and enrichment are usually required prior to determination. Molecularly imprinted polymers (MIPs), a kind of highly selective polymer prepared via molecular imprinting technology (MIT), are used widely in the analytical detection of antibiotics, as adsorbents of solid-phase extraction (SPE) and as recognition elements of sensors. Herein, recent advances in MIPs for antibiotic residue analysis are reviewed. Firstly, several new preparation techniques of MIPs for detecting antibiotics are briefly introduced, including surface imprinting, nanoimprinting, living/controlled radical polymerization, and multi-template imprinting, multi-functional monomer imprinting and dummy template imprinting. Secondly, several SPE modes based on MIPs are summarized, namely packed SPE, magnetic SPE, dispersive SPE, matrix solid-phase dispersive extraction, solid-phase microextraction, stir-bar sorptive extraction and pipette-tip SPE. Thirdly, the basic principles of MIP-based sensors and three sensing modes, including electrochemical sensing, optical sensing and mass sensing, are also outlined. Fourthly, the research progress on molecularly imprinted SPEs (MISPEs) and MIP-based electrochemical/optical/mass sensors for the detection of various antibiotic residues in environmental and food samples since 2018 are comprehensively reviewed, including sulfonamides, quinolones, β-lactams and so on. Finally, the preparation and application prospects of MIPs for detecting antibiotics are outlined.
Collapse
|
8
|
Afsharara H, Asadian E, Mostafiz B, Banan K, Bigdeli SA, Hatamabadi D, Keshavarz A, Hussain CM, Keçili R, Ghorbani-Bidkorpeh F. Molecularly imprinted polymer-modified carbon paste electrodes (MIP-CPE): A review on sensitive electrochemical sensors for pharmaceutical determinations. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
9
|
Novel Synthesis of Ca2+-Doped MgAl2O3-G-SiO2 Mesoporous Nanospheres toward Sensing Effects for Selective Electrochemical Performance of Azithromycin. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0071-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
10
|
Tarek Mahmoud S, Moffid MA, Sayed RM, Mostafa EA. Core shell stationary phase for a novel separation of some COVID-19 used drugs by UPLC-MS/MS Method: Study of grapefruit consumption impact on their pharmacokinetics in rats. Microchem J 2022; 181:107769. [PMID: 35855210 PMCID: PMC9284531 DOI: 10.1016/j.microc.2022.107769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/11/2022] [Accepted: 07/06/2022] [Indexed: 12/15/2022]
Abstract
A sensitive and selective UPLC-MS/MS method was developed for the synchronized determination of four drugs used in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), namely, azithromycin, apixaban, dexamethasone, and favipiravir in rat plasma. using a Poroshell 120 EC-C18 column (50 mm × 4.6 mm, 2.7 m) with a high-resolution ESI tandem mass spectrometer detection with multiple reaction monitoring. We used an Agilent Poroshell column, which is characterized by a stationary phase based on non-porous core particles. With a remarkable improvement in the number of theoretical plates and low column backpressure. In addition, the developed method was employed in studying the potential food-drug interaction of grapefruit juice (GFJ) with the selected drugs which affects their pharmacokinetics in rats. The LC-MS/MS operated in positive and negative ionization mode using two internal standards: moxifloxacin and chlorthalidone, respectively. Liquid- liquid extraction of the cited drugs from rat plasma was accomplished using diethyl ether: dichloromethane (70:30, v/v). The analytes were separated using methanol: 0.1 % formic acid in water (95: 5, v/v) as a mobile phase in isocratic mode of elution pumped at a flow rate of 0.3 mL/min. A detailed validation of the bio-analytical method was performed in accordance with US-FDA and EMA guidelines. Concerning the in vivo pharmacokinetic study, the statistical significance between the results of the test groups receiving GFJ along with the cited drugs and the control group was assessed demonstrating that GFJ increased the plasma concentration of azithromycin, apixaban, and dexamethasone. Accordingly, this food-drug interaction requires cautious ingestion of GFJ in patients using (SARS-CoV-2) medications as it can produce negative effects in the safety of the drug therapy. A potential drug-drug interaction is also suggested between those medications requiring a suitable dose adjustment.
