1
|
Liang Z, Qin Y, Zhong X, Ma X, Deng L, Zou Z, Feng L, Pan Z, Pan S, Li M, Su Z, Wu J. A smartphone-integrated paper-based colorimetric sensor array: Real-time detection and classification of flavonoids. Talanta 2025; 293:128030. [PMID: 40164026 DOI: 10.1016/j.talanta.2025.128030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/02/2025]
Abstract
Here, a smartphone-integrated paper-based colorimetric sensor array (PBCSA) was developed for distinguishing flavonoid-rich Citrus herbal products (FRCHPs): Citri reticulatae pericarpium, Aurantii fructus immaturus, Aurantii fructus, Citri grandis exocarpium, Citri reticulatae pericarpium viride, and Citri sarcodactylis fructus. Based on the strategy of indicator displacement assay induced by flavonoids, a 3 × 3 PBCSA with a hydrophobic barrier was constructed using inkjet printing technology. The PBCSA can accurately distinguished different species or concentrations flavonoids, and FRCHPs, demonstrating its broad applicability. After optimization with Genetic Algorithm, the Support Vector Machine (SVM) reduced the number of PBCSA sensor units from nine to five while maintaining an accuracy of 100.00 %, significantly improving the efficiency and accuracy of detection. Furthermore, the optimized SVM was integrated into a self-developed Quick Viewer app for real-time detection, greatly enhancing its practicability. This study not only presents a novel strategy for optimizing sensor arrays but also introduces a simple, economical, and real-time approach for analyzing FRCHPs.
Collapse
Affiliation(s)
- Zhenwu Liang
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Yuelian Qin
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Xinyu Zhong
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Xiaolong Ma
- Institute of Life Sciences, Guangxi Medical University, Nanning, 530021, China
| | - Lijun Deng
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Ziwei Zou
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Linlin Feng
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Ziping Pan
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Shihan Pan
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Mei Li
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China.
| | - Zhiheng Su
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China; Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Nanning, 530021, China; Guangxi Beibu Gulf Marine Biomedicine Precision Development and High-value Utilization Engineering Research Center, Nanning, 530021, China; Guangxi Health Commission Key Laboratory of Basic Research on Antigeriatric Drugs, Nanning, 530021, China.
| | - Jinxia Wu
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
2
|
Xu S, Shao D, Wang J, Zheng X, Yang Z, Wang A, Chen Z, Gao Y. Pre-ligand-induced porous MOF as a peroxidase mimic for electrochemical analysis of deoxynivalenol (DON). Food Chem 2025; 480:143860. [PMID: 40112717 DOI: 10.1016/j.foodchem.2025.143860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/26/2025] [Accepted: 03/10/2025] [Indexed: 03/22/2025]
Abstract
Developing convenient and sensitive vomitoxin detection methods is crucial to prevent human health risks from excess deoxynivalenol (DON) in food products. This study synthesized porous electrochemical nanomaterial calcined PA-NH2-MIL-101 (CPNM) with abundant amino group modifications using a palmitic acid (PA) pre-ligand and amino functionalization scheme. PA-induced defect generation and which formed a high-stability porous structure that increased the peroxidase-like catalytic active site and thus improving electrochemical analytical performance. In addition, introducing amino groups in CPNM facilitated the covalent immobilization of DON antibodies. Therefore, an electrochemical immunosensing platform for detecting DON was developed by utilizing the electrocatalytic signals generated by Fe-MOF (MIL-101) nanozymes and thionine molecules. The proposed sensor showed a large linear range of 10-107 pg mL-1 with a detection limit of 9.6 pg mL-1 (S/N = 3) under optimized optimal conditions. Consequently, this innovative electrochemical immunosensing technique based on CPNM nanozymes paves the way for DON detection in food.
