1
|
Grech N, Abela M. The Role of Cardiovascular Magnetic Resonance Imaging in Athletic Individuals-A Narrative Review. J Clin Med 2025; 14:3576. [PMID: 40429571 PMCID: PMC12112729 DOI: 10.3390/jcm14103576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2025] [Revised: 05/15/2025] [Accepted: 05/16/2025] [Indexed: 05/29/2025] Open
Abstract
Cardiovascular magnetic resonance imaging (MRI) is an advanced cardiac imaging modality that is often required when evaluating athletic individuals. Unrestricted imaging planes, excellent spatial resolution, and a lack of ionising radiation are some of the benefits of this modality. Cardiac MRI has been established as the gold standard imaging modality for morphological assessment, volumetric analysis, and tissue characterisation. Cardiac MRI without any doubt is an excellent diagnostic tool when evaluating athletes with symptoms or those individuals exhibiting equivocal findings at screening. It is also useful for athletes who fall within the grey zone and is especially important among athletes with a suspected or confirmed diagnosis. Cardiac MRI plays a strategic role when adopting a shared decision-making model in athletes with heart disease, tailoring and personalising medical care to the condition and the athlete's wishes. The aim of this review is to provide a comprehensive yet practical overview of the role of cardiac MRI when evaluating athletes in clinic.
Collapse
Affiliation(s)
- Neil Grech
- Department of Cardiology, Mater Dei Hospital, MSD 2090 Msida, Malta;
| | - Mark Abela
- Department of Cardiology, Mater Dei Hospital, MSD 2090 Msida, Malta;
- Department of Medicine, University of Malta, MSD 2090 Msida, Malta
- Cardiovascular and Genomics Research Institute, City St George’s, University of London, Cranmer Terrace, London SW17 0RE, UK
| |
Collapse
|
2
|
Marshall M, Malik A, Shah M, Fish FA, Etheridge SP, Aziz PF, Russell MW, Tisma S, Pflaumer A, Sreeram N, Kubus P, Law IH, Kantoch MJ, Kertesz NJ, Strieper M, Erickson CC, Moore JP, Nakano SJ, Singh HR, Chang P, Cohen M, Fournier A, Ilina MV, Zimmermann F, Horndasch M, Li W, Batra AS, Liberman L, Hamilton R, Janson CM, Sanatani S, Zeltser I, McDaniel G, Blaufox AD, Garnreiter JM, Balaji S. Patterns of Electrocardiographic Abnormalities in Children with Hypertrophic Cardiomyopathy. Pediatr Cardiol 2024; 45:1692-1701. [PMID: 37684488 DOI: 10.1007/s00246-023-03252-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/25/2023] [Indexed: 09/10/2023]
Abstract
Hypertrophic cardiomyopathy (HCM), a common cardiomyopathy in children, is an important cause of morbidity and mortality. Early recognition and appropriate management are important. An electrocardiogram (ECG) is often used as a screening tool in children to detect heart disease. The ECG patterns in children with HCM are not well described.ECGs collected from an international cohort of children, and adolescents (≤ 21 years) with HCM were reviewed. 482 ECGs met inclusion criteria. Age ranged from 1 day to 21 years, median 13 years. Of the 482 ECGs, 57 (12%) were normal. The most common abnormalities noted were left ventricular hypertrophy (LVH) in 108/482 (22%) and biventricular hypertrophy (BVH) in 116/482 (24%) Of the patients with LVH/BVH (n = 224), 135 (60%) also had a strain pattern (LVH in 83, BVH in 52). Isolated strain pattern (in the absence of criteria for hypertrophy) was seen in 43/482 (9%). Isolated pathologic Q waves were seen in 71/482 (15%). Pediatric HCM, 88% have an abnormal ECG. The most common ECG abnormalities were LVH or BVH with or without strain. Strain pattern without hypertrophy and a pathologic Q wave were present in a significant proportion (24%) of patients. Thus, a significant number of children with HCM have ECG abnormalities that are not typical for "hypertrophy". The presence of the ECG abnormalities described above in a child should prompt further examination with an echocardiogram to rule out HCM.