Collapse
Affiliation(s)
- Sally Tarek Mahmoud
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo 11562, Egypt
| | - Marwa A Moffid
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo 11562, Egypt
| | - Rawda M Sayed
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo 11562, Egypt
| | - Eman A Mostafa
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo 11562, Egypt
| |
Collapse
|
11
|
Recent Trends in the Development of Carbon-Based Electrodes Modified with Molecularly Imprinted Polymers for Antibiotic Electroanalysis. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10070243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Antibiotics are antibacterial agents applied in human and veterinary medicine. They are also employed to stimulate the growth of food-producing animals. Despite their benefits, the uncontrolled use of antibiotics results in serious problems, and therefore their concentration levels in different foods as well as in environmental samples were regulated. As a consequence, there is an increasing demand for the development of sensitive and selective analytical tools for antibiotic reliable and rapid detection. These requirements are accomplished by the combination of simple, cost-effective and affordable electroanalytical methods with molecularly imprinted polymers (MIPs) with high recognition specificity, based on their “lock and key” working principle, used to modify the electrode surface, which is the “heart” of any electrochemical device. This review presents a comprehensive overview of MIP-modified carbon-based electrodes developed in recent years for antibiotic detection. The MIP preparation and electrode modification procedures, along with the performance characteristics of sensors and analytical methods, as well as the applications for the antibiotics’ quantification from different matrices (pharmaceutical, biological, food and environmental samples), are discussed. The information provided by this review can inspire researchers to go deeper into the field of MIP-modified sensors and to develop efficient means for reliable antibiotic determination.
Collapse
|
12
|
Sabzehmeidani MM, Kazemzad M. Quantum dots based sensitive nanosensors for detection of antibiotics in natural products: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:151997. [PMID: 34848263 DOI: 10.1016/j.scitotenv.2021.151997] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/09/2021] [Accepted: 11/23/2021] [Indexed: 05/18/2023]
Abstract
Residual antibiotics in food products originated from administration of the antibiotics to animals may be accumulated through food metabolism in the human body and endanger safety and health. Thus, developing a prompt and accurate way for detection of antibiotics is a crucial issue. The zero-dimensional fluorescent probes including metals based, carbon and graphene quantum dots (QDs), are highly sensitive materials to use for the detection of a wide range of antibiotics in natural products. These QDs demonstrate unique optical properties like tunable photoluminescence (PL) and excitation-wavelength dependent emission. This study investigates the trends related to carbon and metal based QDs preparation and modification, and their diverse detection application. We discuss the performance of QDs based sensors application in various detection systems such as photoluminescence, photoelectrochemical, chemiluminescence, electrochemiluminescence, colorimetric, as well as describing their working principles in several samples. The detecting mechanism of a QDs-based sensor is dependent on its properties and specific interactions with particular antibiotics. This review also tries to describe environmental application and future perspective of QDs for antibiotics detection.
Collapse
Affiliation(s)
| | - Mahmood Kazemzad
- Department of Energy, Materials and Energy Research Center, Tehran 14155-477, Iran.
| |
Collapse
|
13
|
Da Ruos J, Baldo MA, Daniele S. Analytical Methods for the Determination of Major Drugs Used for the Treatment of COVID-19. A Review. Crit Rev Anal Chem 2022; 53:1698-1732. [PMID: 35195461 DOI: 10.1080/10408347.2022.2039094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
At the beginning of the COVID-19 outbreak (end 2019 - 2020), therapeutic treatments based on approved drugs have been the fastest approaches to combat the new coronavirus pandemic. Nowadays several vaccines are available. However, the worldwide vaccination program is going to take a long time and its success will depend on the vaccine public's acceptance. Therefore, outside of vaccination, the repurposing of existing antiviral, anti-inflammatory and other types of drugs, have been considered an alternative medical strategy for the COVI-19 infection. Due to the broad clinical potential of the drugs, but also to their possible side effects, analytical methods are needed to monitor the drug concentrations in biological fluids and pharmaceutical products. This review deals with analytical methods developed in the period 2015 - July 2021 to detect potential drugs that, according to a literature survey, have been taken into consideration for the treatment of COVID-19. The drugs considered here have been selected on the basis of the number of articles published in the period January 2020-July 2021, using the combination of the keywords: COVID-19 and drugs or SARS-CoV-2 and drugs. A section is also devoted to monoclonal antibodies. Over the period considered, the analytical methods have been employed in a variety of real samples, such as body fluids (plasma, blood and urine), pharmaceutical products, environmental matrices and food.
