1
|
Verma S, Sen A, Dutta N, Sengupta P, Chakraborty P, Dutta G. Highly Specific Non-Enzymatic Electrochemical Sensor for the Detection of Uric Acid Using Carboxylated Multiwalled Carbon Nanotubes Intertwined with GdS-Gd 2O 3 Nanoplates in Human Urine and Serum. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:21427-21441. [PMID: 39356148 DOI: 10.1021/acs.langmuir.4c02233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Herein, the electrochemical sensing efficacy of carboxylic acid functionalized multiwalled carbon nanotubes (C-MWCNT) intertwined with coexisting phases of gadolinium monosulfide (GdS) and gadolinium oxide (Gd2O3) nanosheets is explored for the first time. The nanocomposite demonstrated splendid specificity for nonenzymatic electrochemical detection of uric acid (UA) in biological samples. It was synthesized using the coprecipitation method and thoroughly characterized. The presence of functional groups and disorder in the as-synthesized nanocomposite are confirmed using Fourier transform infrared spectroscopy and Raman spectroscopy. Furthermore, field emission scanning electron microscopy, high-resolution transmission electron microscope, X-ray powder diffraction, and X-ray photoelectron spectroscopy provides a clear understanding of the morphology, coexisting phases, and elemental composition of the as-synthesized nanocomposites. The differential pulse voltammetry technique was utilized to elaborate the electrochemical sensing of UA using a GdS-Gd2O3/C-MWCNT modified glassy carbon electrode (GCE), The sensor showed an enhanced current response by more than 2-fold compared to bare GCE. Also, the sensor's performance was further improved by dispersing the nanocomposite in an ionic liquid with the exceptional reproducibility (SD = 0.0025, n = 3). The fabricated UA sensor GdS-Gd2O3/C-MWCNT/IL/GCE demonstrated a wide linear detection range from 0.5-30 μM and 30-2000 μM, effectively covering the entire physiological range of UA in biological fluids with a limit of detection (LOD) of 0.380 μM (+3SD of blank) and a sensitivity of 356.125 μA mM-1 cm-2. Moreover, the electrodes exhibited storage stability for 2 weeks with decrease in zero-day current by only 4.5%. The sensor was validated by quantifying UA in 12 unprocessed clinical human urine and serum samples, and its comparison with the gold standard test yielded remarkable results (p < 0.05). Hence, the proposed nonenzymatic electrochemical UA sensor is selective, sensitive, reproducible, and stable, making it reliable for point-of-care diagnostics.
Collapse
Affiliation(s)
- Srishti Verma
- NanoBiosensors and Biodevices Lab, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
- School of Nano Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Atreyee Sen
- School of Nano Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Nirmita Dutta
- NanoBiosensors and Biodevices Lab, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | | | - Pradip Chakraborty
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Gorachand Dutta
- NanoBiosensors and Biodevices Lab, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
2
|
Yildir MH, Genc AA, Erk N, Bouali W, Bugday N, Yasar S, Duygulu O. Pioneering electrochemical detection unveils erdafitinib: a breakthrough in anticancer agent determination. Mikrochim Acta 2024; 191:221. [PMID: 38536529 PMCID: PMC10973028 DOI: 10.1007/s00604-024-06318-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/18/2024] [Indexed: 04/09/2024]
Abstract
The successful fabrication is reported of highly crystalline Co nanoparticles interconnected with zeolitic imidazolate framework (ZIF-12) -based amorphous porous carbon using the molten-salt-assisted approach utilizing NaCl. Single crystal diffractometers (XRD), and X-ray photoelectron spectroscopy (XPS) analyses confirm the codoped amorphous carbon structure. Crystallite size was calculated by Scherrer (34 nm) and Williamson-Hall models (42 nm). The magnetic properties of NPCS (N-doped porous carbon sheet) were studied using a vibrating sample magnetometer (VSM). The NPCS has a magnetic saturation (Ms) value of 1.85 emu/g. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses show that Co/Co3O4 nanoparticles are homogeneously distributed in the carbon matrix. While a low melting point eutectic salt acts as an ionic liquid solvent, ZIF-12, at high temperature, leading cobalt nanoparticles with a trace amount of Co3O4 interconnected by conductive amorphous carbon. In addition, the surface area (89.04 m2/g) and pore architectures of amorphous carbon embedded with Co nanoparticles are created using the molten salt approach. Thanks to this inexpensive and effective method, the optimal composite porous carbon structures were obtained with the strategy using NaCl salt and showed distinct electrochemical performance on electrochemical methodology revealing the analytical profile of Erdatifinib (ERD) as a sensor modifier. The linear response spanned from 0.01 to 7.38 μM, featuring a limit of detection (LOD) of 3.36 nM and a limit of quantification (LOQ) of 11.2 nM. The developed sensor was examined in terms of selectivity, repeatability, and reproducibility. The fabricated electrode was utilized for the quantification of Erdafitinib in urine samples and pharmaceutical dosage forms. This research provides a fresh outlook on the advancements in electrochemical sensor technology concerning the development and detection of anticancer drugs within the realms of medicine and pharmacology.
Collapse
Affiliation(s)
- Merve Hatun Yildir
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, 06560, Ankara, Turkey.