Collapse
Affiliation(s)
- Suhui Xu
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Dan Shao
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Jiamin Wang
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Xiangfeng Zheng
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Zhenquan Yang
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Aijian Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhiyan Chen
- School of Tourism and Culinary Science, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Yajun Gao
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225127, China.
| |
Collapse
|
3
|
Ren Z, Deng Q, Wang Y, Yang Y, Wang H, Liu F, Jing W. Machine learning assisted nanozyme sensor array for accurate identification and discrimination of flavonoids in healthy tea. Food Chem 2025; 486:144612. [PMID: 40339423 DOI: 10.1016/j.foodchem.2025.144612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/25/2025] [Accepted: 04/30/2025] [Indexed: 05/10/2025]
Abstract
Identifying flavonoids in herbs is of great significance for elucidating their biological activity and pharmacological effects. However, distinguishing and detecting multiple flavonoids simultaneously remains a challenge. Here, an innovative citric acid-Cu (CA-Cu) nanozyme with peroxidase mimic (POD) and laccase mimic (LAC) activities was successfully synthesized. Due to the varying inhibitory effects of flavonoids on CA-Cu dual-enzyme mimicking activities, and the degree of inhibition increasing with prolonged reaction time, a nanozyme sensor array was constructed based on reaction kinetics and applied to the identification of five flavonoids. This technique further streamlines the building of sensing channels. Moreover, by integrating various machine learning algorithms with the sensor arrays, accurate identification and prediction of five flavonoids in multiple herb samples have been successfully achieved. Finally, the sensor array successfully achieved the differentiation and recognition of multiple healthy tea, demonstrating its feasibility in efficiently distinguishing and detecting flavonoids in complex samples.
Collapse
Affiliation(s)
- Zemin Ren
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin 300457, PR China
| | - Qingxu Deng
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin 300457, PR China.
| | - Yu Wang
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin 300457, PR China
| | - Yajun Yang
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin 300457, PR China
| | - Hongbin Wang
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin 300457, PR China.
| | - Fufeng Liu
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin 300457, PR China.
| | - Wenjie Jing
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 of 13th Street, TEDA, Tianjin 300457, PR China.
| |
Collapse
|
4
|
Daci M, Berisha L, Mercatante D, Rodriguez-Estrada MT, Jin Z, Huang Y, Amorati R. Advancements in Biosensors for Lipid Peroxidation and Antioxidant Protection in Food: A Critical Review. Antioxidants (Basel) 2024; 13:1484. [PMID: 39765813 PMCID: PMC11672933 DOI: 10.3390/antiox13121484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/26/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025] Open
Abstract
This review highlights the progress made in recent years on biosensors aimed at detecting relevant analytes/markers of food peroxidation. Starting from the basic definition of biosensors and the chemical features of peroxidation, here we describe the different approaches that can be used to obtain information about the progress of peroxidation and the efficacy of antioxidants. Aptamers, metal-organic frameworks, nanomaterials, and supported enzymes, in conjunction with electrochemical methods, can provide fast and cost-effective detection of analytes related to peroxidation, like peroxides, aldehydes, and metals. The determination of (poly)phenols concentrations by biosensors, which can be easily obtained by using immobilized enzymes (like laccase), provides an indirect measure of peroxidation. The rationale for developing new biosensors, with a special focus on food applications, is also discussed.
Collapse
Affiliation(s)
- Majlinda Daci
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Pristina, Str. Mother Teresa, 10000 Prishtina, Kosovo;
| | - Liridon Berisha
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Pristina, Str. Mother Teresa, 10000 Prishtina, Kosovo;
- NanoAlb, Albanian NanoScience and Nanotechnology Unit, Academy of Sciences of Albania, Shëtitorja Murat Toptani, 1000 Tiranë, Albania
| | - Dario Mercatante
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum-Università di Bologna, Viale G. Fanin 40, 40127 Bologna, Italy; (D.M.); (M.T.R.-E.)
| | - Maria Teresa Rodriguez-Estrada
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum-Università di Bologna, Viale G. Fanin 40, 40127 Bologna, Italy; (D.M.); (M.T.R.-E.)
| | - Zongxin Jin
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum-Università di Bologna, Via Gobetti 83, 40129 Bologna, Italy; (Z.J.); (Y.H.)
| | - Yeqin Huang
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum-Università di Bologna, Via Gobetti 83, 40129 Bologna, Italy; (Z.J.); (Y.H.)
| | - Riccardo Amorati
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum-Università di Bologna, Via Gobetti 83, 40129 Bologna, Italy; (Z.J.); (Y.H.)