Collapse
Affiliation(s)
- Mayme Marshall
- Cleveland Clinic Children's Hospital, Cleveland, OH, USA
| | - Aneeq Malik
- University of Los Angeles Olive View, Los Angeles, CA, USA
| | - Maully Shah
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | | | - Peter F Aziz
- Cleveland Clinic Children's Hospital, Cleveland, OH, USA
| | | | | | - Andreas Pflaumer
- Royal Children's Hospital, University of Melbourne, Parkville, VIC, Australia
| | | | | | - Ian H Law
- University of Iowa, Iowa City, IA, USA
| | | | | | - Margaret Strieper
- Children's Healthcare of Atlanta, Emory University, Atlanta, GA, USA
| | | | | | | | - Harinder R Singh
- Children's Hospital of San Antonio, Baylor College of Medicine, San Antonio, TX, USA
| | | | - Mitchell Cohen
- Inova LJ Murphy Children's Hospital, Falls Church, VA, USA
| | | | | | | | | | - Walter Li
- University of California, San Francisco, CA, USA
| | | | | | | | | | | | | | | | - Andrew D Blaufox
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | | | - Seshadri Balaji
- Oregon Health and Science University, 707 SW Gaines Street, Portland, OR, 97239, USA.
| |
Collapse
|
3
|
Mariani MV, Pierucci N, Fanisio F, Laviola D, Silvetti G, Piro A, La Fazia VM, Chimenti C, Rebecchi M, Drago F, Miraldi F, Natale A, Vizza CD, Lavalle C. Inherited Arrhythmias in the Pediatric Population: An Updated Overview. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:94. [PMID: 38256355 PMCID: PMC10819657 DOI: 10.3390/medicina60010094] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/17/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024]
Abstract
Pediatric cardiomyopathies (CMs) and electrical diseases constitute a heterogeneous spectrum of disorders distinguished by structural and electrical abnormalities in the heart muscle, attributed to a genetic variant. They rank among the main causes of morbidity and mortality in the pediatric population, with an annual incidence of 1.1-1.5 per 100,000 in children under the age of 18. The most common conditions are dilated cardiomyopathy (DCM) and hypertrophic cardiomyopathy (HCM). Despite great enthusiasm for research in this field, studies in this population are still limited, and the management and treatment often follow adult recommendations, which have significantly more data on treatment benefits. Although adult and pediatric cardiac diseases share similar morphological and clinical manifestations, their outcomes significantly differ. This review summarizes the latest evidence on genetics, clinical characteristics, management, and updated outcomes of primary pediatric CMs and electrical diseases, including DCM, HCM, arrhythmogenic right ventricular cardiomyopathy (ARVC), Brugada syndrome (BrS), catecholaminergic polymorphic ventricular tachycardia (CPVT), long QT syndrome (LQTS), and short QT syndrome (SQTS).
Collapse
Affiliation(s)
- Marco Valerio Mariani
- Department of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences, “Sapienza” University of Rome, 00161 Rome, Italy; (N.P.); (D.L.); (G.S.); (A.P.); (C.C.); (C.D.V.); (C.L.)
| | - Nicola Pierucci
- Department of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences, “Sapienza” University of Rome, 00161 Rome, Italy; (N.P.); (D.L.); (G.S.); (A.P.); (C.C.); (C.D.V.); (C.L.)
| | - Francesca Fanisio
- Division of Cardiology, Policlinico Casilino, 00169 Rome, Italy; (F.F.); (M.R.)
| | - Domenico Laviola
- Department of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences, “Sapienza” University of Rome, 00161 Rome, Italy; (N.P.); (D.L.); (G.S.); (A.P.); (C.C.); (C.D.V.); (C.L.)
| | - Giacomo Silvetti
- Department of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences, “Sapienza” University of Rome, 00161 Rome, Italy; (N.P.); (D.L.); (G.S.); (A.P.); (C.C.); (C.D.V.); (C.L.)
| | - Agostino Piro
- Department of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences, “Sapienza” University of Rome, 00161 Rome, Italy; (N.P.); (D.L.); (G.S.); (A.P.); (C.C.); (C.D.V.); (C.L.)
| | - Vincenzo Mirco La Fazia
- Department of Electrophysiology, St. David’s Medical Center, Texas Cardiac Arrhythmia Institute, Austin, TX 78705, USA; (V.M.L.F.); (A.N.)
| | - Cristina Chimenti
- Department of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences, “Sapienza” University of Rome, 00161 Rome, Italy; (N.P.); (D.L.); (G.S.); (A.P.); (C.C.); (C.D.V.); (C.L.)
