Xu B, Pan L, Wang Y, Liu M. Constructing Co
3O
4 Nanowire@NiCo
2O
4 Nanosheet Hierarchical Array as Electrode Material for High-Performance Supercapacitor.
NANOMATERIALS (BASEL, SWITZERLAND) 2024;
14:1703. [PMID:
39513783 PMCID:
PMC11547568 DOI:
10.3390/nano14211703]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024]
Abstract
The Co3O4 nanowire@NiCo2O4 nanosheet hierarchical array was constructed on Ni foam using hydrothermal and annealing approaches in turn, from which a NiCo2O4 nanosheet could self-assemble on the Co3O4 nanowire. The structure and morphology of the Co3O4 nanowire@NiCo2O4 nanosheet hierarchical array were characterized via XRD, EDS, SEM, and FESEM, respectively. The electrochemical performance of the composite array was measured via a cyclic voltammetry curve, galvanostatic current charge-discharge, charge-discharge cycle, and electrochemical impedance and then compared with the Co3O4 nanowire. The results show that the Co3O4 nanowire@NiCo2O4 nanosheet hierarchical array could reach a high value of 2034 F g-1 at a current density of 2.5 A g-1. After 5000 galvanostatic charge-discharge cycles, the specific capacitance of the Co3O4 nanowire@NiCo2O4 nanosheet hierarchical array could still maintain 94.7% of the original value. Therefore, the Co3O4 nanowire@NiCo2O4 nanosheet hierarchical array would be a desirable electrode material for a high-performance supercapacitor.
Collapse