| |
Collapse
|
5
|
Le TA, Huynh TP. Hemicellulose-Based Sensors: When Sustainability Meets Complexity. ACS Sens 2024; 9:4975-5001. [PMID: 39344466 DOI: 10.1021/acssensors.4c01027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Hemicelluloses (HCs) are promising sustainable biopolymers with a great natural abundance, excellent biocompatibility, and biodegradability. Yet, their potential sensing applications remain limited due to intrinsic challenges in their heterogeneous chemical composition, structure, and physicochemical properties. Herein, recent advances in the development of HC-based sensors for different chemical analytes and physical stimuli using different transduction mechanisms are reviewed and discussed. HCs can be utilized as carbonaceous precursors, reducing, capping, and stabilizing agents, binders, and active components for sensing applications. In addition, different strategies to develop and improve the sensing capacity of HC-based sensors are also highlighted.
Collapse
Affiliation(s)
- Trung-Anh Le
- Department of Chemistry, Faculty of Science, University of Helsinki, A.I. Virtasen aukio 1, 00560 Helsinki, Finland
| | - Tan-Phat Huynh
- Laboratory of Molecular Sciences and Engineering, Åbo Akademi University, Henrikinkatu 2, 20500 Turku, Finland
| |
Collapse
|
6
|
Chen C, Ren H, Tang W, Han M, Chen Q, Zhou H, Chen J, Gao Y, Liu W. Spherical porous iron-nitrogen-carbon nanozymes derived from a tannin coordination framework for the preparation of L-DOPA by emulating tyrosine hydroxylase. J Mater Chem B 2023; 11:11235-11250. [PMID: 37953738 DOI: 10.1039/d3tb01082a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
L-3,4-Dihydroxyphenylalanine (L-DOPA) is widely used in Parkinson's disease treatment and is therefore in high demand. Development of an efficient method for the production of L-DOPA is urgently required. Nanozymes emulating tyrosine hydroxylase have attracted enormous attention for biomimetic synthesis of L-DOPA, but suffered from heterogeneity. Herein, a spherical porous iron-nitrogen-carbon nanozyme was developed for production of L-DOPA. Tannic acid chelated with ferrous ions to form a tannin-iron coordination framework as a carbon precursor. Iron and nitrogen co-doped carbon nanospheres were assembled via an evaporation-induced self-assembly process using urea as a nitrogen source, F127 as a soft template, and formaldehyde as a crosslinker. The nanozyme was obtained after carbonization and acid etching. The nanozyme possessed a dispersive iron atom anchored in the Fe-N coordination structure as an active site to mimic the active center of tyrosine hydroxylase. The material showed spherical morphology, uniform size, high specific surface area, a mesoporous structure and easy magnetic separation. The structural properties could promote the density and accessibility of active sites and facilitate mass transport and electron transfer. The nanozyme exhibited high activity to catalyze the hydroxylation of tyrosine to L-DOPA as tyrosine hydroxylase in the presence of ascorbic acid and hydrogen peroxide. The titer of DOPA reached 1.2 mM. The nanozyme showed good reusability and comparable enzyme kinetics to tyrosine hydroxylase with a Michaelis-Menten constant of 2.3 mM. The major active species was the hydroxyl radical. Biomimetic simulation of tyrosine hydroxylase using a nanozyme with a fine structure provided a new route for the efficient production of L-DOPA.
Collapse
Affiliation(s)
- Chan Chen
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Haisheng Ren
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Weikang Tang
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Mengqi Han
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Qinfei Chen
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Hong Zhou
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Jiadong Chen
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Yuyue Gao
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Wenbin Liu
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
7
|
Nanozymes and nanoflower: Physiochemical properties, mechanism and biomedical applications. Colloids Surf B Biointerfaces 2023; 225:113241. [PMID: 36893662 DOI: 10.1016/j.colsurfb.2023.113241] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/08/2023] [Accepted: 03/03/2023] [Indexed: 03/07/2023]
Abstract
Natural enzymes possess several drawbacks which limits their application in industries, wastewater remediation and biomedical field. Therefore, in recent years researchers have developed enzyme mimicking nanomaterials and enzymatic hybrid nanoflower which are alternatives of enzyme. Nanozymes and organic inorganic hybrid nanoflower have been developed which mimics natural enzymes functionalities such as diverse enzyme mimicking activities, enhanced catalytic activities, low cost, ease of preparation, stability and biocompatibility. Nanozymes include metal and metal oxide nanoparticles mimicking oxidases, peroxidases, superoxide dismutase and catalases while enzymatic and non-enzymatic biomolecules were used for preparing hybrid nanoflower. In this review nanozymes and hybrid nanoflower have been compared in terms of physiochemical properties, common synthetic routes, mechanism of action, modification, green synthesis and application in the field of disease diagnosis, imaging, environmental remediation and disease treatment. We also address the current challenges facing nanozyme and hybrid nanoflower research and the possible way to fulfil their potential in future.