| | - Marco Rebecchi
- Division of Cardiology, Policlinico Casilino, 00169 Rome, Italy; (F.F.); (M.R.)
| | - Fabrizio Drago
- Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Children’s Hospital and Research Institute, 00165 Rome, Italy;
| | - Fabio Miraldi
- Cardio Thoracic-Vascular and Organ Transplantation Surgery Department, Policlinico Umberto I Hospital, 00161 Rome, Italy;
| | - Andrea Natale
- Department of Electrophysiology, St. David’s Medical Center, Texas Cardiac Arrhythmia Institute, Austin, TX 78705, USA; (V.M.L.F.); (A.N.)
| | - Carmine Dario Vizza
- Department of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences, “Sapienza” University of Rome, 00161 Rome, Italy; (N.P.); (D.L.); (G.S.); (A.P.); (C.C.); (C.D.V.); (C.L.)
| | - Carlo Lavalle
- Department of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences, “Sapienza” University of Rome, 00161 Rome, Italy; (N.P.); (D.L.); (G.S.); (A.P.); (C.C.); (C.D.V.); (C.L.)
| |
Collapse
|
4
|
Abela M, Sharma S. Electrocardiographic interpretation in athletes. Minerva Cardiol Angiol 2020; 69:533-556. [PMID: 33059398 DOI: 10.23736/s2724-5683.20.05331-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Participation in regular exercise of moderate intensity is associated with a plethora of systemic benefits, including a reduction in risk factors for coronary atherosclerosis; however, intensive exercise may paradoxically culminate in sudden cardiac arrest among individuals harboring arrhythmogenic substrates. The precise mechanism for arrhythmogenesis is likely multifactorial, however, surges in catecholamines, electrolyte shifts, acid-base disturbances, increased core temperature and demand myocardial ischemia are potential contributors. Although most deaths occur in middle aged and older males with atherosclerotic coronary artery disease, a significant proportion also affect young athletes with inherited or congenital cardiac abnormalities. The impact of such catastrophes on society, particularly when a young high-profile athlete is affected could be considered a justified reason for identifying individuals who may be at risk. Given the rarity of deaths in young athletes, only the simplest screening test, such as the 12-lead electrocardiography (ECG) may be considered to be cost effective. The ECG is effective for detecting serious electrical diseases in young athletes such as congenital electrical accessory pathways and ion channel diseases but can also identify athletes with potential life-threatening structural diseases such as hypertrophic and arrhythmogenic cardiomyopathy. One of the concerns about ECG screening is that regular intensive exercise results in several physiological alterations in cardiac structure and function that are reflected on the athlete's ECG. Sinus bradycardia, first-degree atrioventricular block, incomplete right bundle branch block, minor J-point elevation and large QRS voltages are common. Conversely, some repolarization anomalies affecting the ST segment, T waves and QT interval may overlap with patterns observed in patients with serious cardiac diseases. The situation is complicated further because age, sex and ethnicity of the athletes also influence the ECG and there is a risk that erroneous interpretation could have serious consequences. This review will describe the normal electrical patterns of the "athlete's heart" and provide insights into differentiation physiological electrical patterns from those observed in serious cardiac disease.
Collapse
Affiliation(s)
- Mark Abela
- Department of Cardiology, Mater Dei Hospital, Msida, Malta - .,Malta Medical School, University of Malta, Msida, Malta - .,St. George's University Hospitals, NHS Foundation Trust, St George's University, London, UK -
| | - Sanjay Sharma
- St. George's University Hospitals, NHS Foundation Trust, St George's University, London, UK
| |
Collapse
|
5
|
Abela M, Sharma S. Abnormal ECG Findings in Athletes: Clinical Evaluation and Considerations. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2019; 21:95. [PMID: 31865466 DOI: 10.1007/s11936-019-0794-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW Pre-participation cardiovascular evaluation with electrocardiography is normal practice for most sporting bodies. Awareness about sudden cardiac death in athletes and recognizing how screening can help identify vulnerable athletes have empowered different sporting disciplines to invest in the wellbeing of their athletes. RECENT FINDINGS Discerning physiological electrical alterations due to athletic training from those representing cardiac pathology may be challenging. The mode of investigation of affected athletes is dependent on the electrical anomaly and the disease(s) in question. This review will highlight specific pathological ECG patterns that warrant assessment and surveillance, together with an in-depth review of the recommended algorithm for evaluation.
