1
|
Uruc S, Gorduk O, Sahin Y. Construction of Nonenzymatic Flexible Electrochemical Sensor for Glucose Using Bimetallic Copper Ferrite/Sulfur-Doped Graphene Oxide Water-Based Conductive Ink by Noninvasive Method. ACS APPLIED BIO MATERIALS 2025; 8:1451-1465. [PMID: 39915248 DOI: 10.1021/acsabm.4c01674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
Diabetes is a chronic disease that results in elevated blood glucose levels due to insufficient insulin production by the pancreas or impaired insulin utilization by the body. The development of effective tools for the in vitro detection of blood glucose is of paramount importance. Flexible electrodes serve as indispensable components in point-of-care systems, thus increasing accessibility and personalization in health monitoring. We present the preparation of handmade screen-printed electrode with water-based conductive ink for in vitro nonenzymatic glucose (Glu) determination at physiological pH values. The investigation aimed to identify the optimal conditions for formulating and composing the conductive ink used to create a copper ferrite/sulfur-doped graphene oxide/graphite/screen-printed electrode (CuFe2O4/S-GO/G/SPE). The resulting CuFe2O4/S-GO/G/SPE shows excellent glucose sensing ability with a limit of detection (LOD) of 2.93 μM. The superior determination at physiological pH is attributed to the complex structure formed by CuFe2O4 nanoparticles with glucose molecules in the basic pH conductive ink structure. Additionally, the excellent delocalization and conductivity of the S-GO particles in this complex structure contribute to improved performance. The study on artificial sweat samples resulted in achieving recovery values of 96.60% to 104.97%. In conclusion, the nonenzymatic and noninvasive Glu sensor printed with conductive ink containing CuFe2O4/S-GO/G on a flexible paper substrate surface demonstrated remarkable capabilities for determining Glu levels in artificial sweat samples. SPEs prepared with conductive ink produced by using these materials are promising candidates for use as electrodes in flexible and wearable sensor technology.
Collapse
Affiliation(s)
- Selen Uruc
- Department of Chemistry, Faculty of Arts and Science, Yildiz Technical University, TR34220 Istanbul, Türkiye
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Biruni University, TR34015 Istanbul, Türkiye
| | - Ozge Gorduk
- Department of Chemistry, Faculty of Arts and Science, Yildiz Technical University, TR34220 Istanbul, Türkiye
| | - Yucel Sahin
- Department of Chemistry, Faculty of Arts and Science, Yildiz Technical University, TR34220 Istanbul, Türkiye
| |
Collapse
|
2
|
Singh K, Maurya KK, Malviya M. Recent progress on nanomaterial-based electrochemical sensors for glucose detection in human body fluids. Mikrochim Acta 2025; 192:110. [PMID: 39878884 DOI: 10.1007/s00604-025-06972-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 01/10/2025] [Indexed: 01/31/2025]
Abstract
In the modern age, half of the population is facing various chronic illnesses due to glucose maintenance in the body, major causes of fatality and inefficiency. The early identification of glucose plays a crucial role in medical treatment and the food industry, particularly in diabetes diagnosis. In the past few years, non-enzymatic electrochemical glucose sensors have received a lot of interest for their ability to identify glucose levels accurately. Electrochemical biosensors are developing as a propitious solution for personalized health monitoring due to their accuracy, specificity, and affordability. This review article provides an observation of a variety of non-enzymatic glucose sensor resources, such as carbon nanomaterials, noble metals gold and silver, transition metal and their oxides, and porous material composites. Moreover, basic knowledge of the reaction mechanism of enzymatic and nonenzymatic glucose sensors are outlined and recent advancements in glucose sensors applications to various human body biofluids such as sweat, tears, urine, saliva, and blood are presented. Finally, this review summarizes electrochemical sensors for glucose detection in human body fluids, the challenges they faced, and their solutions.
Collapse
Affiliation(s)
- Kulveer Singh
- Indian Institute of Technology (BHU), Varanasi, 221005, India
| | | | - Manisha Malviya
- Indian Institute of Technology (BHU), Varanasi, 221005, India.