- Graduate School of Health Sciences, Ankara University, 06110, Ankara, Turkey.
| | - Asena Ayse Genc
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, 06560, Ankara, Turkey
- Graduate School of Health Sciences, Ankara University, 06110, Ankara, Turkey
| | - Nevin Erk
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, 06560, Ankara, Turkey.
| | - Wiem Bouali
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, 06560, Ankara, Turkey
- Graduate School of Health Sciences, Ankara University, 06110, Ankara, Turkey
| | - Nesrin Bugday
- Department of Chemistry, İnonu University, 44280, Malatya, Turkey
| | - Sedat Yasar
- Department of Chemistry, İnonu University, 44280, Malatya, Turkey
| | - Ozgur Duygulu
- TÜBİTAK Marmara Research Center, Materials Technologies, TÜBİTAK Gebze Campus, 41470, Gebze, Kocaeli, Turkey
| |
Collapse
|
3
|
Chen Y, Sun Y, Pang X, Wang R, Waterhouse GIN, Xu Z. Three-dimensional dual-network magnetic conductive hydrogel for the highly sensitive electrochemical detection of ponceau 4R in foods. Biosens Bioelectron 2023; 241:115698. [PMID: 37748400 DOI: 10.1016/j.bios.2023.115698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/06/2023] [Accepted: 09/17/2023] [Indexed: 09/27/2023]
Abstract
Synthetic pigment Ponceau 4 R is a commonly used additive in the process of various foods. Due to its potential toxicity to humans, realizing high sensitivity and rapid detection of Ponceau 4 R is extremely important. In this study, we synthesized a novel dual-network magnetic conductive hydrogel (MCHG) via a simple one-pot low temperature stirring method. In MCHG, cationic guar gum (CGG) and β-cyclodextrin (β-CD) formed a primary three-dimensional network cross-linked by N, N-methylene bisacrylamide. A second network was formed in MCHG by CGG, β-CD and magnetite@carboxylate-terminated carbon nanotubes (Fe3O4@COOH-MWCNTs) through hydrogen bonding and electrostatic interactions. Fe3O4@COOH-MWCNTs enhanced cross-linking in the MCHG hydrogel, whilst also boosting the equilibrium adsorption capacity of Ponceau 4 R (61.8 mg g-1), electrical conductivity and electrocatalytic performance. Application of MCHG to a glassy carbon electrode (GCE) created a highly sensitive electrochemical sensor for the detection of Ponceau 4 R. Under optimized testing conditions, the sensor offered a very wide linear range (0.01-200.0 μM) and a low limit of detection (1.8 nM) for Ponceau 4 R. When the sensor was applied to the detection of Ponceau 4 R in spiked honey and liqueur samples, excellent recoveries were achieved (88.2%-107.0%). Furthermore, analyses of commercial biscuit and candy samples using the MCHG/GCE sensor and a national standard ultraviolet spectrophotometry method afforded identical results. Results demonstrate that multifunctional hydrogels show great promise as signal amplification agents in electrochemical detection of target compounds in foods.
Collapse
Affiliation(s)
- Yongfeng Chen
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Yufeng Sun
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Xiaomin Pang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Ruiqiang Wang
- Shandong Cayon Testing Co., LTD., Jining, 272000, People's Republic of China
| | | | - Zhixiang Xu
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.
| |
Collapse
|
4
|
Abedi R, Raoof JB, Mohseni M, Bagheri Hashkavayi A. Development of a label-free impedimetric aptasensor for the detection of Acinetobacter baumannii bacteria. Anal Biochem 2023; 679:115288. [PMID: 37619902 DOI: 10.1016/j.ab.2023.115288] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
Acinetobacter baumannii (A. baumannii) is responsible for various nosocomial infections, which is known as a clinically crucial opportunistic pathogen. Therefore, rapid detection of this pathogen is critical to prevent the spread of infection and appropriate treatment. Biological detection probes, such as aptamers and synthetic receptors can be used as diagnostic layers to detect bacteria. In this work, an electrochemical aptasensor was developed for the ultrasensitive detection of A. baumannii by electrochemical impedance spectroscopy (EIS). The aptamer was immobilized on the surface of a CSPE modified with the nanocomposite Fe3O4@SiO2@Glyoxal (Gly) for selective and label-free detection of A. baumannii. The charge transfers resistance (Rct) between redox couple [Fe(CN)63-/4-] and the surface of aptasensor in the Nyquist plot of EIS study was used as electroanalytical signal for detection and determination of A. baumannii. The obtained results showed that the constructed aptasensor could specifically detect A. baumannii in the concentration range from 1.0 × 103-1.0 × 108 Colony-forming unit (CFU)/mL and with a detection limit of 150 CFU/mL (S/N = 3). In addition to its sensitivity, the biosensor exhibits high selectivity over some other pathogens. Therefore, a simple, inexpensive, rapid, label-free, selective, and sensitive electrochemical aptasensor was developed to detect A. baumannii.
Collapse
Affiliation(s)
- Rokhsareh Abedi
- Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Jahan Bakhsh Raoof
- Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran.