Collapse
Affiliation(s)
- Jessica Da Ruos
- Department of Molecular Sciences and Nanosystems, University Ca' Foscari Venice, Mestre-Venezia, Italy
| | - M Antonietta Baldo
- Department of Molecular Sciences and Nanosystems, University Ca' Foscari Venice, Mestre-Venezia, Italy
| | - Salvatore Daniele
- Department of Molecular Sciences and Nanosystems, University Ca' Foscari Venice, Mestre-Venezia, Italy
| |
Collapse
|
14
|
Ultrasensitive electrochemiluminescence sensor based on perovskite quantum dots coated with molecularly imprinted polymer for prometryn determination. Food Chem 2022; 370:131353. [PMID: 34788964 DOI: 10.1016/j.foodchem.2021.131353] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 12/11/2022]
Abstract
A highly effective molecularly imprinted electrochemiluminescence sensor was constructed for prometryn determination in environmental and biological samples by using perovskite quantum dots coated with a molecularly imprinted silica layer (MIP/CsPbBr3-QDs) as the recognition and response element. MIP/CsPbBr3-QDs were immobilized on a glassy carbon electrode (GCE) through electropolymerization, and the electrochemiluminescence (ECL) response of MIP/CsPbBr3-QDs could be motivated under the condition of H2O2 as co-reactant. ECL signal was selectively quenched with prometryn by hindering electron transfer and directly proportional to the logarithm of prometryn concentration (0.10-500.0 μg/L) with a correlation coefficient of 0.9960. Limits of detection in fish and seawater samples were 0.010 μg/kg and 0.050 μg/L, respectively. Excellent recoveries of 88.0%-106.0% were acquired for fish and seawater samples with a relative standard deviation below 4.2%. The constructed MIECL sensor based on MIP/CsPbBr3-QDs showed good stability, accuracy, and precision for sensitive detection of prometryn in aquaculture products and environmental samples.
Collapse
|
15
|
Development of a molecular imprinted electrochemiluminescence sensor for amitriptyline detection: From MD simulations to experimental implementation. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
16
|
Pan Y, Shan D, Ding LL, Yang XD, Xu K, Huang H, Wang JF, Ren HQ. Developing a generally applicable electrochemical sensor for detecting macrolides in water with thiophene-based molecularly imprinted polymers. WATER RESEARCH 2021; 205:117670. [PMID: 34583204 DOI: 10.1016/j.watres.2021.117670] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 08/30/2021] [Accepted: 09/11/2021] [Indexed: 05/05/2023]
Abstract
Our screening data revealed the threat macrolide antibiotics, especially azithromycin (AZN), posed to human health with its increasing occurrence in water environment. The electrochemical sensor based on molecularly imprinted polymer (MIP) is a promising platform that caters for the next generation of intelligent wastewater treatment plants (WWTPs) by virtue of its wide tolerance to water from all sources and in-situ monitoring. However, low initiation potentials of cross-linking monomers contributed by the electron-rich circumstance allowed them to usurp sites designed for functional monomers when electrically stimulated, leading to an unsatisfactory binding capacity. Another uncertainty is that multiple reaction sites of cross-linking monomers granted them complex polymerization routes and made it difficult to ensure the consistency of preparation. Serval monomers had been investigated with electrochemical tools and the performance of sensors constructed with these monomers were compared in this study. Based on the results, we proposed a protocol in which a novel functional monomer possessing a stronger electron-donating group, phenyl, was adopted to compete for the dominance in electropolymerization. Beyond that, the cross-linking monomer was modified with electron-withdrawing groups to raise its initiation potential. A monothiophene with a moderate initiation potential was also recruited as the linker to address the steric hindrance. In this way, polymerization proceeded in a specific order. It is worth mentioning that the Marangoni flow is an ideal tool to deal with the Coffee-ring deposition while drop-casting. The resulting sensor showed good performance with a limitation of detection (LOD) of 0.120 μM for AZN and a satisfactory selectivity, and the design can be applied to constructing sensors for a variety of macrolide antibiotics.