| |
Collapse
|
3
|
Ferlazzo A, Celesti C, Iannazzo D, Ampelli C, Giusi D, Costantino V, Neri G. Functionalization of Carbon Nanofibers with an Aromatic Diamine: Toward a Simple Electrochemical-Based Sensing Platform for the Selective Sensing of Glucose. ACS OMEGA 2024; 9:27085-27092. [PMID: 38947806 PMCID: PMC11209887 DOI: 10.1021/acsomega.4c00525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/24/2024] [Accepted: 03/04/2024] [Indexed: 07/02/2024]
Abstract
Despite a variety of glucose sensors being available today, the development of nonenzymatic devices for the determination of this biologically relevant analyte is still of particular interest in several applicative sectors. Here, we report the development of an impedimetric, enzyme-free electrochemical glucose sensor based on carbon nanofibers (CNFs) functionalized with an aromatic diamine via a simple wet chemistry functionalization. The electrochemical performance of the chemically modified carbon-based screen-printed electrodes (SPCEs) was evaluated by electrical impedance spectroscopy (EIS), demonstrating a high selectivity of the sensor for glucose with respect to other sugars, such as fructose and sucrose. The sensing parameters to obtain a reliable calibration curve and the selective glucose sensing mechanism are discussed here, highlighting the performance of this novel electrochemical sensor for the selective sensing of this important analyte. Two linear trends were noted, one at low concentrations (0-1200 μM) and the other from 1200 to 5000 μM. The limit of detection (LOD), calculated as the (standard error/slope)*3.3, was 18.64 μM. The results of this study highlight the performance of the developed novel electrochemical sensor for the selective sensing of glucose.
Collapse
Affiliation(s)
- Angelo Ferlazzo
- Department
of Chemical Sciences, University of Catania, Viale Andrea Doria, 6, I-95125 Catania, Italy
| | - Consuelo Celesti
- Department
of Engineering, University of Messina, Contrada Di Dio, I-98166 Messina, Italy
| | - Daniela Iannazzo
- Department
of Engineering, University of Messina, Contrada Di Dio, I-98166 Messina, Italy
| | - Claudio Ampelli
- Department
of Chemical, Biological, Pharmaceutical and Environmental Sciences
(ChiBioFarAm), University of Messina and
INSTM, Via F. Stagno
d’Alcontres 31, I-98166 Messina, Italy
| | - Daniele Giusi
- Department
of Chemical, Biological, Pharmaceutical and Environmental Sciences
(ChiBioFarAm), University of Messina and
INSTM, Via F. Stagno
d’Alcontres 31, I-98166 Messina, Italy
| | - Veronica Costantino
- Department
of Chemical, Biological, Pharmaceutical and Environmental Sciences
(ChiBioFarAm), University of Messina and
INSTM, Via F. Stagno
d’Alcontres 31, I-98166 Messina, Italy
| | - Giovanni Neri
- Department
of Engineering, University of Messina, Contrada Di Dio, I-98166 Messina, Italy
| |
Collapse
|
4
|
Bhaduri SN, Ghosh D, Debnath S, Biswas R, Chatterjee PB, Biswas P. Copper(II)-Incorporated Porphyrin-Based Porous Organic Polymer for a Nonenzymatic Electrochemical Glucose Sensor. Inorg Chem 2023; 62:4136-4146. [PMID: 36862998 DOI: 10.1021/acs.inorgchem.2c04072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
To date, the fabrication of multifunctional nanoplatforms based on a porous organic polymer for electrochemical sensing of biorelevant molecules has received considerable attention in the search for a more active, robust, and sensitive electrocatalyst. Here, in this report, we have developed a new porous organic polymer based on porphyrin (TEG-POR) from a polycondensation reaction between a triethylene glycol-linked dialdehyde and pyrrole. The Cu(II) complex of the polymer Cu-TEG-POR shows high sensitivity and a low detection limit for glucose electro-oxidation in an alkaline medium. The characterization of the as-synthesized polymer was done by thermogravimetric analysis (TGA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, and 13C CP-MAS solid-state NMR. The N2 adsorption/desorption isotherm was carried out at 77 K to analyze the porous property. TEG-POR and Cu-TEG-POR both show excellent thermal stability. The Cu-TEG-POR-modified GC electrode shows a low detection limit (LOD) value of 0.9 μM and a wide linear range (0.001-1.3 mM) with a sensitivity of 415.8 μA mM-1 cm-2 toward electrochemical glucose sensing. The interference of the modified electrode from ascorbic acid, dopamine, NaCl, uric acid, fructose, sucrose, and cysteine was insignificant. Cu-TEG-POR exhibits acceptable recovery for blood glucose detection (97.25-104%), suggesting its scope in the future for selective and sensitive nonenzymatic glucose detection in human blood.