| | - Mojtaba Mohseni
- Department of Microbiology, Faculty of Science, University of Mazandaran, Iran
| | - Ayemeh Bagheri Hashkavayi
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, 27606, United States
| |
Collapse
|
5
|
Habibi B, Pashazadeh S, Pashazadeh A, Saghatforoush LA. An amplified electrochemical sensor employing one-step synthesized nickel-copper-zinc ferrite/carboxymethyl cellulose/graphene oxide nanosheets composite for sensitive analysis of omeprazole. RSC Adv 2023; 13:29931-29943. [PMID: 37860173 PMCID: PMC10582824 DOI: 10.1039/d3ra04766k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/03/2023] [Indexed: 10/21/2023] Open
Abstract
In this work, a signal amplification strategy was designed by the fabrication of a highly sensitive and selective electrochemical sensor based on nickel-copper-zinc ferrite (Ni0.4Cu0.2Zn0.4Fe2O4)/carboxymethyl cellulose (CMC)/graphene oxide nanosheets (GONs) composite modified glassy carbon electrode (GCE) for determination of omeprazole (OMP). The one-step synthesized Ni0.4Cu0.2Zn0.4Fe2O4/CMC/GONs nanocomposite was characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, transmission electron microscopy and X-ray diffraction techniques. Then, the Ni0.4Cu0.2Zn0.4Fe2O4/CMC/GONs/GCE was applied to study the electrochemical behavior of the OMP. Electrochemical data show that the Ni0.4Cu0.2Zn0.4Fe2O4/CMC/GONs/GCE exhibits superior electrocatalytic performance on the oxidation of OMP compared with bare GCE, GONs/GCE, CMC/GONs/GCE and MFe2O4/GCE (M = Cu, Ni and Zn including single, double and triple of metals) which can be attributed to the synergistic effects of the nanocomposite components, outstanding electrical properties of Ni0.4Cu0.2Zn0.4Fe2O4 and high conductivity of CMC/GONs as well as the further electron transport action of the nanocomposite. Under optimal conditions, the Ni0.4Cu0.2Zn0.4Fe2O4/CMC/GONs/GCE offers a high performance toward the electrodetermination of OMP with the wide linear-range responses (0.24-5 and 5-75 μM), lower detection limit (0.22 ± 0.05 μM), high sensitivity (1.1543 μA μM-1 cm-2), long-term signal stability and reproducibility (RSD = 2.54%). It should be noted that the Ni0.4Cu0.2Zn0.4Fe2O4/CMC/GONs/GCE sensor could also be used for determination of OMP in drug and biological samples, indicating its feasibility for real analysis.
Collapse
Affiliation(s)
- Biuck Habibi
- Electroanalytical Chemistry Laboratory, Department of Chemistry, Faculty of Sciences, Azarbaijan Shahid Madani University Tabriz 53714-161 Iran +98 41 34327541 +98 41 31452135
| | - Sara Pashazadeh
- Electroanalytical Chemistry Laboratory, Department of Chemistry, Faculty of Sciences, Azarbaijan Shahid Madani University Tabriz 53714-161 Iran +98 41 34327541 +98 41 31452135
| | - Ali Pashazadeh
- Electroanalytical Chemistry Laboratory, Department of Chemistry, Faculty of Sciences, Azarbaijan Shahid Madani University Tabriz 53714-161 Iran +98 41 34327541 +98 41 31452135
| | | |
Collapse
|
6
|
Liv L, Portakal M, Çukur MS, Topaçlı B, Uzun B. Electrocatalytic Determination of Uric Acid with the Poly(Tartrazine)-Modified Pencil Graphite Electrode in Human Serum and Artificial Urine. ACS OMEGA 2023; 8:34420-34430. [PMID: 37780010 PMCID: PMC10535258 DOI: 10.1021/acsomega.3c02561] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/29/2023] [Indexed: 10/03/2023]
Abstract
A novel electrocatalytic sensing strategy was built for uric acid (UA) determination with an exceptionally developed poly(tartrazine)-modified activated pencil graphite electrode (pTRT/aPGE) in human serum and artificial urine. The oxidation signal of UA at 275 mV in pH 7.5 phosphate buffer solution served as the analytical response. Cyclic voltammetry, electrochemical impedance spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy were used to characterize the sensing platform, which was able to detect 0.10 μM of UA in the ranges of 0.34-60 and 70-140 μM. The samples of human serum and artificial urine were analyzed by both the pTRT/aPGE and the uricase-modified screen-printed electrode. The results were statistically evaluated and compared with each other within the confidence level of 95%, and no significant difference between the results was found.
Collapse
Affiliation(s)
- Lokman Liv
- Electrochemistry
Laboratory, Chemistry Group, The Scientific
and Technological Research Council of Turkey, National Metrology Institute,
(TUBITAK UME), 41470 Gebze, Kocaeli, Turkey
| | - Merve Portakal
- Electrochemistry
Laboratory, Chemistry Group, The Scientific
and Technological Research Council of Turkey, National Metrology Institute,
(TUBITAK UME), 41470 Gebze, Kocaeli, Turkey
- Faculty
of Technology, Department of Biomedical Engineering, Pamukkale University, 20160 Denizli, Turkey
| | - Meryem Sıla Çukur
- Electrochemistry
Laboratory, Chemistry Group, The Scientific
and Technological Research Council of Turkey, National Metrology Institute,
(TUBITAK UME), 41470 Gebze, Kocaeli, Turkey
- Faculty
of Technology, Department of Biomedical Engineering, Kocaeli University, İzmit, 41380 Kocaeli, Turkey
| | - Beyza Topaçlı
- Electrochemistry
Laboratory, Chemistry Group, The Scientific
and Technological Research Council of Turkey, National Metrology Institute,
(TUBITAK UME), 41470 Gebze, Kocaeli, Turkey
- School
of Engineering, Department of Biomedical Engineering, TOBB University of Economics and Technology, 06560 Ankara, Turkey
| | - Berkay Uzun
- Electrochemistry
Laboratory, Chemistry Group, The Scientific
and Technological Research Council of Turkey, National Metrology Institute,
(TUBITAK UME), 41470 Gebze, Kocaeli, Turkey
- Faculty
of Technology, Department of Biomedical Engineering, Kocaeli University, İzmit, 41380 Kocaeli, Turkey
| |
Collapse
|
7
|
Ganesh PS, Govindasamy M, Kim SY, Choi DS, Ko HU, Alshgari RA, Huang CH. Synergetic effects of Mo 2C sphere/SCN nanocatalysts interface for nanomolar detection of uric acid and folic acid in presence of interferences. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114694. [PMID: 36857924 DOI: 10.1016/j.ecoenv.2023.114694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/08/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Till to date, the application of sulfur-doped graphitic carbon nitride supported transition metal carbide interface for electrochemical sensor fabrication was less explored. In this work, we designed a simple synthesis of molybdenum carbide sphere embedded sulfur doped graphitic carbon nitride (Mo2C/SCN) catalyst for the nanomolar electrochemical sensor application. The synthesized Mo2C/SCN nanocatalyst was systematically characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM) with elemental mapping. The SEM images show that the porous SCN network adhered uniformly on Mo2C, causing a loss of crystallinity in the diffractogram. The corresponding elemental mapping of Mo2C/SCN shows distinct peaks for carbon (41.47%), nitrogen (32.54%), sulfur (1.37%), and molybdenum (24.62%) with no additional impurity peaks, reflecting the successful synthesis. Later, the glassy carbon electrode (GCE) was modified by Mo2C/SCN nanocatalyst for simultaneous sensing of uric acid (UA) and folic acid (FA). The fabricated Mo2C/SCN/GCE is capable of simultaneous and interference free electrochemical detection of UA and FA in a binary mixture. The limit of detection (LOD) calculated at Mo2C/SCN/GCE for UA and FA was 21.5 nM (0.09 - 47.0 μM) and 14.7 nM (0.09 - 167.25 μM) respectively by differential pulse voltammetric (DPV) technique. The presence of interferons has no significant effect on the sensor's performance, making it suitable for real sample analysis. The present method can be extended to fabricate an electrochemical sensor for various molecules.