Collapse
Affiliation(s)
- Yao Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Dan Shan
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Li-Li Ding
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xu-Dong Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Ke Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Hui Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jin-Feng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Hong-Qiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
17
|
Kadhem AJ, Gentile GJ, Fidalgo de Cortalezzi MM. Molecularly Imprinted Polymers (MIPs) in Sensors for Environmental and Biomedical Applications: A Review. Molecules 2021; 26:6233. [PMID: 34684813 PMCID: PMC8540986 DOI: 10.3390/molecules26206233] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/06/2021] [Accepted: 10/12/2021] [Indexed: 01/30/2023] Open
Abstract
Molecular imprinted polymers are custom made materials with specific recognition sites for a target molecule. Their specificity and the variety of materials and physical shapes in which they can be fabricated make them ideal components for sensing platforms. Despite their excellent properties, MIP-based sensors have rarely left the academic laboratory environment. This work presents a comprehensive review of recent reports in the environmental and biomedical fields, with a focus on electrochemical and optical signaling mechanisms. The discussion aims to identify knowledge gaps that hinder the translation of MIP-based technology from research laboratories to commercialization.
Collapse
Affiliation(s)
- Abbas J. Kadhem
- Department of Civil and Environmental Engineering, University of Missouri, E2509 Lafferre Hall, Columbia, MO 65211, USA;
| | - Guillermina J. Gentile
- Department of Chemical Engineering, Instituto Tecnológico de Buenos Aires, Lavardén 315, Buenos Aires C1437FBG, Argentina;
| | - Maria M. Fidalgo de Cortalezzi
- Department of Civil and Environmental Engineering, University of Missouri, E2509 Lafferre Hall, Columbia, MO 65211, USA;
| |
Collapse
|
18
|
Fan W, Yang D, Ding N, Chen P, Wang L, Tao G, Zheng F, Ji S. Application of core-satellite polydopamine-coated Fe 3O 4 nanoparticles-hollow porous molecularly imprinted polymer combined with HPLC-MS/MS for the quantification of macrolide antibiotics. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1412-1421. [PMID: 33683249 DOI: 10.1039/d0ay02025g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Core-satellite-structured magnetic nanosorbents (MNs) used for the selective extraction of macrolide antibiotics (MACs) were prepared in this study. The MNs (core-satellite polydopamine-coated Fe3O4 nanoparticles-hollow porous molecularly imprinted polymer) consisted of polydopamine-coated Fe3O4 nanoparticles (Fe3O4@PDA) "core" linked to numerous hollow porous molecularly imprinted polymer (HPMIP) "satellites" with bridging amine functional groups. It is worth mentioning that HPMIPs act as "anchors" for selectively capturing target molecules. Polymers were characterized using TEM, SEM, FT-IR, VSM, and TGA and applied as magnetic dispersive solid-phase extraction (MDSPE) sorbents for the enrichment of trace MACs from a complex food matrix prior to quantification by HPLC-MS/MS. Nanocomposites revealed outstanding magnetic properties (36.1 emu g-1), a high adsorption capacity (103.6 μmol g-1), selectivity (IF = 3.2), and fast kinetic binding (20 min) for MACs. The multiple advantages of the novel core-satellite-structured magnetic molecularly imprinted nanosorbents were confirmed, which makes us believe that the preparation method of the core-satellite MNs can be applied to other fields involving molecular imprinting technology.
Collapse
Affiliation(s)
- Wenjia Fan
- Department of Pharmaceutical Analysis, China Pharmaceutical University, No. 24, Tongjiaxiang, Nanjing 210009, China.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Bitew Z, Amare M. Recent reports on electrochemical determination of selected antibiotics in pharmaceutical formulations: A mini review. Electrochem commun 2020. [DOI: 10.1016/j.elecom.2020.106863] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
20
|
Tarannum N, Khatoon S, Dzantiev BB. Perspective and application of molecular imprinting approach for antibiotic detection in food and environmental samples: A critical review. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107381] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
21
|
A review of pretreatment and analysis of macrolides in food (Update Since 2010). J Chromatogr A 2020; 1634:461662. [PMID: 33160200 DOI: 10.1016/j.chroma.2020.461662] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/10/2020] [Accepted: 10/22/2020] [Indexed: 01/29/2023]
Abstract
Macrolides are versatile broad-spectrum antibiotics whose activity stems from the presence of a macrolide ring. They are widely used in veterinary medicine to prevent and treat disease. However, because of their improper use and the absence of effective regulation, these compounds pose a threat to human health and the environment. Consequently, simple, quick, economical, and effective techniques are required to analyze macrolides in animal-derived foods, biological samples, and environmental samples. This paper presents a comprehensive overview of the pretreatment and analytical methods used for macrolides in various sample matrices, focusing on the developments since 2010. Pretreatment methods mainly include liquid-liquid extraction, solid-phase extraction, matrix solid-phase dispersion, and microextraction methods. Detection and quantification methods mainly include liquid chromatography (coupled to mass spectrometry or other detectors), electrochemical methods, capillary electrophoresis, and immunoassays. Furthermore, a comparison between the pros and cons of these methods and prospects for future developments are also discussed.