Collapse
Affiliation(s)
- Samanka Narayan Bhaduri
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Howrah 711103, West Bengal, India
| | - Debojit Ghosh
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Howrah 711103, West Bengal, India
| | - Snehasish Debnath
- Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-CSMCRI, G. B. Marg, Bhavnagar 364002, Gujarat, India
| | - Rima Biswas
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Howrah 711103, West Bengal, India
| | - Pabitra B Chatterjee
- Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-CSMCRI, G. B. Marg, Bhavnagar 364002, Gujarat, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Papu Biswas
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Howrah 711103, West Bengal, India
| |
Collapse
|
5
|
Waqas M, Yang L, Wei Y, Sun Y, Yang F, Fan Y, Chen W. Controlled fabrication of nickel and cerium mixed nano-oxides supported on carbon nanotubes for glucose monitoring. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2022.141735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
Novel thermal synthesis of ternary Cu-CuO-Cu2O nanospheres supported on reduced graphene oxide for the sensitive non-enzymatic electrochemical detection of pyruvic acid as a cancer biomarker. J Organomet Chem 2023. [DOI: 10.1016/j.jorganchem.2023.122638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
7
|
Guo M, Nei R, Wang J, Ai J, Dong Y, Zhao H, Gao Q. Sensitive detection of folate receptor-positive circulating tumor cells based on intracellular uptake of the PbS nanoparticle cluster-loaded phospholipid micelles decorated with folic acid in combination with E-DNA sensor. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
8
|
Preparation of three dimensional Cu2O/Au/GO hybrid electrodes and its application as a non-enzymatic glucose sensor. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Zhao J, Lu S, Bastos-Arrieta J, Palet C, Sun Y, Wang R, Qian Z, Fan S. Enhanced terahertz sensitivity for glucose detection with a hydrogel platform embedded with Au nanoparticles. BIOMEDICAL OPTICS EXPRESS 2022; 13:4021-4031. [PMID: 35991910 PMCID: PMC9352292 DOI: 10.1364/boe.461414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
We presented a strategy for enhancing the sensitivity of terahertz glucose sensing with a hydrogel platform pre-embedded with Au nanoparticles. Physiological-level glucose solutions ranging from 0 to 0.8 mg/mL were measured and the extracted absorption coefficients can be clearly distinguished compared to traditional terahertz time domain spectroscopy performed directly on aqueous solutions. Further, Isotherm models were applied to successfully describe the relationship between the absorption coefficient and the glucose concentration (R2 = 0.9977). Finally, the origin of the sensitivity enhancement was investigated and verified to be the pH change induced by the catalysis of Au nanoparticles to glucose oxidation.
Collapse
Affiliation(s)
- Jingjing Zhao
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, 518060, China
- Contributed equally to this work
| | - Shaohua Lu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, 518060, China
- Contributed equally to this work
| | - Julio Bastos-Arrieta
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
- Institut de Recerca de l’Aigua (IdRA), University of Barcelona, 08028 Barcelona, Spain
| | - Cristina Palet
- Group of Separation Techniques in Chemistry, Department of Chemistry, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalunya, Spain
| | - Yiling Sun
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, 518060, China
| | - Renheng Wang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, 518060, China
| | - Zhengfang Qian
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, 518060, China
| | - Shuting Fan
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, 518060, China
| |
Collapse
|
10
|
Radhakrishnan S, Lakshmy S, Santhosh S, Kalarikkal N, Chakraborty B, Rout CS. Recent Developments and Future Perspective on Electrochemical Glucose Sensors Based on 2D Materials. BIOSENSORS 2022; 12:467. [PMID: 35884271 PMCID: PMC9313175 DOI: 10.3390/bios12070467] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 05/09/2023]
Abstract
Diabetes is a health disorder that necessitates constant blood glucose monitoring. The industry is always interested in creating novel glucose sensor devices because of the great demand for low-cost, quick, and precise means of monitoring blood glucose levels. Electrochemical glucose sensors, among others, have been developed and are now frequently used in clinical research. Nonetheless, despite the substantial obstacles, these electrochemical glucose sensors face numerous challenges. Because of their excellent stability, vast surface area, and low cost, various types of 2D materials have been employed to produce enzymatic and nonenzymatic glucose sensing applications. This review article looks at both enzymatic and nonenzymatic glucose sensors made from 2D materials. On the other hand, we concentrated on discussing the complexities of many significant papers addressing the construction of sensors and the usage of prepared sensors so that readers might grasp the concepts underlying such devices and related detection strategies. We also discuss several tuning approaches for improving electrochemical glucose sensor performance, as well as current breakthroughs and future plans in wearable and flexible electrochemical glucose sensors based on 2D materials as well as photoelectrochemical sensors.
Collapse
Affiliation(s)
- Sithara Radhakrishnan
- Centre for Nano and Material Science, Jain University, Jain Global Campus, Jakkasandra, Ramanagara, Bangalore 562 112, Karnataka, India;
| | - Seetha Lakshmy
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686 560, Kerala, India; (S.L.); (S.S.); (N.K.)
| | - Shilpa Santhosh
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686 560, Kerala, India; (S.L.); (S.S.); (N.K.)
| | - Nandakumar Kalarikkal
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686 560, Kerala, India; (S.L.); (S.S.); (N.K.)