Collapse
Affiliation(s)
- Mark Abela
- Cardiology Clinical Academic Group, St. George's, University of London, St. George's University Hospitals NHS Foundation Trust, London, UK.
- University of Malta, Msida, Malta.
| | - Sanjay Sharma
- Cardiology Clinical Academic Group, St. George's, University of London, St. George's University Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
6
|
Sharma S, Drezner JA, Baggish A, Papadakis M, Wilson MG, Prutkin JM, La Gerche A, Ackerman MJ, Borjesson M, Salerno JC, Asif IM, Owens DS, Chung EH, Emery MS, Froelicher VF, Heidbuchel H, Adamuz C, Asplund CA, Cohen G, Harmon KG, Marek JC, Molossi S, Niebauer J, Pelto HF, Perez MV, Riding NR, Saarel T, Schmied CM, Shipon DM, Stein R, Vetter VL, Pelliccia A, Corrado D. International recommendations for electrocardiographic interpretation in athletes. Eur Heart J 2019; 39:1466-1480. [PMID: 28329355 DOI: 10.1093/eurheartj/ehw631] [Citation(s) in RCA: 229] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 12/08/2016] [Indexed: 12/14/2022] Open
Abstract
Sudden cardiac death (SCD) is the leading cause of mortality in athletes during sport. A variety of mostly hereditary, structural, or electrical cardiac disorders are associated with SCD in young athletes, the majority of which can be identified or suggested by abnormalities on a resting 12-lead electrocardiogram (ECG). Whether used for diagnostic or screening purposes, physicians responsible for the cardiovascular care of athletes should be knowledgeable and competent in ECG interpretation in athletes. However, in most countries a shortage of physician expertise limits wider application of the ECG in the care of the athlete. A critical need exists for physician education in modern ECG interpretation that distinguishes normal physiological adaptations in athletes from distinctly abnormal findings suggestive of underlying pathology. Since the original 2010 European Society of Cardiology recommendations for ECG interpretation in athletes, ECG standards have evolved quickly over the last decade; pushed by a growing body of scientific data that both tests proposed criteria sets and establishes new evidence to guide refinements. On 26-27 February 2015, an international group of experts in sports cardiology, inherited cardiac disease, and sports medicine convened in Seattle, Washington, to update contemporary standards for ECG interpretation in athletes. The objective of the meeting was to define and revise ECG interpretation standards based on new and emerging research and to develop a clear guide to the proper evaluation of ECG abnormalities in athletes. This statement represents an international consensus for ECG interpretation in athletes and provides expert opinion-based recommendations linking specific ECG abnormalities and the secondary evaluation for conditions associated with SCD.
Collapse
Affiliation(s)
- Sanjay Sharma
- Cardiology Clinical Academic Group, St George's, University of London, UK
| | - Jonathan A Drezner
- Department of Family Medicine, University of Washington, Seattle, WA, USA
| | - Aaron Baggish
- Division of Cardiology, Massachusettes General Hospital, MA, USA
| | - Michael Papadakis
- Cardiology Clinical Academic Group, St George's, University of London, UK
| | - Mathew G Wilson
- Department of Sports Medicine, ASPETAR, Qatar Orthopaedic and Sports Medicine Hospital, Qatar
| | - Jordan M Prutkin
- Division of Cardiology, University of Washington, Seattle, WA, USA
| | - Andre La Gerche
- Department of Cardiology, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Michael J Ackerman
- Department of Cardiovascular Diseases, Pediatric and Adolescent Medicine, and Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, MN, USA
| | - Mats Borjesson
- Department of Neuroscience and Physiology, Sahlgrenska University Hospital/Ostra Sahlgrenska Academy, Goteborg, Sweden
| | - Jack C Salerno
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Irfan M Asif
- Department of Family Medicine, University of South Carolina, Greenville, SC, USA
| | - David S Owens
- Division of Cardiology, University of Washington, Seattle, WA, USA
| | - Eugene H Chung
- Division of Cardiology, University of North Carolina School of Medicine, NC, USA
| | - Michael S Emery
- Center of Cardiovascular Care in Athletics, Indiana University School of Medicine, IN, USA
| | | | - Hein Heidbuchel
- Department of Cardiology, Arrhythmology Hasselt University, Hasselt, Belgium.,Department of Cardiology, Antwerp, Belgium
| | - Carmen Adamuz
- Department of Sports Medicine, ASPETAR, Qatar Orthopaedic and Sports Medicine Hospital, Qatar
| | | | - Gordon Cohen
