1
|
Avanu AE, Dodi G. Wear Your Heart on Your Sleeve: Smart Textile ECG Wearables for Comfort, Integration, Signal Quality and Continuous Monitoring in Paroxysmal Atrial Fibrillation. SENSORS (BASEL, SWITZERLAND) 2025; 25:676. [PMID: 39943314 PMCID: PMC11820156 DOI: 10.3390/s25030676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/14/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025]
Abstract
Atrial fibrillation (AF), a prevalent cardiac arrhythmia and a major contributor to stroke risk, is anticipated to increase in incidence with the aging global population. For effective AF management, particularly for paroxysmal AF (PAF), long-term and accurate monitoring is essential. However, traditional monitoring methods, including Holter ECGs and implantable cardiac monitors (ICMs), present limitations in comfort, compliance and extended monitoring capabilities. Recent advancements in wearable technology have introduced smart textile-based ECG devices, which incorporate electrochemical sensors into fabrics, enabling non-invasive, continuous monitoring while enhancing user comfort. This review evaluates textile-based ECG devices by comparing their performance-assessed through AF detection rates, signal-to-noise ratio (SNR) and total analysis time-against conventional Holter monitoring and the 12-lead ECG. Furthermore, this review examines user acceptability factors, including patient-reported comfort, usability during resting and physical activities and skin-related adverse effects. The findings aim to provide insights for future device development and facilitate their integration into clinical practice.
Collapse
Affiliation(s)
- Alexandra E. Avanu
- Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania
| | - Gianina Dodi
- Faculty of Medical Bioengineering, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700454 Iasi, Romania;
| |
Collapse
|
2
|
Willingham TB, Stowell J, Collier G, Backus D. Leveraging Emerging Technologies to Expand Accessibility and Improve Precision in Rehabilitation and Exercise for People with Disabilities. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:79. [PMID: 38248542 PMCID: PMC10815484 DOI: 10.3390/ijerph21010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024]
Abstract
Physical rehabilitation and exercise training have emerged as promising solutions for improving health, restoring function, and preserving quality of life in populations that face disparate health challenges related to disability. Despite the immense potential for rehabilitation and exercise to help people with disabilities live longer, healthier, and more independent lives, people with disabilities can experience physical, psychosocial, environmental, and economic barriers that limit their ability to participate in rehabilitation, exercise, and other physical activities. Together, these barriers contribute to health inequities in people with disabilities, by disproportionately limiting their ability to participate in health-promoting physical activities, relative to people without disabilities. Therefore, there is great need for research and innovation focusing on the development of strategies to expand accessibility and promote participation in rehabilitation and exercise programs for people with disabilities. Here, we discuss how cutting-edge technologies related to telecommunications, wearables, virtual and augmented reality, artificial intelligence, and cloud computing are providing new opportunities to improve accessibility in rehabilitation and exercise for people with disabilities. In addition, we highlight new frontiers in digital health technology and emerging lines of scientific research that will shape the future of precision care strategies for people with disabilities.
Collapse
Affiliation(s)
- T. Bradley Willingham
- Shepherd Center, Virginia C. Crawford Research Institute, Atlanta, GA 30309, USA (D.B.)
- Department of Physical Therapy, Georgia State University, Atlanta, GA 30302, USA
| | - Julie Stowell
- Shepherd Center, Virginia C. Crawford Research Institute, Atlanta, GA 30309, USA (D.B.)