- School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam 686 560, Kerala, India
- School of Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686 560, Kerala, India
| | - Brahmananda Chakraborty
- High Pressure and Synchroton Radiation Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, Maharashtra, India
- Homi Bhabha National Institute, Mumbai 400 094, Maharashtra, India
| | - Chandra Sekhar Rout
- Centre for Nano and Material Science, Jain University, Jain Global Campus, Jakkasandra, Ramanagara, Bangalore 562 112, Karnataka, India;
| |
Collapse
|
11
|
Metelka R, Vlasáková P, Smarzewska S, Guziejewski D, Vlček M, Sýs M. Screen-Printed Carbon Electrodes with Macroporous Copper Film for Enhanced Amperometric Sensing of Saccharides. SENSORS 2022; 22:s22093466. [PMID: 35591157 PMCID: PMC9104721 DOI: 10.3390/s22093466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 11/26/2022]
Abstract
A porous layer of copper was formed on the surface of screen-printed carbon electrodes via the colloidal crystal templating technique. An aqueous suspension of monodisperse polystyrene spheres of 500 nm particle diameter was drop-casted on the carbon tracks printed on the substrate made of alumina ceramic. After evaporation, the electrode was carefully dipped in copper plating solution for a certain time to achieve a sufficient penetration of solution within the polystyrene spheres. The metal was then electrodeposited galvanostatically over the self-assembled colloidal crystal. Finally, the polystyrene template was dissolved in toluene to expose the porous structure of copper deposit. The morphology of porous structures was investigated using scanning electron microscopy. Electroanalytical properties of porous copper film electrodes were evaluated in amperometric detection of selected saccharides, namely glucose, fructose, sucrose, and galactose. Using hydrodynamic amperometry in stirred alkaline solution, a current response at +0.6 V vs. Ag/AgCl was recorded after addition of the selected saccharide. These saccharides could be quantified in two linear ranges (0.2–1.0 μmol L−1 and 4.0–100 μmol L−1) with detection limits of 0.1 μmol L−1 glucose, 0.03 μmol L−1 fructose, and 0.05 μmol L−1 sucrose or galactose. In addition, analytical performance of porous copper electrodes was ascertained and compared to that of copper film screen-printed carbon electrodes, prepared ex-situ by the galvanostatic deposition of metal in the plating solution. After calculating the current densities with respect to the geometric area of working electrodes, the porous electrodes exhibited much higher sensitivity to changes in concentration of analytes, presumably due to the larger surface of the porous copper deposit. In the future, they could be incorporated in detectors of flow injection systems due to their long-term mechanical stability.
Collapse
Affiliation(s)
- Radovan Metelka
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic; (R.M.); (P.V.)
| | - Pavlína Vlasáková
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic; (R.M.); (P.V.)
| | - Sylwia Smarzewska
- Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, 12 Tamka Str., 91-403 Lodz, Poland; (S.S.); (D.G.)
| | - Dariusz Guziejewski
- Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, 12 Tamka Str., 91-403 Lodz, Poland; (S.S.); (D.G.)
| | - Milan Vlček
- Joint Laboratory of Solid State Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 84, 532 10 Pardubice, Czech Republic;
| | - Milan Sýs
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic; (R.M.); (P.V.)
- Correspondence: ; Tel.: +420-466-037-034
| |
Collapse
|
12
|
Franco FF, Hogg RA, Manjakkal L. Cu 2O-Based Electrochemical Biosensor for Non-Invasive and Portable Glucose Detection. BIOSENSORS 2022; 12:174. [PMID: 35323444 PMCID: PMC8946795 DOI: 10.3390/bios12030174] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/09/2022] [Accepted: 03/12/2022] [Indexed: 05/14/2023]
Abstract
Electrochemical voltammetric sensors are some of the most promising types of sensors for monitoring various physiological analytes due to their implementation as non-invasive and portable devices. Advantages in reduced analysis time, cost-effectiveness, selective sensing, and simple techniques with low-powered circuits distinguish voltammetric sensors from other methods. In this work, we developed a Cu2O-based non-enzymatic portable glucose sensor on a graphene paste printed on cellulose cloth. The electron transfer of Cu2O in a NaOH alkaline medium and sweat equivalent solution at very low potential (+0.35 V) enable its implementation as a low-powered portable glucose sensor. The redox mechanism of the electrodes with the analyte solution was confirmed through cyclic voltammetry, differential pulse voltammetry, and electrochemical impedance spectroscopy studies. The developed biocompatible, disposable, and reproducible sensors showed sensing performance in the range of 0.1 to 1 mM glucose, with a sensitivity of 1082.5 ± 4.7% µA mM-1 cm-2 on Cu2O coated glassy carbon electrode and 182.9 ± 8.83% µA mM-1 cm-2 on Cu2O coated graphene printed electrodes, making them a strong candidate for future portable, non-invasive glucose monitoring devices on biodegradable substrates. For portable applications we demonstrated the sensor on artificial sweat in 0.1 M NaOH solution, indicating the Cu2O nanocluster is selective to glucose from 0.0 to +0.6 V even in the presence of common interference such as urea and NaCl.