- Division of Pediatric Cardiothoracic Surgery, University of California San Francisco School of Medicine, CA, USA
| | - Kimberly G Harmon
- Department of Family Medicine, University of Washington, Seattle, WA, USA
| | | | - Silvana Molossi
- Division of Pediatric Cardiology, Baylor College of Medicine, TX, USA
| | - Josef Niebauer
- University Institute of Sports Medicine, Paracelsus Medical University, Austria
| | - Hank F Pelto
- Department of Family Medicine, University of Washington, Seattle, WA, USA
| | - Marco V Perez
- Center for Inherited Cardiovascular Disease, Stanford University, CA, USA
| | - Nathan R Riding
- Department of Sports Medicine, ASPETAR, Qatar Orthopaedic and Sports Medicine Hospital, Qatar
| | - Tess Saarel
- Pediatric Cardiology, Cleveland Clinic, OH, USA
| | | | - David M Shipon
- Heart Center of Philadelphia, Jefferson University Hospitals, PA, USA
| | - Ricardo Stein
- Department of Cardiology, Hospital de Clinicas de Porte Allegre, Brazil
| | | | | | - Domenico Corrado
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua Medical School, Italy
| |
Collapse
|
7
|
Prutkin JM, Wilson MG. Electrocardiography in athletes: normal and abnormal findings. Heart 2018; 104:1902-1909. [PMID: 30121634 DOI: 10.1136/heartjnl-2017-312901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/16/2018] [Accepted: 07/23/2018] [Indexed: 12/19/2022] Open
Abstract
Many sporting organisations recommend a pre-participation ECG to screen for disorders which predispose to sudden cardiac arrest (SCA). The ability of the ECG to perform accurately is dependent on the ECG criteria used and the experience of the operator. There have been several ECG criteria over the last decade, though these were recently superseded with the publication of the 'International Consensus Criteria for ECG Interpretation in Athletes'. These criteria use the latest evidence to improve specificity while maintaining sensitivity for ECG-detectable pathologies associated with SCA. Accordingly, this review describes the normal, borderline and abnormal ECG findings in an asymptomatic athlete aged 12-35 years.
Collapse
Affiliation(s)
- Jordan M Prutkin
- Department of Medicine/Cardiology, University of Washington, Seattle, Washington, USA
| | - Mathew G Wilson
- Sports Medicine Department, ASPETAR Orthopaedic and Sports Medicine Hospital, Doha, Qatar.,Athlete Health and Performance Research Centre, ASPETAR Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| |
Collapse
|
8
|
|
9
|
Chen AS, Bent RE, Wheeler M, Knowles JW, Haddad F, Froelicher V, Ashley E, Perez MV. Large Q and S waves in lead III on the electrocardiogram distinguish patients with hypertrophic cardiomyopathy from athletes. Heart 2018; 104:1871-1877. [PMID: 29680808 DOI: 10.1136/heartjnl-2017-312647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 04/03/2018] [Accepted: 04/05/2018] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVE To identify electrocardiographic findings, especially deep Q and S waves in lead III, that differentiate athletes from patients with hypertrophic cardiomyopathy (HCM). METHODS Digital ECGs of athletes and patients with HCM followed at the Stanford Center for Inherited Cardiovascular Disease were studied retrospectively. All patients with HCM had an echocardiogram performed. A multivariable logistic regression model was used to calculate ORs for various demographic and ECG characteristics. Linear regression was used to correlate ECG characteristics with echocardiogram findings. RESULTS We studied 1124 athletes and 240 patients with HCM. The average Q+S wave amplitude in lead III (IIIQ+S) was significantly higher in patients with HCM compared with athletes (0.71±0.69 mV vs 0.21±0.17 mV, p<0.001). In patients with HCM, IIIQ+S directly correlated with interventricular septal (IVS) thickness on echocardiography (ρ=0.45, p<0.001). In a multivariable analysis adjusted for demographic and ECG characteristics, higher IIIQ+S values remained independently associated with HCM compared with athletes (OR=4.2 per 0.5 mV, p<0.001). In subgroup analyses of young patients, African-American subjects and subjects without left axis deviation (LAD), IIIQ+S remained associated with HCM. The addition of IIIQ+S>1.0 mV as an abnormal finding to the International Criteria for athletic ECG interpretation improved sensitivity from 64.2% to 70.4%, with a minimal decrease in specificity. CONCLUSION Large Q and S waves in lead III distinguished athletes from patients with HCM, independent of axis and well-known ECG markers associated with HCM. The correlation between IVS thickness in patients with HCM and IIIQ+S suggests a partial explanation for this association.