- Department of Physical Therapy, Georgia State University, Atlanta, GA 30302, USA
| | - George Collier
- Shepherd Center, Virginia C. Crawford Research Institute, Atlanta, GA 30309, USA (D.B.)
| | - Deborah Backus
- Shepherd Center, Virginia C. Crawford Research Institute, Atlanta, GA 30309, USA (D.B.)
| |
Collapse
|
3
|
Pulcinelli M, Pinnelli M, Massaroni C, Lo Presti D, Fortino G, Schena E. Wearable Systems for Unveiling Collective Intelligence in Clinical Settings. SENSORS (BASEL, SWITZERLAND) 2023; 23:9777. [PMID: 38139623 PMCID: PMC10747409 DOI: 10.3390/s23249777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/29/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023]
Abstract
Nowadays, there is an ever-growing interest in assessing the collective intelligence (CI) of a team in a wide range of scenarios, thanks to its potential in enhancing teamwork and group performance. Recently, special attention has been devoted on the clinical setting, where breakdowns in teamwork, leadership, and communication can lead to adverse events, compromising patient safety. So far, researchers have mostly relied on surveys to study human behavior and group dynamics; however, this method is ineffective. In contrast, a promising solution to monitor behavioral and individual features that are reflective of CI is represented by wearable technologies. To date, the field of CI assessment still appears unstructured; therefore, the aim of this narrative review is to provide a detailed overview of the main group and individual parameters that can be monitored to evaluate CI in clinical settings, together with the wearables either already used to assess them or that have the potential to be applied in this scenario. The working principles, advantages, and disadvantages of each device are introduced in order to try to bring order in this field and provide a guide for future CI investigations in medical contexts.
Collapse
Affiliation(s)
- Martina Pulcinelli
- Research Unit of Measurements and Biomedical Instrumentation, Department of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Roma, Italy; (M.P.); (M.P.); (C.M.); (E.S.)
| | - Mariangela Pinnelli
- Research Unit of Measurements and Biomedical Instrumentation, Department of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Roma, Italy; (M.P.); (M.P.); (C.M.); (E.S.)
| | - Carlo Massaroni
- Research Unit of Measurements and Biomedical Instrumentation, Department of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Roma, Italy; (M.P.); (M.P.); (C.M.); (E.S.)
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
| | - Daniela Lo Presti
- Research Unit of Measurements and Biomedical Instrumentation, Department of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Roma, Italy; (M.P.); (M.P.); (C.M.); (E.S.)
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
| | - Giancarlo Fortino
- DIMES, University of Calabria, Via P. Bucci 41C, 87036 Rende, Italy;
| | - Emiliano Schena
- Research Unit of Measurements and Biomedical Instrumentation, Department of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Roma, Italy; (M.P.); (M.P.); (C.M.); (E.S.)
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
| |
Collapse
|
4
|
Beni NH, Jiang N. Heartbeat detection from high-density EMG electrodes on the upper arm at different EMG intensity levels using Zephlet. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 242:107828. [PMID: 37863012 DOI: 10.1016/j.cmpb.2023.107828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 09/11/2023] [Accepted: 09/22/2023] [Indexed: 10/22/2023]
Abstract
BACKGROUND AND OBJECTIVES A significant number of global deaths caused by cardiac arrhythmias can be prevented with accurate and immediate identification. Wearable devices can play a critical role in such identification by continuously monitoring cardiac activity using electrocardiogram (ECG). The existing body of research has focused on extracting cardiac information from the body surface by investigating various electrode locations and algorithm development for ECG interpretation. The present study was designed for heartbeat detection using the signals recorded from the upper arm. METHODS Firstly, optimal electrode locations on the upper arm were identified for Rest and elbow flexion (EF) conditions. Next, a synthesized ECG was generated using the selected electrodes with generalized weights over subjects and trials, and then zero-phase wavelet (Zephlet) was applied for feature extraction. Heartbeat detection was finally performed using the extracted detail coefficients incorporated with a multiagent detection scheme (MDS). RESULTS The F1-score for heartbeat detection was 0.94 ± 0.16, 0.86 ± 0.22, 0.79 ± 0.26, and 0.67 ± 0.31 for Rest and EF with three different levels of muscle contraction (C1 to C3), respectively. Changing the acceptable distance between the detected and actual heartbeats from 50 ms to 20 ms, the F1-score changed to 0.81 ± 0.20, 0.66 ± 0.26, 0.57 ± 0.26, and 0.44 ± 0.26 for Rest and C1 to C3, respectively. CONCLUSION These findings make several contributions to the current literature, summarized as precise and consistent electrode localization for various muscle contraction levels and accurate heartbeat detection method development for each of these conditions.