Collapse
Affiliation(s)
- Fabiane Fantinelli Franco
- Water and Environment Group, Infrastructure and Environment Division, James Watt School of Engineering, University of Glasgow, Glasgow G12 8LT, UK;
| | - Richard A. Hogg
- Electronic and Nanoscale Engineering, James Watt School of Engineering, University of Glasgow, Glasgow G12 8LT, UK;
| | - Libu Manjakkal
- Electronic and Nanoscale Engineering, James Watt School of Engineering, University of Glasgow, Glasgow G12 8LT, UK;
| |
Collapse
|
13
|
Liu W, Zhao X, Dai Y, Qi Y. Study on the oriented self-assembly of cuprous oxide micro-nano cubes and its application as a non-enzymatic glucose sensor. Colloids Surf B Biointerfaces 2022; 211:112317. [PMID: 35038655 DOI: 10.1016/j.colsurfb.2021.112317] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/31/2021] [Accepted: 12/31/2021] [Indexed: 10/19/2022]
Abstract
Herein, cuprous oxide (Cu2O) micro-nano cubes were successfully synthesized via a seed-medium process. It is worth noting that the microcubes were formed by oriented self-assembly of 2 × 2 × 2 nanocubes. The oriented self-assembly process can be effective controlled by simply adjusting the concentration of reactants. What's more, the obtained samples were applied for non-enzymatic glucose detection and exhibited excellent performance. The Cu2O nanocubes obtained at the highest concentration exhibited the highest sensitivity (2864 μAmM-1cm-2), while the Cu2O microcubes obtained at the lowest concentration shared the widest linear range (up to 10.65 mM) and lowest limit of detection (LOD, 0.87 μΜ). The acceptable anti-interference ability, excellent stability together with the practical application ability make our obtained electrodes a new strategy for monitoring glucose in biological and food samples.
Collapse
Affiliation(s)
- Wenbin Liu
- School of Materials Science and Engineering, Northeastern University, Shenyang, Liaoning 110819, China
| | - Xingming Zhao
- School of Materials Science and Engineering, Northeastern University, Shenyang, Liaoning 110819, China
| | - Yuxiang Dai
- School of Materials Science and Engineering, Northeastern University, Shenyang, Liaoning 110819, China.
| | - Yang Qi
- School of Materials Science and Engineering, Northeastern University, Shenyang, Liaoning 110819, China.
| |
Collapse
|
14
|
Current progress in organic–inorganic hetero-nano-interfaces based electrochemical biosensors for healthcare monitoring. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214282] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Covalent Immobilisation of a Nanoporous Platinum Film onto a Gold Screen-Printed Electrode for Highly Stable and Selective Non-Enzymatic Glucose Sensing. Catalysts 2021. [DOI: 10.3390/catal11101161] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Progress in the development of commercially available non-enzymatic glucose sensors continues to be problematic due to issues regarding selectivity, reproducibility and stability. Overcoming these issues is a research challenge of significant importance. This study reports a novel fabrication process using a double-layer self-assembly of (3 mercaptopropyl)trimethoxysilane (MPTS) on a gold substrate and co-deposition of a platinum–copper alloy. The subsequent electrochemical dealloying of the less noble copper resulted in a nanoporous platinum structure on the uppermost exposed thiol groups. Amperometric responses at 0.4 V vs. Ag/AgCl found the modification to be highly selective towards glucose in the presence of known interferants. The sensor propagated a rapid response time <5 s and exhibited a wide linear range from 1 mM to 18 mM. Additionally, extremely robust stability was attributed to enhanced attachment due to the strong chemisorption between the gold substrate and the exposed thiol of MPTS. Incorporation of metallic nanomaterials using the self-assembly approach was demonstrated to provide a more reproducible and controlled molecular architecture for sensor fabrication. The successful application of the sensor in real blood serum samples displayed a strong correlation with clinically obtained glucose levels.
Collapse
|
16
|
The dependence of Cu 2O morphology on different surfactants and its application for non-enzymatic glucose detection. Colloids Surf B Biointerfaces 2021; 208:112087. [PMID: 34500204 DOI: 10.1016/j.colsurfb.2021.112087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 01/17/2023]
Abstract
Herein, the Cu2O yolk-shell nanospheres, nanocubes and microcubes were successfully prepared by a simple seed-medium process. The formation of the Cu2O yolk-shell nanospheres can be attributed to the self-assembly process caused by the introduction of the seed medium. The formation mechanism of our obtained Cu2O yolk-shell nanospheres and the dependence of Cu2O morphology on different surfactants have been studied. The obtained samples were applied in the field of non-enzymatic glucose detection. The electrochemical response characteristics of the modified electrodes toward glucose were investigated by cyclic voltammetry (CV) and chronoamperometry (CA). The electrode modified with C-Cu2O (obtained by using CTAB as surfactant) shared the highest sensitivity of 3123 μAmM-1 cm-2, whereas, the electrode modified with S-Cu2O (obtained by using SDBS as surfactant) exhibited the lowest LOD of 0.87 μM and the widest linear range of 0.05-10.65 mM. All obtained sensors showed fast response to the addition of glucose. The obtained electrodes showed better responses to glucose than other coexisting interferences, indicating that the obtained electrodes had the acceptable selectivity to glucose. In addition, the stability for 5 consecutive weeks had also been studied and exhibited satisfactory results. The obtained electrode was also used to detect the glucose content in real serum. The acceptable selectivity, stability together with the excellent sensing ability in real serum make the obtained electrodes a potential for practical applications.
