1
|
Hou X, Ga L, Zhang X, Ai J. Advances in the application of logic gates in nanozymes. Anal Bioanal Chem 2024; 416:5893-5914. [PMID: 38488951 DOI: 10.1007/s00216-024-05240-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/17/2024]
Abstract
Nanozymes are a class of nanomaterials with biocatalytic function and enzyme-like activity, whose advantages include high stability, low cost, and mass production. They can catalyze the substrates of natural enzymes based on specific nanostructures and serve as substitutes for natural enzymes. Their applied research involves a wide range of fields such as biomedicine, environmental governance, agriculture, and food. Molecular logic gates are a new cross-disciplinary discipline, which can simulate the function of silicon circuits on a molecular scale, perform single or multiple input logic operations, and generate logic outputs. A molecular logic gate is a binary operation that converts an input signal into an output signal according to the rules of Boolean logic, generating two signals, a high level, and a low level. The high and low levels represent the "true" and "false" values of the logic gates, and their outputs correspond to "l" and "0" of the molecular logic gates, respectively. The combination of nanozymes and logic gates is a novel and attractive research direction, and the cross-application of the two brings new opportunities and ideas for various fields, such as the construction of efficient biocomputers, intelligent drug delivery systems, and the precise diagnosis of diseases. This review describes the application of logic gates based on nanozymes, which is expected to provide a certain theoretical foundation for researchers' subsequent studies.
Collapse
Affiliation(s)
- Xiangru Hou
- College of Chemistry and Enviromental Science, Inner Mongolia Key Laboratory of Environmental Chemistry, Inner Mongolia Normal University, 81 zhaowudalu, Hohhot, 010022, China
| | - Lu Ga
- College of Pharmacy, Inner Mongolia Medical University, Jinchuankaifaqu, Hohhot, 010110, China
| | - Xin Zhang
- College of Chemical Engineering, Inner Mongolia University of Technology, 49 Aimin Road, Hohhot, 010051, China.
| | - Jun Ai
- College of Chemistry and Enviromental Science, Inner Mongolia Key Laboratory of Environmental Chemistry, Inner Mongolia Normal University, 81 zhaowudalu, Hohhot, 010022, China.
| |
Collapse
|
2
|
Datta B, Bhatt P, Dutta G. A Redox Mediator-Free Highly Selective and Sensitive Electrochemical Aptasensor for Patulin Mycotoxin Detection in Apple Juice Using Ni-NiO Pseudocapacitive Nanomaterials. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5993-6005. [PMID: 38450613 DOI: 10.1021/acs.jafc.3c07886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Pseudocapacitive nanomaterials have recently gained significant attention in electrochemical biosensors due to their rapid response, long cycle life, high surface area, biomolecule compatibility, and superior energy storage capabilities. In our study, we introduce the potential of using Ni-NiO nanofilm's pseudocapacitive traits as transducer signals in electrochemical aptasensors. Capitalizing on the innate affinity between histidine and nickel, we immobilized histidine-tagged streptavidin (HTS) onto Ni-NiO-modified electrodes. Additionally, we employed a biolayer interferometry-based SELEX to generate biotinylated patulin aptamers. These aptamers, when placed on Ni-NiO-HTS surfaces, make a suitable biosensing platform for rapid patulin mycotoxin detection in apple juice using electrochemical amperometry in microseconds. The novelty lies in optimizing pseudocapacitive nanomaterials structurally and electrochemically, offering the potential for redox mediator-free electrochemical aptasensors. Proof-of-concept is conducted by applying this surface for the ultrasensitive detection of a model analyte, patulin mycotoxin. The aptamer-functionalized bioelectrode showed an excellent linear response (10-106 fg/mL) and an impressive detection limit (1.65 fg/mL, +3σ of blank signal). Furthermore, reproducibility tests yielded a low relative standard deviation of 0.51%, indicating the good performance of the developed biosensor. Real sample analysis in freshly prepared apple juice revealed no significant difference (P < 0.05) in current intensity between spiked and real samples. The sensor interface maintained excellent stability for up to 2 weeks (signal retention 96.45%). The excellent selectivity, stability, and sensitivity of the electrochemical aptasensor exemplify the potential for using nickel-based pseudocapacitive nanomaterials for a wide variety of electrochemical sensing applications.
Collapse
Affiliation(s)
- Brateen Datta
- NanoBiosensors and Biodevices Lab, School of Medical Sciences and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Praveena Bhatt
- Department of Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute (CFTRI), Mysore 570020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP 201002, India
| | - Gorachand Dutta
- NanoBiosensors and Biodevices Lab, School of Medical Sciences and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
3
|
Imanzadeh H, Sefid-Sefidehkhan Y, Afshary H, Afruz A, Amiri M. Nanomaterial-based electrochemical sensors for detection of amino acids. J Pharm Biomed Anal 2023; 230:115390. [PMID: 37079932 DOI: 10.1016/j.jpba.2023.115390] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/24/2023] [Accepted: 04/08/2023] [Indexed: 04/22/2023]
Abstract
Amino acids are the building blocks of proteins and muscle tissue. They also play a significant role in physiological processes related to energy, recovery, mood, muscle and brain function, fat burning and stimulating growth hormone or insulin secretion. Accurate determination of amino acids in biological fluids is necessary because any changes in their normal ranges in the body warn diseases like kidney disease, liver disease, type 2 diabetes and cancer. To date, many methods such as liquid chromatography, fluorescence mass spectrometry, etc. have been used for the determination of amino acids. Compared with the above techniques, electrochemical systems using modified electrodes offer a rapid, accurate, cheap, real-time analytical path through simple operations with high selectivity and sensitivity. Nanomaterials have found many interests to create smart electrochemical sensors in different application fields e.g. biomedical, environmental, and food analysis because of their exceptional properties. This review summarizes recent advances in the development of nanomaterial-based electrochemical sensors in 2017-2022 for the detection of amino acids in various matrices such as serum, urine, blood and pharmaceuticals.