Collapse
Affiliation(s)
- Nargess Heydari Beni
- Department of Systems Design Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Ning Jiang
- National Clinical Research Center for Geriatrics, West China Hospital Sichuan University, China; The Med-X Center for Manufacturing, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
5
|
Hafid A, Gunnarsson E, Ramos A, Rödby K, Abtahi F, Bamidis PD, Billis A, Papachristou P, Seoane F. Sensorized T-Shirt with Intarsia-Knitted Conductive Textile Integrated Interconnections: Performance Assessment of Cardiac Measurements during Daily Living Activities. SENSORS (BASEL, SWITZERLAND) 2023; 23:9208. [PMID: 38005593 PMCID: PMC10675781 DOI: 10.3390/s23229208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023]
Abstract
The development of smart wearable solutions for monitoring daily life health status is increasingly popular, with chest straps and wristbands being predominant. This study introduces a novel sensorized T-shirt design with textile electrodes connected via a knitting technique to a Movesense device. We aimed to investigate the impact of stationary and movement actions on electrocardiography (ECG) and heart rate (HR) measurements using our sensorized T-shirt. Various activities of daily living (ADLs), including sitting, standing, walking, and mopping, were evaluated by comparing our T-shirt with a commercial chest strap. Our findings demonstrate measurement equivalence across ADLs, regardless of the sensing approach. By comparing ECG and HR measurements, we gained valuable insights into the influence of physical activity on sensorized T-shirt development for monitoring. Notably, the ECG signals exhibited remarkable similarity between our sensorized T-shirt and the chest strap, with closely aligned HR distributions during both stationary and movement actions. The average mean absolute percentage error was below 3%, affirming the agreement between the two solutions. These findings underscore the robustness and accuracy of our sensorized T-shirt in monitoring ECG and HR during diverse ADLs, emphasizing the significance of considering physical activity in cardiovascular monitoring research and the development of personal health applications.
Collapse
Affiliation(s)
- Abdelakram Hafid
- Textile Materials Technology, Department of Textile Technology, Faculty of Textiles, Engineering and Business Swedish School of Textiles, University of Borås, 503 32 Borås, Sweden; (E.G.); (A.R.); (K.R.); (F.S.)
- School of Innovation, Design and Engineering, Mälardalen University, 722 20 Västerås, Sweden
| | - Emanuel Gunnarsson
- Textile Materials Technology, Department of Textile Technology, Faculty of Textiles, Engineering and Business Swedish School of Textiles, University of Borås, 503 32 Borås, Sweden; (E.G.); (A.R.); (K.R.); (F.S.)
| | - Alberto Ramos
- Textile Materials Technology, Department of Textile Technology, Faculty of Textiles, Engineering and Business Swedish School of Textiles, University of Borås, 503 32 Borås, Sweden; (E.G.); (A.R.); (K.R.); (F.S.)
- UDIT—University of Design, Innovation and Technology, 28016 Madrid, Spain
| | - Kristian Rödby
- Textile Materials Technology, Department of Textile Technology, Faculty of Textiles, Engineering and Business Swedish School of Textiles, University of Borås, 503 32 Borås, Sweden; (E.G.); (A.R.); (K.R.); (F.S.)
| | - Farhad Abtahi
- Institute for Clinical Science, Intervention and Technology, Karolinska Institutet, 141 83 Stockholm, Sweden;
- Department of Medical Care Technology, Karolinska University Hospital, 141 57 Huddinge, Sweden
- Department of Clinical Physiology, Karolinska University Hospital, 141 57 Huddinge, Sweden
| | - Panagiotis D. Bamidis
- Lab of Medical Physics and Digital Innovation, School of Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (P.D.B.); (A.B.)