Collapse
|
17
|
Nashruddin SNA, Abdullah J, Mohammad Haniff MAS, Mat Zaid MH, Choon OP, Mohd Razip Wee MF. Label Free Glucose Electrochemical Biosensor Based on Poly(3,4-ethylenedioxy thiophene):Polystyrene Sulfonate/Titanium Carbide/Graphene Quantum Dots. BIOSENSORS 2021; 11:bios11080267. [PMID: 34436069 PMCID: PMC8393679 DOI: 10.3390/bios11080267] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/30/2021] [Accepted: 06/23/2021] [Indexed: 05/24/2023]
Abstract
The electrochemical biosensor devices based on enzymes for monitoring biochemical substances are still considered attractive. We investigated the immobilization of glucose oxidase (GOx) on a new composite nanomaterial poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS)/titanium carbide,(Ti3C2)/graphene quantum dots(GQD) modified screen-printed carbon electrode (SPCE) for glucose sensing. The characterization and electrochemical behavior of PEDOT:PSS/Ti3C2/GQD towards the electrocatalytic oxidation of GOx was analyzed by FTIR, XPS, SEM, cyclic voltammetry (CV), and differential pulse voltammetry (DPV). This composite nanomaterial was found to tend to increase the electrochemical behavior and led to a higher peak current of 100.17 µA compared to 82.01 µA and 95.04 µA for PEDOT:PSS and PEDOT:PSS/Ti3C2 alone. Moreover, the detection results demonstrated that the fabricated biosensor had a linear voltammetry response in the glucose concentration range 0-500 µM with a relatively sensitivity of 21.64 µAmM-1cm-2 and a detection limit of 65 µM (S/N = 3), with good stability and selectivity. This finding could be useful as applicable guidance for the modification screen printed carbon (SPCE) electrodes focused on composite PEDOT:PSS/Ti3C2/GQD for efficient detection using an enzyme-based biosensor.
Collapse
Affiliation(s)
- Siti Nur AshakirinMohd Nashruddin
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia; (S.N.A.N.); (M.A.S.M.H.); (O.P.C.)
| | - Jaafar Abdullah
- Department of Chemistry, Faculty of Science, University Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Muhammad Aniq Shazni Mohammad Haniff
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia; (S.N.A.N.); (M.A.S.M.H.); (O.P.C.)
| | - Mohd Hazani Mat Zaid
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia; (S.N.A.N.); (M.A.S.M.H.); (O.P.C.)
| | - Ooi Poh Choon
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia; (S.N.A.N.); (M.A.S.M.H.); (O.P.C.)
| | - Mohd Farhanulhakim Mohd Razip Wee
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia; (S.N.A.N.); (M.A.S.M.H.); (O.P.C.)
| |
Collapse
|
18
|
Zhuang S, Renault N, Archer I. A brief review on recent development of multidisciplinary engineering in fermentation of Saccharomyces cerevisiae. J Biotechnol 2021; 339:32-41. [PMID: 34339775 DOI: 10.1016/j.jbiotec.2021.07.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 07/13/2021] [Accepted: 07/27/2021] [Indexed: 11/26/2022]
Abstract
Fermentation technology has unprecedented potential to upgrade state-of-art biotechnology and refine the processes used in existing ones, taking into account of complex technical, economic and environmental factors. Given the economic importance and ongoing challenges of biotech sector, multidisciplinary engineering technologies is poised to become an increasingly important tool along with the emergence of modern technology and innovation. This article reviews recent technology advancement in the field of fermentation using Saccharomyces cerevisiae. Interesting research progress has been made by leveraging multiple engineering fields such as electrical engineering, information engineering, electrochemical engineering and new material development, leading to recent development of novel real-time probes (electronic nose technology, analysis of yeast morphology and metabolites, timely control of glucose feed), improved understanding of electro-fermentation (enhanced electronic transfer provision), as well as application of cost-effective and sustainable materials (bioreactor vessel manufactured from textile, and yeast immobilisation support matrix made from abundant natural biomass). To the best of our knowledge, the subject is reviewed for the first time in recent years. Furthermore, this review also constitutes a futuristic S. cerevisiae fermentation process based on the recent advancement discussed.