Collapse
|
22
|
Dual emission nonionic molecular imprinting conjugated polythiophenes-based paper devices and their nanofibers for point-of-care biomarkers detection. Biosens Bioelectron 2020; 160:112211. [DOI: 10.1016/j.bios.2020.112211] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/31/2020] [Accepted: 04/09/2020] [Indexed: 12/19/2022]
|
23
|
Stoian IA, Iacob BC, Dudaș CL, Barbu-Tudoran L, Bogdan D, Marian IO, Bodoki E, Oprean R. Biomimetic electrochemical sensor for the highly selective detection of azithromycin in biological samples. Biosens Bioelectron 2020; 155:112098. [DOI: 10.1016/j.bios.2020.112098] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/04/2020] [Accepted: 02/12/2020] [Indexed: 11/24/2022]
|
24
|
Rico-Yuste A, Carrasco S. Molecularly Imprinted Polymer-Based Hybrid Materials for the Development of Optical Sensors. Polymers (Basel) 2019; 11:E1173. [PMID: 31336762 PMCID: PMC6681127 DOI: 10.3390/polym11071173] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/04/2019] [Accepted: 07/08/2019] [Indexed: 12/18/2022] Open
Abstract
We report on the development of new optical sensors using molecularly imprinted polymers (MIPs) combined with different materials and explore the novel strategies followed in order to overcome some of the limitations found during the last decade in terms of performance. This review pretends to offer a general overview, mainly focused on the last 3 years, on how the new fabrication procedures enable the synthesis of hybrid materials enhancing not only the recognition ability of the polymer but the optical signal. Introduction describes MIPs as biomimetic recognition elements, their properties and applications, emphasizing on each step of the fabrication/recognition procedure. The state of the art is presented and the change in the publication trend between electrochemical and optical sensor devices is thoroughly discussed according to the new fabrication and micro/nano-structuring techniques paving the way for a new generation of MIP-based optical sensors. We want to offer the reader a different perspective based on the materials science in contrast to other overviews. Different substrates for anchoring MIPs are considered and distributed in different sections according to the dimensionality and the nature of the composite, highlighting the synergetic effect obtained as a result of merging both materials to achieve the final goal.
Collapse
Affiliation(s)
| | - Sergio Carrasco
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
25
|
Tarannum N, Hendrickson OD, Khatoon S, Zherdev AV, Dzantiev BB. Molecularly imprinted polymers as receptors for assays of antibiotics. Crit Rev Anal Chem 2019; 50:291-310. [DOI: 10.1080/10408347.2019.1626697] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Nazia Tarannum
- Department of Chemistry, Chaudhary Charan Singh University, Meerut, India
| | - Olga D. Hendrickson
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Shahjadi Khatoon
- Department of Chemistry, Chaudhary Charan Singh University, Meerut, India
| | - Anatoly V. Zherdev
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Boris B. Dzantiev
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
26
|
Jafari S, Dehghani M, Nasirizadeh N, Azimzadeh M. An azithromycin electrochemical sensor based on an aniline MIP film electropolymerized on a gold nano urchins/graphene oxide modified glassy carbon electrode. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.09.053] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
27
|
An JY, Azizov S, Kumar AP, Lee YI. Quantitative Analysis of Artificial Sweeteners by Capillary Electrophoresis with a Dual-Capillary Design of Molecularly Imprinted Solid-Phase Extractor. B KOREAN CHEM SOC 2018. [DOI: 10.1002/bkcs.11599] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ji-Yong An
- Department of Chemistry; Changwon National University; Changwon 641-773 Republic of Korea
| | - Shavkatjon Azizov
- Department of Chemistry; Changwon National University; Changwon 641-773 Republic of Korea
| | - Avvaru Praveen Kumar
- Department of Chemistry; Changwon National University; Changwon 641-773 Republic of Korea
| | - Yong-Ill Lee
- Department of Chemistry; Changwon National University; Changwon 641-773 Republic of Korea
| |
Collapse
|