| | - Antonis Billis
- Lab of Medical Physics and Digital Innovation, School of Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (P.D.B.); (A.B.)
| | - Panagiotis Papachristou
- Academic Primary Health Care Center, Region Stockholm, 104 31 Stockholm, Sweden;
- Division of Family Medicine and Primary Care, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 141 83 Stockholm, Sweden
| | - Fernando Seoane
- Textile Materials Technology, Department of Textile Technology, Faculty of Textiles, Engineering and Business Swedish School of Textiles, University of Borås, 503 32 Borås, Sweden; (E.G.); (A.R.); (K.R.); (F.S.)
- Institute for Clinical Science, Intervention and Technology, Karolinska Institutet, 141 83 Stockholm, Sweden;
- Department of Medical Care Technology, Karolinska University Hospital, 141 57 Huddinge, Sweden
- Department of Clinical Physiology, Karolinska University Hospital, 141 57 Huddinge, Sweden
| |
Collapse
|
6
|
Yoo H, Yum Y, Kim Y, Kim JH, Park HJ, Joo HJ. Restoration of missing or low-quality 12-lead ECG signals using ensemble deep-learning model with optimal combination. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2023.104690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
7
|
Ruckdashel RR, Khadse N, Park JH. Smart E-Textiles: Overview of Components and Outlook. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22166055. [PMID: 36015815 PMCID: PMC9416033 DOI: 10.3390/s22166055] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/28/2022] [Accepted: 08/08/2022] [Indexed: 06/01/2023]
Abstract
Smart textiles have gained great interest from academia and industries alike, spanning interdisciplinary efforts from materials science, electrical engineering, art, design, and computer science. While recent innovation has been promising, unmet needs between the commercial and academic sectors are pronounced in this field, especially for electronic-based textiles, or e-textiles. In this review, we aim to address the gap by (i) holistically investigating e-textiles' constituents and their evolution, (ii) identifying the needs and roles of each discipline and sector, and (iii) addressing the gaps between them. The components of e-textiles-base fabrics, interconnects, sensors, actuators, computers, and power storage/generation-can be made at multiscale levels of textile, e.g., fiber, yarn, fabric, coatings, and embellishments. The applications, current state, and sustainable future directions for e-textile fields are discussed, which encompasses health monitoring, soft robotics, education, and fashion applications.
Collapse
|
8
|
Quiroz-Juárez MA, Rosales-Juárez JA, Jiménez-Ramírez O, Vázquez-Medina R, Aragón JL. ECG Patient Simulator Based on Mathematical Models. SENSORS (BASEL, SWITZERLAND) 2022; 22:5714. [PMID: 35957270 PMCID: PMC9370912 DOI: 10.3390/s22155714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
In this work, we propose a versatile, low-cost, and tunable electronic device to generate realistic electrocardiogram (ECG) waveforms, capable of simulating ECG of patients within a wide range of possibilities. A visual analysis of the clinical ECG register provides the cardiologist with vital physiological information to determine the patient's heart condition. Because of its clinical significance, there is a strong interest in algorithms and medical ECG measuring devices that acquire, preserve, and process ECG recordings with high fidelity. Bearing this in mind, the proposed electronic device is based on four different mathematical models describing macroscopic heartbeat dynamics with ordinary differential equations. Firstly, we produce full 12-lead ECG profiles by implementing a model comprising a network of heterogeneous oscillators. Then, we implement a discretized reaction-diffusion model in our electronic device to reproduce ECG waveforms from various rhythm disorders. Finally, in order to show the versatility and capabilities of our system, we include two additional models, a ring of three coupled oscillators and a model based on a quasiperiodic motion, which can reproduce a wide range of pathological conditions. With this, the proposed device can reproduce around thirty-two cardiac rhythms with the possibility of exploring different parameter values to simulate new arrhythmias with the same hardware. Our system, which is a hybrid analog-digital circuit, generates realistic ECG signals through digital-to-analog converters whose amplitudes and waveforms are controlled through an interactive and friendly graphic interface. Our ECG patient simulator arises as a promising platform for assessing the performance of electrocardiograph equipment and ECG signal processing software in clinical trials. Additionally the produced 12-lead profiles can be tested in patient monitoring systems.