Collapse
Affiliation(s)
- Alvin S Chen
- Stanford University School of Medicine, Stanford Center for Inherited Cardiovascular Disease, Stanford University, Stanford, California, USA
| | - Rachel E Bent
- Stanford University School of Medicine, Stanford Center for Inherited Cardiovascular Disease, Stanford University, Stanford, California, USA
| | - Matthew Wheeler
- Stanford University School of Medicine, Stanford Center for Inherited Cardiovascular Disease, Stanford University, Stanford, California, USA
| | - Joshua W Knowles
- Stanford University School of Medicine, Stanford Center for Inherited Cardiovascular Disease, Stanford University, Stanford, California, USA
| | - Francois Haddad
- Stanford University School of Medicine, Stanford Center for Inherited Cardiovascular Disease, Stanford University, Stanford, California, USA
| | - Victor Froelicher
- Stanford University School of Medicine, Stanford Center for Inherited Cardiovascular Disease, Stanford University, Stanford, California, USA
| | - Euan Ashley
- Stanford University School of Medicine, Stanford Center for Inherited Cardiovascular Disease, Stanford University, Stanford, California, USA
| | - Marco V Perez
- Stanford University School of Medicine, Stanford Center for Inherited Cardiovascular Disease, Stanford University, Stanford, California, USA
| |
Collapse
|
10
|
Sharma S, Drezner JA, Baggish A, Papadakis M, Wilson MG, Prutkin JM, La Gerche A, Ackerman MJ, Borjesson M, Salerno JC, Asif IM, Owens DS, Chung EH, Emery MS, Froelicher VF, Heidbuchel H, Adamuz C, Asplund CA, Cohen G, Harmon KG, Marek JC, Molossi S, Niebauer J, Pelto HF, Perez MV, Riding NR, Saarel T, Schmied CM, Shipon DM, Stein R, Vetter VL, Pelliccia A, Corrado D. International Recommendations for Electrocardiographic Interpretation in Athletes. J Am Coll Cardiol 2017; 69:1057-1075. [PMID: 28231933 DOI: 10.1016/j.jacc.2017.01.015] [Citation(s) in RCA: 237] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Sudden cardiac death (SCD) is the leading cause of mortality in athletes during sport. A variety of mostly hereditary, structural, or electrical cardiac disorders are associated with SCD in young athletes, the majority of which can be identified or suggested by abnormalities on a resting 12-lead electrocardiogram (ECG). Whether used for diagnostic or screening purposes, physicians responsible for the cardiovascular care of athletes should be knowledgeable and competent in ECG interpretation in athletes. However, in most countries a shortage of physician expertise limits wider application of the ECG in the care of the athlete. A critical need exists for physician education in modern ECG interpretation that distinguishes normal physiological adaptations in athletes from distinctly abnormal findings suggestive of underlying pathology. Since the original 2010 European Society of Cardiology recommendations for ECG interpretation in athletes, ECG standards have evolved quickly over the last decade; pushed by a growing body of scientific data that both tests proposed criteria sets and establishes new evidence to guide refinements. On February 26-27, 2015, an international group of experts in sports cardiology, inherited cardiac disease, and sports medicine convened in Seattle, Washington, to update contemporary standards for ECG interpretation in athletes. The objective of the meeting was to define and revise ECG interpretation standards based on new and emerging research and to develop a clear guide to the proper evaluation of ECG abnormalities in athletes. This statement represents an international consensus for ECG interpretation in athletes and provides expert opinion-based recommendations linking specific ECG abnormalities and the secondary evaluation for conditions associated with SCD.