Collapse
|
8
|
Hemicellulose: Structure, Chemical Modification, and Application. Prog Polym Sci 2023. [DOI: 10.1016/j.progpolymsci.2023.101675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
9
|
Lan J, Wang B, Bo C, Gong B, Ou J. Progress on fabrication and application of activated carbon sphere in recent decade. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2022.12.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
10
|
An emerging machine learning strategy for electrochemical sensor and supercapacitor using carbonized metal–organic framework. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
11
|
Rao L, Lu X, Xu L, Zhu Y, Xue T, Ge Y, Duan Z, Duan X, Wen Y, Xu J. Green synthesis of kudzu vine biochar decorated graphene-like MoSe 2 with the oxidase-like activity as intelligent nanozyme sensing platform for hesperetin. CHEMOSPHERE 2022; 289:133116. [PMID: 34848220 DOI: 10.1016/j.chemosphere.2021.133116] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/17/2021] [Accepted: 11/26/2021] [Indexed: 05/28/2023]
Abstract
It is an urgent need to exploit a potentially green, cost efficient and eco-friendly strategy for the utilization of waste kudzu vine. We developed a one-step green preparation of kudzu vine biochar (BC) decorated graphene-like molybdenum selenide (MoSe2) with the oxidase-like activity as intelligent nanozyme sensing platform for voltametric detection of hesperetin (HP) in orange peel using the in-situ hydrothermal synthesis method. The structure and properties of MoSe2-BC was characterized, and found that BC significantly improved electrochemical cycle stability, electronic conductivity, electrochemical active area, and electrocatalytic activity of MoSe2. The oxidase-like activity of MoSe2-BC was confirmed by the oxidization of the colorless substrate 3,3',5,5'-tetramethylbenzidine (TMB) to form blue products and the change of absorbance intensity of UV-vis absorption spectra. The MoSe2-BC exhibited excellent electrochemical sensing performance for the detection of HP in wide linear ranges from 10 nM to 9.5 μM with a low limit of detection of 2 nM using differential pulse voltammetric method. An emerging machine learning technique is used to realize the intelligent sensing of HP, and the performance evaluation of regression analysis was selected to evaluate this technique. This work will provide a guidance for the preparation and application of biochar decorated graphene-like nanomaterials with the oxidase-like activity and the development of intelligent nanozyme sensing platform.
Collapse
Affiliation(s)
- Liangmei Rao
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, PR China; Institute of Functional Materials and Agricultural Applied Chemistry, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Xinyu Lu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, PR China; Institute of Functional Materials and Agricultural Applied Chemistry, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Lulu Xu
- Institute of Functional Materials and Agricultural Applied Chemistry, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Yifu Zhu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, PR China; Institute of Functional Materials and Agricultural Applied Chemistry, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Ting Xue
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, PR China; Institute of Functional Materials and Agricultural Applied Chemistry, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Yu Ge
- Institute of Functional Materials and Agricultural Applied Chemistry, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Zhongshu Duan
- Institute of Functional Materials and Agricultural Applied Chemistry, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Xuemin Duan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, PR China.
| | - Yangping Wen
- Institute of Functional Materials and Agricultural Applied Chemistry, Jiangxi Agricultural University, Nanchang, 330045, PR China.
| | - Jingkun Xu
- School of Chemistry & Chemical Engineering, Jiangxi Science & Technology Normal University, Nanchang, 330013, PR China; College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, PR China
| |
Collapse
|
12
|
Jiang W, Wu S, Fan RG, Wang Z, Chen SX, Wen Y, Wang P. Nitrogen, phosphorus co-doped hollow porous carbon microspheres as an oxidase-like electrochemical sensor for baicalin. NEW J CHEM 2022. [DOI: 10.1039/d2nj02721f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The extraordinary properties and unique structure of porous carbon has rapidly turned into a new favorite in the development and application of high-performance electrocatalytic sensor. Nitrogen, phosphorus co-doped hollow porous...