Collapse
Affiliation(s)
- Mario Alan Quiroz-Juárez
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Queretaro 76230, Mexico;
| | - Juan Alberto Rosales-Juárez
- Instituto Politécnico Nacional, Escuela Superior de Ingeniería Mecánica y Eléctrica, Santa Ana 1000, San Francisco Culhuacán, Mexico City 04430, Mexico; (J.A.R.-J.); (O.J.-R.)
| | - Omar Jiménez-Ramírez
- Instituto Politécnico Nacional, Escuela Superior de Ingeniería Mecánica y Eléctrica, Santa Ana 1000, San Francisco Culhuacán, Mexico City 04430, Mexico; (J.A.R.-J.); (O.J.-R.)
| | - Rubén Vázquez-Medina
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Cerro Blanco 141, Colinas del Cimatario, Queretaro 76090, Mexico;
| | - José Luis Aragón
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Queretaro 76230, Mexico;
| |
Collapse
|
9
|
Lee DH, Park T, Yoo H. Biodegradable Polymer Composites for Electrophysiological Signal Sensing. Polymers (Basel) 2022; 14:polym14142875. [PMID: 35890650 PMCID: PMC9323782 DOI: 10.3390/polym14142875] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/09/2022] [Accepted: 07/13/2022] [Indexed: 12/23/2022] Open
Abstract
Electrophysiological signals are collected to characterize human health and applied in various fields, such as medicine, engineering, and pharmaceuticals. Studies of electrophysiological signals have focused on accurate signal acquisition, real-time monitoring, and signal interpretation. Furthermore, the development of electronic devices consisting of biodegradable and biocompatible materials has been attracting attention over the last decade. In this regard, this review presents a timely overview of electrophysiological signals collected with biodegradable polymer electrodes. Candidate polymers that can constitute biodegradable polymer electrodes are systemically classified by their essential properties for collecting electrophysiological signals. Moreover, electrophysiological signals, such as electrocardiograms, electromyograms, and electroencephalograms subdivided with human organs, are discussed. In addition, the evaluation of the biodegradability of various electrodes with an electrophysiology signal collection purpose is comprehensively revisited.
Collapse
Affiliation(s)
- Dong Hyun Lee
- Department of Electronic Engineering, Gachon University, 1342 Seongnam-daero, Seongnam 13120, Korea;
| | - Taehyun Park
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam-daero, Seongnam 13120, Korea;
| | - Hocheon Yoo
- Department of Electronic Engineering, Gachon University, 1342 Seongnam-daero, Seongnam 13120, Korea;
- Correspondence:
| |
Collapse
|
10
|
Stracina T, Ronzhina M, Redina R, Novakova M. Golden Standard or Obsolete Method? Review of ECG Applications in Clinical and Experimental Context. Front Physiol 2022; 13:867033. [PMID: 35547589 PMCID: PMC9082936 DOI: 10.3389/fphys.2022.867033] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/15/2022] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular system and its functions under both physiological and pathophysiological conditions have been studied for centuries. One of the most important steps in the cardiovascular research was the possibility to record cardiac electrical activity. Since then, numerous modifications and improvements have been introduced; however, an electrocardiogram still represents a golden standard in this field. This paper overviews possibilities of ECG recordings in research and clinical practice, deals with advantages and disadvantages of various approaches, and summarizes possibilities of advanced data analysis. Special emphasis is given to state-of-the-art deep learning techniques intensely expanded in a wide range of clinical applications and offering promising prospects in experimental branches. Since, according to the World Health Organization, cardiovascular diseases are the main cause of death worldwide, studying electrical activity of the heart is still of high importance for both experimental and clinical cardiology.