Collapse
Affiliation(s)
- Sanjay Sharma
- Cardiology Clinical and Academic Group, St George's University of London, United Kingdom.
| | - Jonathan A Drezner
- Department of Family Medicine, University of Washington, Seattle, Washington
| | - Aaron Baggish
- Division of Cardiology, Massachusetts General Hospital, Boston, Massachusetts
| | - Michael Papadakis
- Cardiology Clinical and Academic Group, St George's University of London, United Kingdom
| | - Mathew G Wilson
- Department of Sports Medicine, ASPETAR, Qatar Orthopaedic and Sports Medicine Hospital, Qatar
| | - Jordan M Prutkin
- Division of Cardiology, University of Washington, Seattle, Washington
| | - Andre La Gerche
- Department of Cardiology, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Michael J Ackerman
- Department of Cardiovascular Diseases, Pediatric and Adolescent Medicine, and Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Mats Borjesson
- Department of Neuroscience and Physiology, Sahlgrenska University Hospital/Ostra Sahlgrenska Academy, Goteborg, Sweden
| | - Jack C Salerno
- Department of Pediatrics, University of Washington, Seattle, Washington
| | - Irfan M Asif
- Department of Family Medicine, University of South Carolina, Greenville, South Carolina
| | - David S Owens
- Division of Cardiology, University of Washington, Seattle, Washington
| | - Eugene H Chung
- Division of Cardiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Michael S Emery
- Center of Cardiovascular Care in Athletics, Indiana University School of Medicine, Indianapolis, Indiana
| | | | - Hein Heidbuchel
- Department of Cardiology, Arrhythmology Hasselt University, Belgium; Department of Cardiology, Antwerp, Belgium
| | - Carmen Adamuz
- Department of Sports Medicine, ASPETAR, Qatar Orthopaedic and Sports Medicine Hospital, Qatar
| | | | - Gordon Cohen
- Division of Pediatric Cardiothoracic Surgery, University of California San Francisco School of Medicine, San Francisco, California
| | - Kimberly G Harmon
- Department of Family Medicine, University of Washington, Seattle, Washington
| | | | - Silvana Molossi
- Division of Pediatric Cardiology, Baylor College of Medicine, Houston, Texas
| | - Josef Niebauer
- University Institute of Sports Medicine, Paracelsus Medical University, Austria
| | - Hank F Pelto
- Department of Family Medicine, University of Washington, Seattle, Washington
| | - Marco V Perez
- Center for Inherited Cardiovascular Disease, Stanford University, Stanford, California
| | - Nathan R Riding
- Department of Sports Medicine, ASPETAR, Qatar Orthopaedic and Sports Medicine Hospital, Qatar
| | - Tess Saarel
- Pediatric Cardiology, Cleveland Clinic, Cleveland, Ohio
| | | | - David M Shipon
- Heart Center of Philadelphia, Jefferson University Hospitals, Philadelphia, Pennsylvania
| | - Ricardo Stein
- Department of Cardiology, Hospital de Clinicas de Porte Allegre, Brazil
| | | | | | - Domenico Corrado
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua Medical School, Italy
| |
Collapse
|
11
|
Drezner JA, Sharma S, Baggish A, Papadakis M, Wilson MG, Prutkin JM, Gerche AL, Ackerman MJ, Borjesson M, Salerno JC, Asif IM, Owens DS, Chung EH, Emery MS, Froelicher VF, Heidbuchel H, Adamuz C, Asplund CA, Cohen G, Harmon KG, Marek JC, Molossi S, Niebauer J, Pelto HF, Perez MV, Riding NR, Saarel T, Schmied CM, Shipon DM, Stein R, Vetter VL, Pelliccia A, Corrado D. International criteria for electrocardiographic interpretation in athletes: Consensus statement. Br J Sports Med 2017; 51:704-731. [PMID: 28258178 DOI: 10.1136/bjsports-2016-097331] [Citation(s) in RCA: 272] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2017] [Indexed: 01/16/2023]
Abstract
Sudden cardiac death (SCD) is the leading cause of mortality in athletes during sport. A variety of mostly hereditary, structural or electrical cardiac disorders are associated with SCD in young athletes, the majority of which can be identified or suggested by abnormalities on a resting 12-lead electrocardiogram (ECG). Whether used for diagnostic or screening purposes, physicians responsible for the cardiovascular care of athletes should be knowledgeable and competent in ECG interpretation in athletes. However, in most countries a shortage of physician expertise limits wider application of the ECG in the care of the athlete. A critical need exists for physician education in modern ECG interpretation that distinguishes normal physiological adaptations in athletes from distinctly abnormal findings suggestive of underlying pathology. Since the original 2010 European Society of Cardiology recommendations for ECG interpretation in athletes, ECG standards have evolved quickly, advanced by a growing body of scientific data and investigations that both examine proposed criteria sets and establish new evidence to guide refinements. On 26-27 February 2015, an international group of experts in sports cardiology, inherited cardiac disease, and sports medicine convened in Seattle, Washington (USA), to update contemporary standards for ECG interpretation in athletes. The objective of the meeting was to define and revise ECG interpretation standards based on new and emerging research and to develop a clear guide to the proper evaluation of ECG abnormalities in athletes. This statement represents an international consensus for ECG interpretation in athletes and provides expert opinion-based recommendations linking specific ECG abnormalities and the secondary evaluation for conditions associated with SCD.