Collapse
Affiliation(s)
- Pattan-Siddappa Ganesh
- Interaction Laboratory, Future Convergence Engineering, Advanced Technology Research Center, Korea University of Technology and Education, Cheonan-si 31253, Chungcheongnam-do, Republic of Korea
| | - Mani Govindasamy
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan; Full-time faculty, International PhD Program in Innovative Technology of Biomedical Engineering and Medical Devices, Ming Chi University of Technology, New Taipei City, 243303, Taiwan; Department of Research and Innovation, Saveetha School of Engineering, SIMATS, Chennai 602105, India
| | - Sang-Youn Kim
- Interaction Laboratory, Future Convergence Engineering, Advanced Technology Research Center, Korea University of Technology and Education, Cheonan-si 31253, Chungcheongnam-do, Republic of Korea.
| | - Dong-Soo Choi
- Smart Interface and Extended Reality Laboratory, Department of Computer Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| | - Hyun-U Ko
- Interaction Laboratory, Future Convergence Engineering, Advanced Technology Research Center, Korea University of Technology and Education, Cheonan-si 31253, Chungcheongnam-do, Republic of Korea
| | | | - Chi-Hsien Huang
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan.
| |
Collapse
|
8
|
Deng Z, Wu Z, Alizadeh M, Zhang H, Chen Y, Karaman C. Electrochemical monitoring of 4-chlorophenol as a water pollutant via carbon paste electrode amplified with Fe 3O 4 incorporated cellulose nanofibers (CNF). ENVIRONMENTAL RESEARCH 2023; 219:114995. [PMID: 36529324 DOI: 10.1016/j.envres.2022.114995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/23/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
A crucial problem that needs to be resolved is the sensitive and selective monitoring of chlorophenol compounds, especifically 4-chlorophenol (4-CP), one of the most frequently used organic industrial chemicals. In light of this, the goal of this study was to synthesize Fe3O4 incorporated cellulose nanofiber composite (Fe3O4/CNF) as an amplifier in the development of a modified carbon paste electrode (CPE) for 4-CP detection. Transmission electron microscopy (TEM) was used to evaluate the morphology of the synthesized nanocatalyst, while differential pulse voltammetry (DPV), electrochemical impedance spectroscopy (EIS), and linear sweep voltammetry (LSV) techniques were implemented to illuminate the electrochemical characteristics of the fabricated sensor. The ultimate electrochemical sensor (Fe3O4/CNF/CPE) was used as a potent electrochemical sensor for monitoring 4-CP in the concentration range of 1.0 nM-170 μM with a limit of detection value of 0.5 nM. As a result of optimization studies, 8.0 mg Fe3O4/CNF was found to be the ideal catalyst concentration, whereas pH = 6.0 was chosen as the ideal pH. The 4-CP's oxidation current was found to be over 1.67 times greater at ideal operating conditions than it was at the surface of bare CPE, and its oxidation potential decreased by about 120 mV. By using the standard addition procedure on samples of drinking water and wastewater, the suggested capability of Fe3O4/CNF/CPE to detect 4-CP was further investigated. The recovery range was found to be 98.52-103.66%. This study paves the way for the customization of advanced nanostructure for the application in electrochemical sensors resulting in beneficial environmental impact and enhancing human health.
Collapse
Affiliation(s)
- Zilong Deng
- State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Zixuan Wu
- State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Marzieh Alizadeh
- Oral and Dental Disease Research Center, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hongcai Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yaobang Chen
- Sibang Environmental Protection Technology Co., Ltd., Yichun, 336000, China
| | - Ceren Karaman
- Department of Electricity and Energy, Vocational School of Technical Sciences, Akdeniz University, Antalya, 07070, Turkey; School of Engineering, Lebanese American University, Byblos, Lebanon.