Collapse
Affiliation(s)
- Tibor Stracina
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marina Ronzhina
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic
| | - Richard Redina
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czech Republic
| | - Marie Novakova
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
11
|
Francisco-Pascual J, Cantalapiedra-Romero J, Pérez-Rodon J, Benito B, Santos-Ortega A, Maldonado J, Ferreira-Gonzalez I, Rivas-Gándara N. Cardiac monitoring for patients with palpitations. World J Cardiol 2021; 13:608-627. [PMID: 34909127 PMCID: PMC8641003 DOI: 10.4330/wjc.v13.i11.608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/27/2021] [Accepted: 10/31/2021] [Indexed: 02/06/2023] Open
Abstract
Palpitations are one of the most common reasons for medical consultation. They tend to worry patients and can affect their quality of life. They are often a symptom associated with cardiac rhythm disorders, although there are other etiologies. For diagnosis, it is essential to be able to reliably correlate the symptoms with an electrocardiographic record allowing the identification or ruling out of a possible rhythm disorder. However, reaching a diagnosis is not always simple, given that they tend to be transitory symptoms and the patient is frequently asymptomatic at the time of assessment. In recent years, electrocardiographic monitoring systems have incorporated many technical improvements that solve several of the 24-h Holter monitor limitations. The objective of this review is to provide an update on the different monitoring methods currently available, remarking their indications and limitations, to help healthcare professionals to appropriately select and use them in the work-up of patients with palpitations.
Collapse
Affiliation(s)
- Jaume Francisco-Pascual
- Unitat d'Arritmies, Servei de Cardiologia, Hospital Universitari Vall d'Hebron, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra 08193, Barcelona, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid 28029, Spain.
| | - Javier Cantalapiedra-Romero
- Unitat d'Arritmies, Servei de Cardiologia, Hospital Universitari Vall d'Hebron, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
| | - Jordi Pérez-Rodon
- Unitat d'Arritmies, Servei de Cardiologia, Hospital Universitari Vall d'Hebron, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra 08193, Barcelona, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Begoña Benito
- Unitat d'Arritmies, Servei de Cardiologia, Hospital Universitari Vall d'Hebron, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra 08193, Barcelona, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Alba Santos-Ortega
- Unitat d'Arritmies, Servei de Cardiologia, Hospital Universitari Vall d'Hebron, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra 08193, Barcelona, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Jenson Maldonado
- Unitat d'Arritmies, Servei de Cardiologia, Hospital Universitari Vall d'Hebron, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
| | - Ignacio Ferreira-Gonzalez
- Unitat d'Arritmies, Servei de Cardiologia, Hospital Universitari Vall d'Hebron, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra 08193, Barcelona, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Nuria Rivas-Gándara
- Unitat d'Arritmies, Servei de Cardiologia, Hospital Universitari Vall d'Hebron, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra 08193, Barcelona, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid 28029, Spain
| |
Collapse
|
12
|
Huang Y, Song Y, Gou L, Zou Y. A Novel Wearable Flexible Dry Electrode Based on Cowhide for ECG Measurement. BIOSENSORS-BASEL 2021; 11:bios11040101. [PMID: 33915714 PMCID: PMC8065990 DOI: 10.3390/bios11040101] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 12/14/2022]
Abstract
The electrocardiogram (ECG) electrode, as a sensor, is an important part of the wearable ECG monitoring device. Natural leather is rarely used as the electrode substrate. In this paper, wearable flexible silver electrodes based on cowhide were prepared by sputtering and brush-painting. A signal generator, oscilloscope, impedance test instrument, and ECG monitor were used to build the test platform evaluating the performance of electrodes with six subjects. The lossless waveform transmission can be achieved with our electrodes. Therefore, the Pearson’s correlation coefficient calculated with input waveform and output waveform of the electrodes based on the top grain layer (GLE) and the split layer (SLE) of cowhide were 0.997 and 0.998 at 0.1 Hz respectively. The skin electrode impedance (Z) was tested, and the parameters of the equivalent circuit model of the skin electrode interface were calculated by a fitting method, indicating that the Z of the prepared electrodes was comparable with the standard gel electrode when the skin is moist enough. The signal-to-noise ratio of the ECG of the GLE and the SLE were 1.148 and 1.205 times that of the standard electrode in the standing posture, which meant the ECG measured by our electrodes was basically consistent with that measured by the standard electrode.