Collapse
Affiliation(s)
- Hamideh Imanzadeh
- Department of Chemistry, University of Mohaghegh Ardabili, Ardabil, Iran
| | | | - Hosein Afshary
- Department of Chemistry, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Ali Afruz
- Department of Chemistry, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Mandana Amiri
- Department of Chemistry, University of Mohaghegh Ardabili, Ardabil, Iran.
| |
Collapse
|
4
|
Zhang M, Qian M, Huang H, Gao Q, Zhang C, Qi H. Carboxyl group bearing iridium(III) solvent complex as photoluminescence and electrochemiluminescence probe for the detection of histidine. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
5
|
Yu L, Liu M, Zhang Y, Ni Y, Wu S, Liu R. Magnetically induced self-assembly DNAzyme electrochemical biosensor based on gold-modified α-Fe 2O 3/Fe 3O 4heterogeneous nanoparticles for sensitive detection of Ni 2. NANOTECHNOLOGY 2021; 33:095601. [PMID: 34794130 DOI: 10.1088/1361-6528/ac3b0e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
A magnetically induced self-assembly DNAzyme electrochemical biosensor based on gold-modifiedα-Fe2O3/Fe3O4heterogeneous nanoparticles was successfully fabricated to detect Nickel(II) (Ni2+). The phase composition and magnetic properties ofα-Fe2O3/Fe3O4heterogeneous nanoparticles controllably prepared by the citric acid (CA) sol-gel method were investigated in detail. Theα-Fe2O3/Fe3O4heterogeneous nanoparticles were modified by using trisodium citrate as reducing agent, and the magnetically induced self-assemblyα-Fe2O3/Fe3O4-Au nanocomposites were obtained. The designed Ni2+-dependent DNAzyme consisted of the catalytic chain modified with the thiol group (S1-SH) and the substrate chain modified with methylene blue (S2-MB). The MGCE/α-Fe2O3/Fe3O4-Au/S1/BSA/S2 electrochemical sensing platform was constructed and differential pulse voltammetry was applied for electrochemical detection. Under the optimum experimental parameters, the detection range of the biosensor was 100 pM-10μM (R2 = 0.9978) with the limit of detection of 55 pM. The biosensor had high selectivity, acceptable stability, and reproducibility (RSD = 4.03%).
Collapse
Affiliation(s)
- Lulu Yu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Min Liu
- The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang 212300, People's Republic of China
| | - Yanling Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Yun Ni
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Shaobo Wu
- Zhenjiang Hospital of Chinese Traditional and Western Medicine, Zhenjiang 212013, People's Republic of China
| | - Ruijiang Liu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, People's Republic of China
| |
Collapse
|
6
|
An overview of Structured Biosensors for Metal Ions Determination. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9110324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The determination of metal ions is important for nutritional and toxicological assessment. Atomic spectrometric techniques are highly efficient for the determination of these species, but the high costs of acquisition and maintenance hinder the application of these techniques. Inexpensive alternatives for metallic element determination are based on dedicated biosensors. These devices mimic biological systems and convert biochemical processes into physical outputs and can be used for the sensitive and selective determination of chemical species such as cations. In this work, an overview of the proposed biosensors for metal ions determination was carried out considering the last 15 years of publications. Statistical data on the applications, response mechanisms, instrumentation designs, applications of nanomaterials, and multielement analysis are herein discussed.
Collapse
|
7
|
Bollella P, Kadambar VK, Melman A, Katz E. Reconfigurable Implication and Inhibition Boolean logic gates based on NAD
+
‐dependent enzymes: Application to signal‐controlled biofuel cells and molecule release. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Paolo Bollella
- Department of Chemistry and Biomolecular Science Clarkson University Potsdam New York USA
- Dipartimento di Chimica Università degli Studi di Bari “Aldo Moro” 70125 Bari Italy
| | | | - Artem Melman
- Department of Chemistry and Biomolecular Science Clarkson University Potsdam New York USA
| | - Evgeny Katz
- Department of Chemistry and Biomolecular Science Clarkson University Potsdam New York USA
| |
Collapse
|
8
|
Salman MS, Znad H, Hasan MN, Hasan MM. Optimization of innovative composite sensor for Pb(II) detection and capturing from water samples. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105765] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
9
|
Kaniewska K, Bollella P, Katz E. Implication and Inhibition Boolean Logic Gates Mimicked with Enzyme Reactions. Chemphyschem 2020; 21:2150-2154. [DOI: 10.1002/cphc.202000653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/14/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Klaudia Kaniewska
- Department of Chemistry and Biomolecular Science Clarkson University Potsdam NY 13699 USA
- Faculty of Chemistry Biological and Chemical Research Center University of Warsaw 101 Żwirki i Wigury Av. 02-089 Warsaw Poland
| | - Paolo Bollella
- Department of Chemistry and Biomolecular Science Clarkson University Potsdam NY 13699 USA
| | - Evgeny Katz
- Department of Chemistry and Biomolecular Science Clarkson University Potsdam NY 13699 USA
| |
Collapse
|