1
|
Miyazaki T, Aimi T, Yamada Y, Nakamura Y. Curved carbon plates inside running shoes modified foot and shank angular velocity improving mechanical efficiency at the ankle joint. J Biomech 2024; 172:112224. [PMID: 38971114 DOI: 10.1016/j.jbiomech.2024.112224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/29/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
Recent technologically advanced running shoes have been designed with higher stack height and curved carbon plate-reinforced toe springs to enhance running performance. The purpose of this study was to examine how curved carbon-plate reinforcement modulated mechanical efficiency at the ankle joint during the running stance phase. We prepared two footwear conditions: Non and Carbon, both had a 3D-printed midsole (40-mm heel thickness). A full-length curved carbon plate was inserted along the toe spring in Carbon. The participants included 14 non-rearfoot long-distance athletes. They were required to run at a speed of 12 km/h on a 20-m runway with both shoes. Mechanical-energy expenditure (MEE, indicating mechanical work) and compensation (MEC, indicating mechanical efficiency) were calculated in the following mechanical-energy transfer phases: concentric, eccentric, and no-transfer. Running with Carbon exhibited improved MEC and reduced MEE at the ankle joint during the concentric transfer phase than with Non. The improvement in the concentric MEC at the ankle joint indicates that a larger amount of mechanical energy is transferred from the shank into the foot segment that compensates for the force exerted by the plantar flexor muscles, which implies more mechanically efficient plantarflexion movement. As the ankle joint is the largest energetic contributor in the running stance phase, greater MEC and lower MEE and torque at the ankle joint could improve running performance. Hence, the curved carbon plate may be a key feature of advanced footwear technology.
Collapse
Affiliation(s)
- Tomohiro Miyazaki
- Graduate School of Health and Sports Science, Doshisha University, Kyoto, Japan.
| | - Takayuki Aimi
- Graduate School of Health and Sports Science, Doshisha University, Kyoto, Japan; Japan Society for the Promotion of Science, Tokyo, Japan.
| | - Yugo Yamada
- School of Environment and Society, Tokyo Institute of Technology, Tokyo, Japan.
| | - Yasuo Nakamura
- Faculty of Health and Sports Science, Doshisha University, Kyoto, Japan.
| |
Collapse
|
2
|
Rodrigo-Carranza V, Hoogkamer W, González-Ravé JM, Horta-Muñoz S, Serna-Moreno MDC, Romero-Gutierrez A, González-Mohíno F. Influence of different midsole foam in advanced footwear technology use on running economy and biomechanics in trained runners. Scand J Med Sci Sports 2024; 34:e14526. [PMID: 37858294 DOI: 10.1111/sms.14526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 09/27/2023] [Accepted: 10/08/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND Ethylene and vinyl acetate (EVA) and polyether block amide (PEBA) are recently the most widely used materials for advanced footwear technology (AFT) that has been shown to improve running economy (RE). This study investigated the effects of these midsole materials on RE and biomechanics, in both fresh and worn state (after 450 km). METHODS Twenty-two male trained runners participated in this study. Subjects ran four 4-min trials at 13 km‧h-1 with both fresh EVA and PEBA AFT and with the same models with 450 km of wear using a randomized crossover experimental design. We measured energy cost of running (W/kg), spatiotemporal, and neuromuscular parameters. RESULTS There were significant differences in RE between conditions (p = 0.01; n2 = 0.17). There was a significant increase in energy cost in the worn PEBA condition compared with new (15.21 ± 1.01 and 14.87 ± 0.99 W/kg; p < 0.05; ES = 0.54), without differences between worn EVA (15.13 ± 1.14 W/kg; p > 0.05), and new EVA (15.15 ± 1.13 w/kg; ES = 0.02). The increase in energy cost between new and worn was significantly higher for the PEBA shoes (0.32 ± 0.38 W/kg) but without significant increase for the EVA shoes (0.06 ± 0.58 W/kg) (p < 0.01; ES = 0.51) with changes in step frequency and step length. The new PEBA shoes had lower energy cost than the new EVA shoes (p < 0.05; ES = 0.27) with significant differences between conditions in contact time. CONCLUSION There is a clear RE advantage of incorporating PEBA versus EVA in an AFT when the models are new. However, after 450 km of use, the PEBA and EVA shoes had similar RE.