Collapse
|
13
|
Mulyadi IH, Fiedler P, Eichardt R, Haueisen J, Supriyanto E. Pareto optimization for electrodes placement: compromises between electrophysiological and practical aspects. Med Biol Eng Comput 2021; 59:431-447. [PMID: 33495984 DOI: 10.1007/s11517-021-02319-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 01/15/2021] [Indexed: 10/22/2022]
Abstract
Wearable electronics and sensors are increasingly popular for personal health monitoring, including smart shirts containing electrocardiography (ECG) electrodes. Optimal electrode performance requires careful selection of the electrode position. On top of the electrophysiological aspects, practical aspects must be considered due to the dynamic recording environment. We propose a new method to obtain optimal electrode placement by considering multiple dimensions. The electrophysiological aspects were represented by P-, R-, and T-peak of ECG waveform, while the shirt-skin gap, shirt movement, and regional sweat rate represented the practical aspects. This study employed a secondary data set and simulations for the electrophysiological and practical aspects, respectively. Typically, there is no ideal solution that maximizes satisfaction degrees of multiple electrophysiological and practical aspects simultaneously; a compromise is the most appropriate approach. Instead of combining both aspects-which are independent of each other-into a single-objective optimization, we used multi-objective optimization to obtain a Pareto set, which contains predominant solutions. These solutions may facilitate the decision-makers to decide the preferred electrode locations based on application-specific criteria. Our proposed approach may aid manufacturers in making decisions regarding the placement of electrodes within smart shirts.
Collapse
Affiliation(s)
- Indra Hardian Mulyadi
- School of Biomedical Engineering and Health Sciences, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia. .,Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, 98693, Ilmenau, Germany.
| | - Patrique Fiedler
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, 98693, Ilmenau, Germany
| | - Roland Eichardt
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, 98693, Ilmenau, Germany
| | - Jens Haueisen
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, 98693, Ilmenau, Germany.
| | - Eko Supriyanto
- School of Biomedical Engineering and Health Sciences, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
| |
Collapse
|
14
|
Kubicek J, Fiedorova K, Vilimek D, Cerny M, Penhaker M, Janura M, Rosicky J. Recent Trends, Construction and Applications of Smart Textiles and Clothing for Monitoring of Health Activity: A Comprehensive Multidisciplinary Review. IEEE Rev Biomed Eng 2020; 15:36-60. [PMID: 33301410 DOI: 10.1109/rbme.2020.3043623] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the area of biomedical signal monitoring, wearable electronics represents a dynamically growing field with a significant impact on the market of commercial products of biomedical signal monitoring and acquisition, as well as consumer electronic for vital functions monitoring. Since the electrodes are perceived as one of the most important part of the biomedical signal monitoring, they have been one of the most frequent subjects in the research community. Electronic textile (e-textile), also called smart textile represents a modern trend in the wearable electronics, integrating of functional materials with common clothing with the goal to realize the devices, which include sensors, antennas, energy harvesters and advanced textiles for self-cooling and heating. The area of textile electrodes and e-textile is perceived as a multidisciplinary field, integrating material engineering, chemistry, and biomedical engineering. In this review, we provide a comprehensive view on this area. This multidisciplinary review integrates the e-textile characteristics, materials and manufacturing of the textile electrodes, noise influence on the e-textiles performance, and mainly applications of the textile electrodes for biomedical signal monitoring and acquisition, including pressure sensors, electrocardiography, electromyography, electroencephalography and electrooculography monitoring.