| |
Collapse
|
9
|
Foroozandeh A, Abdouss M, SalarAmoli H, Pourmadadi M, Yazdian F. An electrochemical aptasensor based on g-C3N4/Fe3O4/PANI Nanocomposite applying cancer antigen_125 biomarkers detection. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
10
|
Aafria S, Kumari P, Sharma S, Yadav S, Batra B, Rana J, Sharma M. Electrochemical biosensing of uric acid: A review. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
11
|
Safitri H, Wahyuni WT, Rohaeti E, Khalil M, Marken F. Optimization of uric acid detection with Au nanorod-decorated graphene oxide (GO/AuNR) using response surface methodology. RSC Adv 2022; 12:25269-25278. [PMID: 36199297 PMCID: PMC9450001 DOI: 10.1039/d2ra03782c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/23/2022] [Indexed: 11/25/2022] Open
Abstract
A modified glassy carbon electrode (GCE) was developed based on a synthesized graphene oxide (GO) gold nanorod (AuNR) decorated composite (GO/AuNR) for sensitive electrochemical sensing of uric acid (UA). The electrochemical performance of GO/AuNR/GCE for UA detection was investigated employing the differential pulse voltammetry (DPV) technique. Central composite design (CCD) was applied to obtain the optimum composition of the GO and AuNR composite, which provide the highest possible UA oxidation peak current. The optimum composition was obtained at a GO concentration of 5 mg mL-1 and AuNR volume of 10 mL. Under the optimum conditions, GO/AuNR/GCE showed acceptable analytical performance for UA detection with good linearity (concentration range of 10-90 μM) and both a low detection limit (0.4 μM) and quantitation limit (1.0 μM). Furthermore, the proposed sensor exhibits superior stability, reproducibility, and selectivity using ascorbic acid (AA), dopamine (DA), urea, glucose, and magnesium as interferents. Finally, practical use of GO/AuNR/GCE was demonstrated by successfully determining the content of UA in human urine samples with the standard addition approach.
Collapse
Affiliation(s)
- Hana Safitri
- Analytical Chemistry Division, Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University Indonesia
| | - Wulan Tri Wahyuni
- Analytical Chemistry Division, Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University Indonesia
- Tropical Biopharmaca Research Center, Institute of Research and Community Empowerment, IPB University Indonesia
| | - Eti Rohaeti
- Analytical Chemistry Division, Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University Indonesia
| | - Munawar Khalil
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia Depok 16424 Indonesia
| | | |
Collapse
|
12
|
Mary Tomy A, Cyriac J. Simultaneous detection of dopamine, uric acid and α-lipoic acid using nickel hydroxide nanosheets. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Afzali Z, Mohadesi A, Ali Karimi M, Fathirad F. A highly selective and sensitive electrochemical sensor based on graphene oxide and molecularly imprinted polymer magnetic nanocomposite for patulin determination. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Ye RH, Chen JY, Huang DH, Wang YJ, Chen S. Electrochemical Sensor Based on Glassy-Carbon Electrode Modified with Dual-Ligand EC-MOFs Supported on rGO for BPA. BIOSENSORS 2022; 12:bios12060367. [PMID: 35735515 PMCID: PMC9221176 DOI: 10.3390/bios12060367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/08/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022]
Abstract
The electronic conductive metal-organic frameworks (EC-MOFs) based on a single ligand are not suitable for the accurate detection of bisphenol A (BPA) due to the limitations of their electron-transfer-based sensing mechanism. To overcome this drawback, we developed EC-MOFs with novel dual-ligands, 2,3,6,7,10,11-hexahydroxy-sanya-phenyl (HHTP) and tetrahydroxy 1,4-quinone (THQ), and metal ions. A new class of 2D π-conjugation-based EC-MOFs (M-(HHTP)(THQ)) was synthesized by a self-assemble technique. Its best member (Cu-(HHTP)(THQ)) was selected and combined with reduced graphene (rGO) to form a Cu-(HHTP)(THQ)@rGO composite, which was thoroughly characterized by X-ray diffraction, field scanning electron microscopy, and energy-dispersive X-ray spectroscopy. Cu-(HHTP)(THQ)@rGO was drop-cast onto a glassy carbon electrode (GCE) to obtain a sensor for BPA detection. Cyclic voltammetry and electrochemical impedance tests were used to evaluate the electrode performance. The oxidation current of BPA on the Cu-(HHTP)(THQ)@rGO/GCE was substantially higher than on unmodified GCE, which could be explained by a synergy between Cu-(HHTP)(THQ) (which provided sensing and adsorption) and rGO (which provided fast electron conductivity and high surface area). Cu-(HHTP)(THQ)@rGO/GCE exhibited a linear detection range for 0.05–100 μmol·L−1 of BPA with 3.6 nmol·L−1 (S/N = 3) detection limit. We believe that our novel electrode and BPA sensing method extends the application perspectives of EC-MOFs in the electrocatalysis and sensing fields.
Collapse
Affiliation(s)
- Rui-Hong Ye
- Fujian Province-Indonesia Marine Food Joint Research and Development Center, Fujian Polytechnic Normal University, Fuqing 350300, China; (R.-H.Y.); (Y.-J.W.); (S.C.)
| | - Jin-Yang Chen
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China;
| | - Di-Hui Huang
- Fujian Province-Indonesia Marine Food Joint Research and Development Center, Fujian Polytechnic Normal University, Fuqing 350300, China; (R.-H.Y.); (Y.-J.W.); (S.C.)