Collapse
|
13
|
Cao T, Cheng J, Ma J, Yang C, Yao M, Liu F, Deng M, Wang X, Ren Y. Facile Synthesis of Microporous Carbons from Biomass Waste as High Performance Supports for Dehydrogenation of Formic Acid. NANOMATERIALS 2021; 11:nano11113028. [PMID: 34835792 PMCID: PMC8624553 DOI: 10.3390/nano11113028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 01/29/2023]
Abstract
Formic acid (FA) is found to be a potential candidate for the storage of hydrogen. For dehydrogenation of FA, the supports of our catalysts were acquired by conducting ZnCl2 treatment and carbonation for biomass waste. The texture and surface properties significantly affected the size and dispersion of Pd and its interaction with the support so as to cause the superior catalytic performance of catalysts. Microporous carbon obtained by carbonization of ZnCl2 activated peanut shells (CPS-ZnCl2) possessing surface areas of 629 m2·g−1 and a micropore rate of 73.5%. For ZnCl2 activated melon seed (CMS-ZnCl2), the surface area and micropore rate increased to 1081 m2·g−1 and 80.0%, respectively. In addition, the introduction of ZnCl2 also caused the increase in surface O content and reduced the acidity of the catalyst. The results represented that CMS-ZnCl2 with uniform honeycomb morphology displayed the best properties, and the as-prepared Pd/CMS-ZnCl2 catalyst afforded 100% hydrogen selectivity as well as excellent catalytic activity with an initial high turnover number (TON) value of 28.3 at 30 °C and 100.1 at 60 °C.
Collapse
Affiliation(s)
- Tingting Cao
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China; (T.C.); (J.C.); (J.M.); (C.Y.); (M.D.); (X.W.)
- Key Laboratory of Green Chemical and Clean Energy Technology, Guizhou University, Guiyang 550025, China
| | - Jinke Cheng
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China; (T.C.); (J.C.); (J.M.); (C.Y.); (M.D.); (X.W.)
- Key Laboratory of Green Chemical and Clean Energy Technology, Guizhou University, Guiyang 550025, China
| | - Jun Ma
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China; (T.C.); (J.C.); (J.M.); (C.Y.); (M.D.); (X.W.)
- Key Laboratory of Green Chemical and Clean Energy Technology, Guizhou University, Guiyang 550025, China
| | - Chunliang Yang
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China; (T.C.); (J.C.); (J.M.); (C.Y.); (M.D.); (X.W.)
- Key Laboratory of Green Chemical and Clean Energy Technology, Guizhou University, Guiyang 550025, China
| | - Mengqin Yao
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China; (T.C.); (J.C.); (J.M.); (C.Y.); (M.D.); (X.W.)
- Key Laboratory of Green Chemical and Clean Energy Technology, Guizhou University, Guiyang 550025, China
- Correspondence: (M.Y.); (F.L.); (Y.R.)
| | - Fei Liu
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China; (T.C.); (J.C.); (J.M.); (C.Y.); (M.D.); (X.W.)
- Key Laboratory of Green Chemical and Clean Energy Technology, Guizhou University, Guiyang 550025, China
- Correspondence: (M.Y.); (F.L.); (Y.R.)
| | - Min Deng
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China; (T.C.); (J.C.); (J.M.); (C.Y.); (M.D.); (X.W.)
- Key Laboratory of Green Chemical and Clean Energy Technology, Guizhou University, Guiyang 550025, China
| | - Xiaodan Wang
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China; (T.C.); (J.C.); (J.M.); (C.Y.); (M.D.); (X.W.)
- Key Laboratory of Green Chemical and Clean Energy Technology, Guizhou University, Guiyang 550025, China
| | - Yuan Ren
- Key Laboratory of Green Chemical and Clean Energy Technology, Guizhou University, Guiyang 550025, China
- Correspondence: (M.Y.); (F.L.); (Y.R.)
| |
Collapse
|