1
|
Zhang Z, Zhang J, Zhang Z, Du X, Hao X, An X, Guan G, Li J, Liu Z. Cross-linked PVDF-b-PAA composite binder enhanced LiMn2O4/C film based electrode for selective extraction of lithium from brine with a high Mg/Li ratio. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
2
|
Huy VPH, Kim IT, Hur J. Ga 2Te 3-Based Composite Anodes for High-Performance Sodium-Ion Batteries. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6231. [PMID: 36143546 PMCID: PMC9504644 DOI: 10.3390/ma15186231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Recently, metal chalcogenides have received considerable attention as prospective anode materials for sodium-ion batteries (SIBs) because of their high theoretical capacities based on their alloying or conversion reactions. Herein, we demonstrate a gallium(III) telluride (Ga2Te3)-based ternary composite (Ga2Te3-TiO2-C) synthesized via a simple high-energy ball mill as a great candidate SIB anode material for the first time. The electrochemical performance, as well as the phase transition mechanism of Ga2Te3 during sodiation/desodiation, is investigated. Furthermore, the effect of C content on the performance of Ga2Te3-TiO2-C is studied using various electrochemical analyses. As a result, Ga2Te3-TiO2-C with an optimum carbon content of 10% (Ga2Te3-TiO2-C(10%)) exhibited a specific capacity of 437 mAh·g-1 after 300 cycles at 100 mA·g-1 and a high-rate capability (capacity retention of 96% at 10 A·g-1 relative to 0.1 A·g-1). The good electrochemical properties of Ga2Te3-TiO2-C(10%) benefited from the presence of the TiO2-C hybrid buffering matrix, which improved the mechanical integrity and electrical conductivity of the electrode. This research opens a new direction for the improvement of high-performance advanced SIB anodes with a simple synthesis process.
Collapse
|
3
|
In Situ Electrochemical Derivation of Sodium-Tin Alloy as Sodium-Ion Energy Storage Devices Anode with Overall Electrochemical Characteristics. CRYSTALS 2022. [DOI: 10.3390/cryst12050575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Inspired by the fermentation of multiple small bread embryos to form large bread embryos, in this study, the expansion of tin foil inlaid with sodium rings in the process of repeated sodium inlaid and removal was utilized to maximum extent to realize the formation of sodium-tin alloy anode and the improvement of sodium storage characteristics. The special design of Sn foil inlaid with Na ring realized the in-situ electrochemical formation of fluffy porous sodium-tin alloy, effectively alleviated the volume expansion and shrinkage of non-electrochemical active Sn metal, and inhibited the generation of sodium dendrites. The abundance of sodium ions provided by the Na metal ring compensated for the active sodium components consumed during the repeated formation of SEI. When sodium-tin alloy in situ derived by Sn foil inlaid with Na ring was used as negative electrodes matched with SCDC and Na0.91MnO2 hexagonal tablets (NMO HTs) positive electrodes, the as-assembled sodium-ion energy storage devices present high specific capacity and excellent cycle stability.
Collapse
|
4
|
Li RR, Yang Z, He XX, Liu XH, Zhang H, Gao Y, Qiao Y, Li L, Chou SL. Binders for sodium-ion batteries: progress, challenges and strategies. Chem Commun (Camb) 2021; 57:12406-12416. [PMID: 34726685 DOI: 10.1039/d1cc04563f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Binders as a bridge in electrodes can bring various components together thus guaranteeing the integrity of electrodes and electronic contact during battery cycling. In this review, we summarize the recent progress of traditional binders and novel binders in the different electrodes of SIBs. The challenges faced by binders in terms of bond strength, wettability, thermal stability, conductivity, cost, and environment are also discussed in details. Correspondingly, the designing principle and advanced strategies of future research on SIB binders are also provided. Moreover, a general conclusion and perspective on the development of binder design for SIBs in the future are presented.
Collapse
Affiliation(s)
- Rong-Rong Li
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China. .,School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China.
| | - Zhuo Yang
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China.
| | - Xiang-Xi He
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China.
| | - Xiao-Hao Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China.
| | - Hang Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China.
| | - Yun Gao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China.
| | - Yun Qiao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China.
| | - Li Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China.
| | - Shu-Lei Chou
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China.
| |
Collapse
|
5
|
Huang J, Günther B, Achterhold K, Dierolf M, Pfeiffer F. Simultaneous two-color X-ray absorption spectroscopy using Laue crystals at an inverse-compton scattering X-ray facility. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:1874-1880. [PMID: 34738942 PMCID: PMC8570203 DOI: 10.1107/s1600577521009437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
X-ray absorption spectroscopy (XAS) is an element-selective technique that provides electronic and structural information of materials and reveals the essential mechanisms of the reactions involved. However, the technique is typically conducted at synchrotrons and usually only probes one element at a time. In this paper, a simultaneous two-color XAS setup at a laboratory-scale synchrotron facility is proposed based on inverse Compton scattering (ICS) at the Munich Compact Light Source (MuCLS), which is based on inverse Compton scattering (ICS). The setup utilizes two silicon crystals in a Laue geometry. A proof-of-principle experiment is presented where both silver (Ag) and palladium (Pd) K-edge X-ray absorption near-edge structure spectra were simultaneously measured. The simplicity of the setup facilitates its migration to other ICS facilities or maybe to other X-ray sources (e.g. a bending-magnet beamline). Such a setup has the potential to study reaction mechanisms and synergistic effects of chemical systems containing multiple elements of interest, such as a bimetallic catalyst system.
Collapse
Affiliation(s)
- Juanjuan Huang
- Chair of Biomedical Physics, Department of Physics, School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, 85748 Garching, Germany
| | - Benedikt Günther
- Chair of Biomedical Physics, Department of Physics, School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, 85748 Garching, Germany
| | - Klaus Achterhold
- Chair of Biomedical Physics, Department of Physics, School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, 85748 Garching, Germany
| | - Martin Dierolf
- Chair of Biomedical Physics, Department of Physics, School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, 85748 Garching, Germany
| | - Franz Pfeiffer
- Chair of Biomedical Physics, Department of Physics, School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, 85748 Garching, Germany
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, 81675 München, Germany
- Institute for Advanced Study, Technical University of Munich, 85748 Garching, Germany
| |
Collapse
|