Collapse
Affiliation(s)
- Shiwen Zhuang
- Industrial Biotechnology Innovation Centre (IBioIC), University of Strathclyde, Glasgow, G1 1XQ, United Kingdom; School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom.
| | - Neil Renault
- Industrial Biotechnology Innovation Centre (IBioIC), University of Strathclyde, Glasgow, G1 1XQ, United Kingdom; School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom
| | - Ian Archer
- Industrial Biotechnology Innovation Centre (IBioIC), University of Strathclyde, Glasgow, G1 1XQ, United Kingdom
| |
Collapse
|
19
|
Xu M, Song Y, Wang J, Li N. Anisotropic transition metal–based nanomaterials for biomedical applications. VIEW 2021. [DOI: 10.1002/viw.20200154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Min Xu
- Tianjin Key Laboratory of Drug Delivery and High‐Efficiency, School of Pharmaceutical Science and Technology Tianjin University Tianjin China
| | - Yiling Song
- Tianjin Key Laboratory of Drug Delivery and High‐Efficiency, School of Pharmaceutical Science and Technology Tianjin University Tianjin China
| | - Jinping Wang
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Sciences Hebei University of Technology Tianjin China
| | - Nan Li
- Tianjin Key Laboratory of Drug Delivery and High‐Efficiency, School of Pharmaceutical Science and Technology Tianjin University Tianjin China
| |
Collapse
|
20
|
Dong Q, Ryu H, Lei Y. Metal oxide based non-enzymatic electrochemical sensors for glucose detection. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137744] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
21
|
Zhang S, Mou X, Cui Z, Hou C, Yang W, Gao H, Luo X. Partial sulfidation for constructing Cu 2O–CuS heterostructures realizing enhanced electrochemical glucose sensing. NEW J CHEM 2021. [DOI: 10.1039/d1nj00298h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A Cu2O–CuS heterostructure was constructed to elucidate the relationship between heterojunctions and electrochemical glucose sensing.
Collapse
Affiliation(s)
- Sai Zhang
- Key Laboratory of Optic–Electric Sensing and Analytical Chemistry for Life Science
- MOE
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
| | - Xiaoming Mou
- Key Laboratory of Optic–Electric Sensing and Analytical Chemistry for Life Science
- MOE
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
| | - Zhao Cui
- Key Laboratory of Optic–Electric Sensing and Analytical Chemistry for Life Science
- MOE
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
| | - Changmin Hou
- Key Laboratory of Optic–Electric Sensing and Analytical Chemistry for Life Science
- MOE
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
| | - Wenlong Yang
- Key Laboratory of Optic–Electric Sensing and Analytical Chemistry for Life Science
- MOE
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
| | - Hongtao Gao
- Key Laboratory of Optic–Electric Sensing and Analytical Chemistry for Life Science
- MOE
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
| | - Xiliang Luo
- Key Laboratory of Optic–Electric Sensing and Analytical Chemistry for Life Science
- MOE
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
| |
Collapse
|
22
|
Sardini E, Serpelloni M, Tonello S. Printed Electrochemical Biosensors: Opportunities and Metrological Challenges. BIOSENSORS 2020; 10:E166. [PMID: 33158129 PMCID: PMC7694196 DOI: 10.3390/bios10110166] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 12/14/2022]
Abstract
Printed electrochemical biosensors have recently gained increasing relevance in fields ranging from basic research to home-based point-of-care. Thus, they represent a unique opportunity to enable low-cost, fast, non-invasive and/or continuous monitoring of cells and biomolecules, exploiting their electrical properties. Printing technologies represent powerful tools to combine simpler and more customizable fabrication of biosensors with high resolution, miniaturization and integration with more complex microfluidic and electronics systems. The metrological aspects of those biosensors, such as sensitivity, repeatability and stability, represent very challenging aspects that are required for the assessment of the sensor itself. This review provides an overview of the opportunities of printed electrochemical biosensors in terms of transducing principles, metrological characteristics and the enlargement of the application field. A critical discussion on metrological challenges is then provided, deepening our understanding of the most promising trends in order to overcome them: printed nanostructures to improve the limit of detection, sensitivity and repeatability; printing strategies to improve organic biosensor integration in biological environments; emerging printing methods for non-conventional substrates; microfluidic dispensing to improve repeatability. Finally, an up-to-date analysis of the most recent examples of printed electrochemical biosensors for the main classes of target analytes (live cells, nucleic acids, proteins, metabolites and electrolytes) is reported.