Collapse
Affiliation(s)
- Víctor Rodrigo-Carranza
- Sports Performance Research Group (GIRD), University of Castilla-La Mancha, Toledo, Spain
- Department of Kinesiology, Integrative Locomotion Laboratory, University of Massachusetts, Amherst, Massachusetts, USA
| | - Wouter Hoogkamer
- Department of Kinesiology, Integrative Locomotion Laboratory, University of Massachusetts, Amherst, Massachusetts, USA
| | | | - Sergio Horta-Muñoz
- Universidad de Castilla-La Mancha, Escuela Técnica Superior Ingenieros Industriales de Ciudad Real, Instituto de Investigaciones Energéticas y Aplicaciones Industriales, Ciudad Real, Spain
| | - María Del Carmen Serna-Moreno
- Universidad de Castilla-La Mancha, Escuela Técnica Superior Ingenieros Industriales de Ciudad Real, Instituto de Investigaciones Energéticas y Aplicaciones Industriales, Ciudad Real, Spain
| | - Ana Romero-Gutierrez
- Universidad de Castilla-La Mancha, Escuela Técnica Superior Ingenieros Industriales de Ciudad Real, Instituto de Investigaciones Energéticas y Aplicaciones Industriales, Ciudad Real, Spain
| | - Fernando González-Mohíno
- Sports Performance Research Group (GIRD), University of Castilla-La Mancha, Toledo, Spain
- Facultad de Ciencias de la Vida y de la Naturaleza, Universidad Nebrija, Madrid, Spain
| |
Collapse
|
3
|
Ruiz-Alias SA, Pérez-Castilla A, Soto-Hermoso VM, García-Pinillos F. The Effect of Using Marathon Shoes or Track Spikes on Neuromuscular Fatigue caused by a Long-distance Track Training Session. Int J Sports Med 2023; 44:976-982. [PMID: 36379468 DOI: 10.1055/a-1979-5849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study aims to compare the effect of the Nike ZoomX Dragonfly track spikes and the Nike ZoomX VaporflyNext% 2 marathon shoes on the fatigue manifestations present over and after a long-distance track training session. Thirteen highly trained athletes completed two training sessions (i. e., 9- and 3-minute time trials with complete recovery) with the aforementioned footwear models. The pace, ground contact time, and stride length were measured over the time trials, and maximal countermovement jumps were performed previously and after the training session. The results revealed that, although there was no significant interaction in the pace distribution (p≥0.072), athletes tend to be only able to increase the pace at the last lap with the marathon shoes (5.4 meters [-3.7 to 14.5 meters]) meanwhile with the track spikes it further decreased (-3.1 meters [-9.8 to 3.6 meters]). A reduced ground contact time over the session (p=0.025) and a tendency toward increasing stride length (p=0.09) in the last time trial were observed. The significant interaction on the countermovement jump height (p=0.023; Track spikes: -5.60%; Marathon shoes: 0.61%) also indicates that footwear influences the resulted allostatic load.
Collapse
Affiliation(s)
| | | | | | - Felipe García-Pinillos
- Department of Physical Education and Sport, University of Granada, Granada, Spain
- Physical Education, Sports and Recreation, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
4
|
Ramsey C, Peterson B, Hébert-Losier K. Measurement and reporting of footwear characteristics in running biomechanics: A systematic search and narrative synthesis of contemporary research methods. Sports Biomech 2023; 22:351-387. [PMID: 36214324 DOI: 10.1080/14763141.2022.2125431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
This review aimed to synthesise the methods for assessing and reporting footwear characteristics among studies evaluating the effect of footwear on running biomechanics. Electronic searches of Scopus®, EBSCO, PubMed®, ScienceDirect®, and Web of Science® were performed to identify original research articles of the effect of running footwear on running biomechanics published from 1st January 2015 to 7th October 2020. Risk of bias among included studies was not assessed. Results were presented via narrative synthesis. Eligible studies compared the effect of two or more footwear conditions in adult runners on a biomechanical parameter. Eighty-seven articles were included and data from 242 individual footwear were extracted. Predominantly, studies reported footwear taxonomy (i.e., classification) and manufacturer information, however omitted detail regarding the technical specifications of running footwear and did not use validated footwear reporting tools. There is inconsistency among contemporary studies in the methods by which footwear characteristics are assessed and reported. These findings point towards a need for consensus regarding the reporting of these characteristics within biomechanical studies to facilitate the conduct of systematic reviews and meta-analyses pertaining to the effect of running footwear on running biomechanics.