- Correspondence:
| | - Yan-Jun Wang
- Fujian Province-Indonesia Marine Food Joint Research and Development Center, Fujian Polytechnic Normal University, Fuqing 350300, China; (R.-H.Y.); (Y.-J.W.); (S.C.)
| | - Sheng Chen
- Fujian Province-Indonesia Marine Food Joint Research and Development Center, Fujian Polytechnic Normal University, Fuqing 350300, China; (R.-H.Y.); (Y.-J.W.); (S.C.)
| |
Collapse
|
15
|
Tao Y, Wang Y, Zhu R, Chen Y, Liu X, Li M, Yang L, Wang Y, Wang D. Fiber based organic electrochemical transistor integrated with molecularly imprinted membrane for uric acid detection. Talanta 2022; 238:123055. [PMID: 34801911 DOI: 10.1016/j.talanta.2021.123055] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/20/2021] [Accepted: 11/07/2021] [Indexed: 10/19/2022]
Abstract
In this study, poly(3, 4-ethylenedioxythiophene) (PEDOT) nanocluster structure was synthesized on the reduced graphene oxide (rGO) modified cotton fibers. The organic electrochemical transistors based on the modified fiber have been assembled and their performance of different gate electrode transistors has been investigated. The transistor exhibits an excellent transconductance of up to 15.5 mS and a high on-off ratio close to 2*102. The bending angle and bending times have little effect on the device performance. The uric acid (UA) sensor based transistor has been fabricated for the first time. Flexible sensors based on molecularly imprinted polymer (MIP) membrane with different fiber gate electrodes have been investigated. The UA sensor with MIP/PEDOT/carbon fiber as the gate electrode has a sensitivity of 100 μA per decade from 1 nM to 500 μM, a linear coefficient of 0.97143, excellent selectivity, and good reproducibility. In addition, fiber based organic electrochemical transistors (FECTs) can be sewn into the fabric for monitoring and have successfully evaluated the detection of UA in artificial urine sample, with data consistent well with the UA concentration obtained from single fiber. Therefore, the sensor based FECTs can be used for low cost, accurate, non-enzymatic detection of UA in clinical diagnostics and bioanalytical applications.
Collapse
Affiliation(s)
- Yang Tao
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Wuhan, 430200, China
| | - Yao Wang
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Wuhan, 430200, China
| | - Rufeng Zhu
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Wuhan, 430200, China
| | - Yuanli Chen
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Wuhan, 430200, China
| | - Xue Liu
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Wuhan, 430200, China
| | - Mufang Li
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Wuhan, 430200, China
| | - Liyan Yang
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Wuhan, 430200, China
| | - Yuedan Wang
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Wuhan, 430200, China.
| | - Dong Wang
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Wuhan, 430200, China.
| |
Collapse
|
16
|
Rattanaumpa T, Maensiri S, Ngamchuea K. Microporous carbon in the selective electro-oxidation of molecular biomarkers: uric acid, ascorbic acid, and dopamine. RSC Adv 2022; 12:18709-18721. [PMID: 35873328 PMCID: PMC9235059 DOI: 10.1039/d2ra03126d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/17/2022] [Indexed: 12/13/2022] Open
Abstract
Herein, we demonstrate the superior electrocatalytic activities of microporous carbon in the oxidation of three molecular biomarkers, ascorbic acid (AA), dopamine (DA), and uric acid (UA), which are co-present in biological fluids.
Collapse
Affiliation(s)
- Tidapa Rattanaumpa
- School of Chemistry, Institute of Science, Suranaree University of Technology, 111 University Avenue, Suranaree, Muang, Nakhon Ratchasima, 30000, Thailand
| | - Santi Maensiri
- School of Physics, Institute of Science, Suranaree University of Technology, 111 University Avenue, Suranaree, Muang, Nakhon Ratchasima, 30000, Thailand
| | - Kamonwad Ngamchuea
- School of Chemistry, Institute of Science, Suranaree University of Technology, 111 University Avenue, Suranaree, Muang, Nakhon Ratchasima, 30000, Thailand
| |
Collapse
|
17
|
A new electrochemical aptasensor based on gold/nitrogen-doped carbon nano-onions for the detection of Staphylococcus aureus. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139633] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
18
|
Manibalan G, Murugadoss G, Hazra S, Marimuthu R, Manikandan C, Jothi Ramalingam R, Rajesh Kumar M. A facile synthesis of Sn-doped CeO2 nanoparticles: High performance electrochemical nitrite sensing application. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2021.109096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Deng H, Zhao J, Zhao S, Jiang S, Cui G. A graphene-based electrochemical flow analysis device for simultaneous determination of dopamine, 5-hydroxytryptamine, and melatonin. Analyst 2022; 147:1598-1610. [DOI: 10.1039/d1an02318g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A graphene-based electrochemical flow analysis device for simultaneous determination of dopamine, 5-hydroxytryptamine, and melatonin.
Collapse
Affiliation(s)
- Huizhen Deng
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Jie Zhao
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Shifan Zhao
- Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Shuai Jiang
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Guofeng Cui
- Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province, Sun Yat-sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
20
|
Meenakshi S, Anitta S, Sivakumar A, Martin Britto Dhas S, Sekar C. Shock waves exposed α-Fe2O3 nanoparticles for electrochemical sensing of riboflavin, uric acid and folic acid. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106403] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Bukharinova MA, Stozhko NY, Novakovskaya EA, Khamzina EI, Tarasov AV, Sokolkov SV. Developing Activated Carbon Veil Electrode for Sensing Salivary Uric Acid. BIOSENSORS 2021; 11:287. [PMID: 34436089 PMCID: PMC8394272 DOI: 10.3390/bios11080287] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 05/04/2023]
Abstract
The paper describes the development of a carbon veil-based electrode (CVE) for determining uric acid (UA) in saliva. The electrode was manufactured by lamination technology, electrochemically activated and used as a highly sensitive voltammetric sensor (CVEact). Potentiostatic polarization of the electrode at 2.0 V in H2SO4 solution resulted in a higher number of oxygen and nitrogen-containing groups on the electrode surface; lower charge transfer resistance; a 1.5 times increase in the effective surface area and a decrease in the UA oxidation potential by over 0.4 V, compared with the non-activated CVE, which was confirmed by energy dispersive X-ray spectroscopy, electrochemical impedance spectroscopy, chronoamperometry and linear sweep voltammetry. The developed sensor is characterized by a low detection limit of 0.05 µM and a wide linear range (0.09-700 µM). The results suggest that the sensor has perspective applications for quick determination of UA in artificial and human saliva. RSD does not exceed 3.9%, and recovery is 96-105%. UA makes a significant contribution to the antioxidant activity (AOA) of saliva (≈60%). In addition to its high analytical characteristics, the important advantages of the proposed CVEact are the simple, scalable, and cost-effective manufacturing technology and the absence of additional complex and time-consuming modification operations.