Collapse
Affiliation(s)
- Jonathan A Drezner
- Department of Family Medicine, University of Washington, Seattle, Washington, USA
| | - Sanjay Sharma
- Cardiology Clinical Academic Group, St. George's, University of London, London, UK
| | - Aaron Baggish
- Division of Cardiology, Massachusetts General Hospital, Boston, Massachusetts, US
| | - Michael Papadakis
- Cardiology Clinical Academic Group, St. George's, University of London, London, UK
| | - Mathew G Wilson
- Department of Sports Medicine, ASPETAR, Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| | - Jordan M Prutkin
- Division of Cardiology, University of Washington, Seattle, Washington, USA
| | - Andre La Gerche
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Michael J Ackerman
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, USA.,Department of Paediatric, Mayo Clinic, Rochester, Minnesota, USA.,Department of Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Department of Molecular Pharmacology, Mayo Clinic, Rochester, Minnesota, USA.,Department of Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - Mats Borjesson
- Department of Neuroscience, Sahlgrenska University Hospital/Ostra Sahlgrenska Academy, Goteborg, Sweden.,Department of Physiology, Sahlgrenska University Hospital/Ostra Sahlgrenska Academy, Goteborg, Sweden
| | - Jack C Salerno
- Department of Pediatrics, University of Washington, Seattle, Washington, US
| | - Irfan M Asif
- Department of Family Medicine, University of South Carolina, Greenville, USA
| | - David S Owens
- Division of Cardiology, University of Washington, Seattle, Washington, USA
| | - Eugene H Chung
- Division of Cardiology, University of North Carolina, School of Medicine, Chapel Hill, North Carolina, USA
| | - Michael S Emery
- Center of Cardiovascular Care in Athletics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | | | - Carmen Adamuz
- Department of Sports Medicine, ASPETAR, Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| | | | - Gordon Cohen
- Division of Paediatric Surgery, University of California, San Francisco School of Medicine, San Francisco, California, USA.,Division of Cardiothoracic Surgery, University of California, San Francisco School of Medicine, San Francisco, California, USA
| | - Kimberly G Harmon
- Department of Family Medicine, University of Washington, Seattle, Washington, USA
| | | | - Silvana Molossi
- Division of Pediatric, Baylor College of Medicine, Houston, Texas, USA.,Division of Cardiology, Baylor College of Medicine, Houston, Texas, USA
| | - Josef Niebauer
- University Institute of Sports Medicine, Research Institute of Molecular Sports Medicine and Rehabilitation, Paracelsus Medical University, Salzburg, Austria
| | - Hank F Pelto
- Department of Family Medicine, University of Washington, Seattle, Washington, USA
| | - Marco V Perez
- Center for Inherited Cardiovascular Disease, Stanford University, Stanford, California, USA
| | - Nathan R Riding
- Department of Sports Medicine, ASPETAR, Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| | - Tess Saarel
- Department of Pediatrics, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Cardiology, Cleveland Clinic, Cleveland, Ohio, USA
| | | | - David M Shipon
- Heart Centre of Philadelphia, Jefferson University Hospitals, Philadelphia, Pennsylvania, USA
| | - Ricardo Stein
- Department of Cardiology, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Victoria L Vetter
- The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | - Domenico Corrado
- Department of Cardiac Science, University of Padua Medical School, Padua, Italy.,Department of Thoracic Sciences, University of Padua Medical School, Padua, Italy.,Department of Vascular Sciences, University of Padua Medical School, Padua, Italy
| |
Collapse
|