Collapse
Affiliation(s)
- Emilio Sardini
- Department of Information Engineering, University of Brescia, Via Branze 38, 25123 Brescia, Italy; (E.S.); (M.S.)
| | - Mauro Serpelloni
- Department of Information Engineering, University of Brescia, Via Branze 38, 25123 Brescia, Italy; (E.S.); (M.S.)
| | - Sarah Tonello
- Department of Information Engineering, University of Padova, Via Gradenigo 6, 35131 Padova, Italy
| |
Collapse
|
23
|
Stasyuk N, Smutok O, Demkiv O, Prokopiv T, Gayda G, Nisnevitch M, Gonchar M. Synthesis, Catalytic Properties and Application in Biosensorics of Nanozymes and Electronanocatalysts: A Review. SENSORS (BASEL, SWITZERLAND) 2020; 20:E4509. [PMID: 32806607 PMCID: PMC7472306 DOI: 10.3390/s20164509] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023]
Abstract
The current review is devoted to nanozymes, i.e., nanostructured artificial enzymes which mimic the catalytic properties of natural enzymes. Use of the term "nanozyme" in the literature as indicating an enzyme is not always justified. For example, it is used inappropriately for nanomaterials bound with electrodes that possess catalytic activity only when applying an electric potential. If the enzyme-like activity of such a material is not proven in solution (without applying the potential), such a catalyst should be named an "electronanocatalyst", not a nanozyme. This paper presents a review of the classification of the nanozymes, their advantages vs. natural enzymes, and potential practical applications. Special attention is paid to nanozyme synthesis methods (hydrothermal and solvothermal, chemical reduction, sol-gel method, co-precipitation, polymerization/polycondensation, electrochemical deposition). The catalytic performance of nanozymes is characterized, a critical point of view on catalytic parameters of nanozymes described in scientific papers is presented and typical mistakes are analyzed. The central part of the review relates to characterization of nanozymes which mimic natural enzymes with analytical importance ("nanoperoxidase", "nanooxidases", "nanolaccase") and their use in the construction of electro-chemical (bio)sensors ("nanosensors").
Collapse
Affiliation(s)
- Nataliya Stasyuk
- Institute of Cell Biology, National Academy of Sciences of Ukraine, 79005 Lviv, Ukraine; (N.S.); (O.S.); (O.D.); (T.P.); (G.G.)
| | - Oleh Smutok
- Institute of Cell Biology, National Academy of Sciences of Ukraine, 79005 Lviv, Ukraine; (N.S.); (O.S.); (O.D.); (T.P.); (G.G.)
- Department of Biology and Chemistry, Drohobych Ivan Franko State Pedagogical University, 82100 Drohobych, Ukraine
| | - Olha Demkiv
- Institute of Cell Biology, National Academy of Sciences of Ukraine, 79005 Lviv, Ukraine; (N.S.); (O.S.); (O.D.); (T.P.); (G.G.)
- Faculty of Veterinary Hygiene, Ecology and Law, Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies, 79000 Lviv, Ukraine
| | - Tetiana Prokopiv
- Institute of Cell Biology, National Academy of Sciences of Ukraine, 79005 Lviv, Ukraine; (N.S.); (O.S.); (O.D.); (T.P.); (G.G.)
| | - Galina Gayda
- Institute of Cell Biology, National Academy of Sciences of Ukraine, 79005 Lviv, Ukraine; (N.S.); (O.S.); (O.D.); (T.P.); (G.G.)
| | - Marina Nisnevitch
- Department of Chemical Engineering, Ariel University, Kyriat-ha-Mada, Ariel 4070000, Israel;
| | - Mykhailo Gonchar
- Institute of Cell Biology, National Academy of Sciences of Ukraine, 79005 Lviv, Ukraine; (N.S.); (O.S.); (O.D.); (T.P.); (G.G.)
- Department of Biology and Chemistry, Drohobych Ivan Franko State Pedagogical University, 82100 Drohobych, Ukraine
| |
Collapse
|
24
|
Liu W, Chai G, Zhang J, Wang M, Dai Y, Yang Q. Preparation of Cu2O nanocubes with different sizes and rough surfaces by a seed-mediated self-assembly process and their application as a non-enzymatic glucose sensor. NEW J CHEM 2020. [DOI: 10.1039/d0nj02763d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In this study, ultrafine and uniform cuprous oxide (Cu2O) nanocubes with different sizes and rough surfaces were prepared via a seed-mediated process.
Collapse
Affiliation(s)
- Wenbin Liu
- School of Materials Science and Engineering
- Northeastern University
- Shenyang
- China
| | - Guochun Chai
- School of Materials Science and Engineering
- Northeastern University
- Shenyang
- China
| | - Jian Zhang
- School of Materials Science and Engineering
- Northeastern University
- Shenyang
- China
| | - Mingguang Wang
- School of Materials Science and Engineering
- Northeastern University
- Shenyang
- China
| | - Yuxiang Dai
- School of Materials Science and Engineering
- Northeastern University
- Shenyang
- China
| | - Qi Yang
- School of Materials Science and Engineering
- Northeastern University
- Shenyang
- China
| |
Collapse
|