Collapse
Affiliation(s)
| | - Natalia Yu. Stozhko
- Scientific and Innovation Center of Sensor Technologies, Department of Physics and Chemistry, Ural State University of Economics, 8 Marta St., 62, 620144 Yekaterinburg, Russia; (M.A.B.); (E.A.N.); (E.I.K.); (A.V.T.); (S.V.S.)
| | | | | | | | | |
Collapse
|
22
|
Naik EI, Naik HB, Sarvajith M, Pradeepa E. Co-precipitation synthesis of cobalt doped ZnO nanoparticles: Characterization and their applications for biosensing and antibacterial studies. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108678] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
23
|
MnFe2O4 nanoparticles-decorated graphene nanosheets used as an efficient peroxidase minic enable the electrochemical detection of hydrogen peroxide with a low detection limit. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106240] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
24
|
A High-Response Electrochemical As(III) Sensor Using Fe3O4–rGO Nanocomposite Materials. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9060150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nowadays, heavy metal ion pollution in water is becoming more and more common, especially arsenic, which seriously threatens human health. In this work, we used Fe3O4–rGO nanocomposites to modify a glassy carbon electrode and selected square wave voltametric electrochemical detection methods to detect trace amounts of arsenic in water. Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) showed that Fe3O4 nanoparticles were uniformly distributed on the rGO sheet, with a particle size of about 20 nm. Raman spectroscopy and electrochemical impedance spectroscopy (EIS) showed that rGO provides higher sensitivity and conductive substrates. Under optimized experimental conditions, Fe3O4–rGO-modified glassy carbon electrodes showed a higher sensitivity (2.15 µA/ppb) and lower limit of detection (1.19 ppb) for arsenic. They also showed good selectivity, stability, and repeatability.
Collapse
|
25
|
Aykaç A, Gergeroglu H, Beşli B, Akkaş EÖ, Yavaş A, Güler S, Güneş F, Erol M. An Overview on Recent Progress of Metal Oxide/Graphene/CNTs-Based Nanobiosensors. NANOSCALE RESEARCH LETTERS 2021; 16:65. [PMID: 33877478 PMCID: PMC8056378 DOI: 10.1186/s11671-021-03519-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/30/2021] [Indexed: 05/07/2023]
Abstract
Nanobiosensors are convenient, practical, and sensitive analyzers that detect chemical and biological agents and convert the results into meaningful data between a biologically active molecule and a recognition element immobilized on the surface of the signal transducer by a physicochemical detector. Due to their fast, accurate and reliable operating characteristics, nanobiosensors are widely used in clinical and nonclinical applications, bedside testing, medical textile industry, environmental monitoring, food safety, etc. They play an important role in such critical applications. Therefore, the design of the biosensing interface is essential in determining the performance of the nanobiosensor. The unique chemical and physical properties of nanomaterials have paved the way for new and improved sensing devices in biosensors. The growing demand for devices with improved sensing and selectivity capability, short response time, lower limit of detection, and low cost causes novel investigations on nanobiomaterials to be used as biosensor scaffolds. Among all other nanomaterials, studies on developing nanobiosensors based on metal oxide nanostructures, graphene and its derivatives, carbon nanotubes, and the widespread use of these nanomaterials as a hybrid structure have recently attracted attention. Nanohybrid structures created by combining these nanostructures will directly meet the future biosensors' needs with their high electrocatalytic activities. This review addressed the recent developments on these nanomaterials and their derivatives, and their use as biosensor scaffolds. We reviewed these popular nanomaterials by evaluating them with comparative studies, tables, and charts.
Collapse
Affiliation(s)
- Ahmet Aykaç
- Department of Engineering Sciences, Izmir Katip Çelebi University, 35620, Izmir, Turkey.
- Department of Nanoscience and Nanotechnology, Izmir Katip Çelebi University, 35620, Izmir, Turkey.
| | - Hazal Gergeroglu
- Department of Nanoscience and Nanoengineering, Dokuz Eylul University, 35390, Izmir, Turkey
| | - Büşra Beşli
- Department of Nanoscience and Nanotechnology, Izmir Katip Çelebi University, 35620, Izmir, Turkey
| | - Emine Özge Akkaş
- Department of Nanoscience and Nanotechnology, Izmir Katip Çelebi University, 35620, Izmir, Turkey
| | - Ahmet Yavaş
- Department of Material Science and Engineering, Izmir Katip Çelebi University, 35620, Izmir, Turkey
| | - Saadet Güler
- Department of Material Science and Engineering, Izmir Katip Çelebi University, 35620, Izmir, Turkey
| | - Fethullah Güneş
- Department of Material Science and Engineering, Izmir Katip Çelebi University, 35620, Izmir, Turkey
| | - Mustafa Erol
- Department of Metallurgical and Materials Engineering, Dokuz Eylul University, 35390, Izmir, Turkey
| |
Collapse
|
26
|
Tripathy A, Nine MJ, Silva FS. Biosensing platform on ferrite magnetic nanoparticles: Synthesis, functionalization, mechanism and applications. Adv Colloid Interface Sci 2021; 290:102380. [PMID: 33819727 DOI: 10.1016/j.cis.2021.102380] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 12/17/2022]
Abstract
Ferrite magnetic nanoparticles (FMNPs) are gaining popularity to design biosensors for high-performance clinical diagnosis. The fusion of information shows that FMNPs based biosensors require well-tuned FMNPs as detection probes to produce large and specific biological signals with minimal non-specific binding. Nevertheless, there is a noticeable lacuna of information to solve the issues related to suitable synthesis route, particle size reduction, functionalization, sensitivity towards targeted intercellular biological tiny particles, and lower signal-to-noise ratio. Therefore it allows exploring unique characteristics of FMNPs to design a suitable sensing device for intracellular measurements and diseases detection. This review focuses on the extensively used synthesis routes, their advantages and limitations, crystalline structure, functionalization, along with recent applications of FMNPs in biosensors, taking into consideration their analytical figures of merit and range of linearity. This work also addresses the current progress, key factors for sensitivity, selectivity and productivity improvement along with the challenges, future trends and perspectives of FMNPs based biosensors.