Collapse
|
15
|
The Role of Electrocardiography in Occupational Medicine, from Einthoven's Invention to the Digital Era of Wearable Devices. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17144975. [PMID: 32664277 PMCID: PMC7400524 DOI: 10.3390/ijerph17144975] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/29/2020] [Accepted: 07/07/2020] [Indexed: 12/14/2022]
Abstract
Clinical-instrumental investigations, such as electrocardiography (ECG), represent a corollary of a procedures that, nowadays, is called upon as part of the principles of precision medicine. However when carrying out the professional routine examinations, most tend to ignore how a “simple” instrument can offer indispensable support in clinical practice, even in occupational medicine. The advent of the digital age, made of silicon and printed circuit boards, has allowed the miniaturization of the electronic components of these electro-medical devices. Finally, the adoption of patient wearables in medicine has been rapidly expanding worldwide for a number of years. This has been driven mainly by consumers’ demand to monitor their own health. With the ongoing research and development of new features capable of assessing and transmitting real-time biometric data, the impact of wearables on cardiovascular management has become inevitable. Despite the potential offered by this technology, as evident from the scientific literature, the application of these devices in the field of health and safety in the workplace is still limited. This may also be due to the lack of targeted scientific research. While offering great potential, it is very important to consider and evaluate ethical aspects related to the use of these smart devices, such as the management of the collected data relating to the physiological parameters and the location of the worker. This technology is to be considered as being aimed at monitoring the subject’s physiological parameters, and not at the diagnosis of any pathological condition, which should always be on charge of the medical specialist We conducted a review of the evolution of the role that electrophysiology plays as part of occupational health and safety management and on its possible future use, thanks to ongoing technological innovation.
Collapse
|
16
|
Fu Y, Zhao J, Dong Y, Wang X. Dry Electrodes for Human Bioelectrical Signal Monitoring. SENSORS (BASEL, SWITZERLAND) 2020; 20:E3651. [PMID: 32610658 PMCID: PMC7374322 DOI: 10.3390/s20133651] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/20/2020] [Accepted: 06/25/2020] [Indexed: 11/16/2022]
Abstract
Bioelectrical or electrophysiological signals generated by living cells or tissues during daily physiological activities are closely related to the state of the body and organ functions, and therefore are widely used in clinical diagnosis, health monitoring, intelligent control and human-computer interaction. Ag/AgCl electrodes with wet conductive gels are widely used to pick up these bioelectrical signals using electrodes and record them in the form of electroencephalograms, electrocardiograms, electromyography, electrooculograms, etc. However, the inconvenience, instability and infection problems resulting from the use of gel with Ag/AgCl wet electrodes can't meet the needs of long-term signal acquisition, especially in wearable applications. Hence, focus has shifted toward the study of dry electrodes that can work without gels or adhesives. In this paper, a retrospective overview of the development of dry electrodes used for monitoring bioelectrical signals is provided, including the sensing principles, material selection, device preparation, and measurement performance. In addition, the challenges regarding the limitations of materials, fabrication technologies and wearable performance of dry electrodes are discussed. Finally, the development obstacles and application advantages of different dry electrodes are analyzed to make a comparison and reveal research directions for future studies.
Collapse
Affiliation(s)
- Yulin Fu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, University Town of Shenzhen, Shenzhen 518055, China; (Y.F.); (X.W.)
| | - Jingjing Zhao
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, University Town of Shenzhen, Shenzhen 518055, China;
| | - Ying Dong
- Tsinghua Shenzhen International Graduate School, Tsinghua University, University Town of Shenzhen, Shenzhen 518055, China; (Y.F.); (X.W.)
| | - Xiaohao Wang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, University Town of Shenzhen, Shenzhen 518055, China; (Y.F.); (X.W.)
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, University Town of Shenzhen, Shenzhen 518055, China;
| |
Collapse
|