Collapse
|
27
|
Yilmaz E, Sarp G, Uzcan F, Ozalp O, Soylak M. Application of magnetic nanomaterials in bioanalysis. Talanta 2021; 229:122285. [PMID: 33838779 DOI: 10.1016/j.talanta.2021.122285] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/04/2021] [Accepted: 02/26/2021] [Indexed: 12/21/2022]
Abstract
The importance of magnetic nanomaterials and magnetic hybrid materials, which are classified as new generation materials, in analytical applications is increasingly understood, and research on the adaptation of these materials to analytical methods has gained momentum. Development of sample preparation techniques and sensor systems using magnetic nanomaterials for the analysis of inorganic, organic and biomolecules in biological samples, which are among the samples that analytical chemists work on most, are among the priority issues. Therefore in this review, we focused on the use of magnetic nanomaterials for the bioanalytical applications including inorganic and organic species and biomolecules in different biological samples such as primarily blood, serum, plasma, tissue extracts, urine and milk. We summarized recent progresses, prevailing techniques, applied formats, and future trends in sample preparation-analysis methods and sensors based on magnetic nanomaterials (Mag-NMs). First, we provided a brief introduction of magnetic nanomaterials, especially their magnetic properties that can be utilized for bioanalytical applications. Second, we discussed the synthesis of these Mag-NMs. Third, we reviewed recent advances in bioanalytical applications of the Mag-NMs in different formats. Finally, recently literature studies on the relevance of Mag-NMs for bioanalysis applications were presented.
Collapse
Affiliation(s)
- Erkan Yilmaz
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey; Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkey; ERNAM-Nanotechnology Application and Research Center, Erciyes University, Kayseri, Turkey
| | - Gokhan Sarp
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey; Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkey; ERNAM-Nanotechnology Application and Research Center, Erciyes University, Kayseri, Turkey
| | - Furkan Uzcan
- Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkey; Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri, Turkey
| | - Ozgur Ozalp
- Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkey; Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri, Turkey
| | - Mustafa Soylak
- Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkey; Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri, Turkey.
| |
Collapse
|
28
|
Naghian E, Shahdost-Fard F, Najafi M, Manafi MR, Torkian L, Rahimi-Nasrabadi M. Voltammetric measurement of entacapone in the presence of other medicines against Parkinson's disease by a screen-printed electrode modified with sulfur-tin oxide nanoparticles. Mikrochim Acta 2021; 188:92. [PMID: 33608774 DOI: 10.1007/s00604-021-04733-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 01/27/2021] [Indexed: 11/27/2022]
Abstract
A screen-printed electrode (SPE) is described modified with sulfur-tin oxide nanoparticles (S@SnO2NP) for the determination of entacapone (ENT) in the presence of other medicines against Parkinson's disease (PD). The S@SnO2NP was synthesized through the hydrothermal method and used in the modification of the SPE. The smart utilization of the S@SnO2NP and the SPE provided excellent properties such as high surface area and current density amplification by embedding an efficient sensing interface for highly selective electrochemical measurement. Under optimized experimental conditions, the anodic peak current related to the ENT oxidation onto the sensor surface at 0.46 V presented a linear response towards different ENT concentration sin the range 100 nM to 75 μM. The limit of detection (LOD) and electrochemical sensitivity were estimated to be 0.010 μM and 2.27 μA·μM-1·cm-2, respectively. The applicability of the sensor was evaluated during ENT determination in the presence of other conventional medicines againts, including levodopa (LD), carbidopa (CD), and pramipexole (PPX). The results of the analysis of human urine and pharmaceutical formulation as real samples using the developed sensor were in good agreement withre sults of high-performance liquid chromatography (HPLC) as a standard method. These findings demonstrated that the strategy based on the SPE is a cost-effective platform creating a promising candidate for practical determination of ENT in routine clinical testing.Graphical abstract.
Collapse
Affiliation(s)
- Ebrahim Naghian
- Department of Chemistry, South Tehran Branch Islamic Azad University, Tehran, Iran
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Mostafa Najafi
- Department of Chemistry, Faculty of Science, Imam Hossein University, Tehran, Iran.
| | - Mohammad Reza Manafi
- Department of Chemistry, South Tehran Branch Islamic Azad University, Tehran, Iran
| | - Leila Torkian
- Department of Chemistry, South Tehran Branch Islamic Azad University, Tehran, Iran
| | - Mehdi Rahimi-Nasrabadi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
- Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
29
|
Atta NF, Galal A, Ahmed YM, Abdelkader MG. Host guest inclusion complex/polymer-CNT composite for efficient determination of uric acid in presence of interfering species. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|