Collapse
Affiliation(s)
- Codi Ramsey
- Institute of Sport , Exercise and Health, Otago Polytechnic, Dunedin, New Zealand
| | - Benjamin Peterson
- Department of Podiatry, School of Health, Medical and Applied Sciences, CQUniversity, Rockhampton, QLD, Australia
| | - Kim Hébert-Losier
- Division of Health, Engineering, Computing and Science, Te Huataki Waiora School of Health, University of Waikato, Tauranga, New Zealand
| |
Collapse
|
5
|
Mohr M, von Tscharner V, Nigg S, Nigg BM. Systematic reduction of leg muscle activity throughout a standard assessment of running footwear. JOURNAL OF SPORT AND HEALTH SCIENCE 2022; 11:309-318. [PMID: 33453431 PMCID: PMC9189700 DOI: 10.1016/j.jshs.2021.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/16/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
PURPOSE This study aimed to investigate whether there is a systematic change of leg muscle activity, as quantified by surface electromyography (EMG), throughout a standard running footwear assessment protocol at a predetermined running speed. METHODS Thirty-one physically active adults (15 females and 16 males) completed 5 testing rounds consisting of overground running trials at a speed of 3.5 m/s. The level of muscle activity from 6 major leg muscles was recorded using surface EMG. The variables assessed were the EMG total intensity as a function of time and the cumulative EMG overall intensity. Systematic effects of the chronological testing round (independent variable) on the normalized EMG overall intensity (dependent variable) were examined using Friedman analysis of variates and post hoc pairwise Wilcoxon signed-rank tests (α = 0.05). RESULTS There was a systematic reduction in overall EMG intensity for all 6 muscles over the time course of the running protocol (p < 0.001) until the fourth testing round when EMG intensities reached a steady state. The one exception was the biceps femoris muscle, which showed a significant reduction of EMG intensity during the stance phase (p < 0.001) but not the swing phase (p = 0.16). CONCLUSION While running at a predetermined speed, the neuromuscular system undergoes an adaptation process characterized by a progressive reduction in the activity level of major leg muscles. This process may represent an optimization strategy of the neuromuscular system towards a more energetically efficient running style. Future running protocols should include a familiarization period of at least 7 min or 600 strides of running at the predetermined speed.
Collapse
Affiliation(s)
- Maurice Mohr
- Department of Sport Science, University of Innsbruck, Innsbruck 6020, Austria; Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada.
| | - Vinzenz von Tscharner
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Sandro Nigg
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Benno M Nigg
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
6
|
Jafarnezhadgero A, Yadegar A, Valizadehorang A, Dionisio V. Effect of sports shoe mileage on running mechanics and lower limb muscular activities in male individuals with and without genu varus. Sci Sports 2021. [DOI: 10.1016/j.scispo.2020.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Comparing walking biomechanics of older females in maximal, minimal, and traditional shoes. Gait Posture 2021; 83:245-249. [PMID: 33197860 DOI: 10.1016/j.gaitpost.2020.10.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/26/2020] [Accepted: 10/30/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND Knee osteoarthritis (OA) is a degenerative joint disease that affects millions of individuals each year. Several biomechanical variables during walking have been identified as risk factors for developing knee OA, including the peak external knee adduction moment (KAM) and the knee flexion angle at initial contact. Many interventions have been studied to help mitigate these risk factors, including footwear. However, it is largely unknown how varying shoe cushioning may affect walking biomechanics related to knee OA risk. RESEARCH QUESTION What is the effect of maximally and minimally cushioned shoes on walking biomechanics compared to a traditionally cushioned shoe in older females? METHODS Walking biomechanics in three shoes (maximal, traditional, minimal) were collected on 16 healthy females ages 50-70 using an 8-camera 3D motion capture system and two embedded force plates. Key biomechanical variables related to knee OA disease risk were compared between shoes using repeated measures ANOVAs. RESULTS The KAM was significantly larger in the maximal shoe (p = 0.005), while the knee flexion angle at initial contact was significantly larger in both the maximal and minimal shoe compared to the traditional shoe (p = .000). Additionally, the peak knee flexion angle (p = .000) and the loading rates of the vertical ground reaction force were (instantaneous: p = 0.001; average: p = .010) were significantly higher in the minimal shoe. SIGNIFICANCE While these results are specific to the shoes used in this study, clinicians should exercise caution in prescribing maximal or minimal shoes to females in this age group who may be at risk of knee OA given these results. Research is needed on the effect of these shoes in patients with knee OA.
Collapse
|
8
|
Rodrigo-Carranza V, González-Mohíno F, Santos-Concejero J, González-Ravé JM. Influence of Shoe Mass on Performance and Running Economy in Trained Runners. Front Physiol 2020; 11:573660. [PMID: 33071828 PMCID: PMC7538857 DOI: 10.3389/fphys.2020.573660] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/25/2020] [Indexed: 11/13/2022] Open
Abstract
Purpose The aim of this study was to assess the effects of adding shoe mass on running economy (RE), gait characteristics, neuromuscular variables and performance in a group of trained runners. Methods Eleven trained runners (6 men and 5 women) completed four evaluation sessions separated by at least 7 days. The first session consisted of a maximal incremental test where the second ventilatory threshold (VT2) and the speed associated to the VO2max (vVO2max) were calculated. In the next sessions, RE at 75, 85, and 95% of the VT2 and the time to exhaustion (TTE) at vVO2max were assessed in three different shoe mass conditions (control, +50 g and +100 g) in a randomized, counterbalanced crossover design. Biomechanical and neuromuscular variables, blood lactate and energy expenditure were measured during the TTE test. Results RE worsened with the increment of shoe mass (Control vs. 100 g) at 85% (7.40%, 4.409 ± 0.29 and 4.735 ± 0.27 kJ⋅kg−1⋅km−1, p = 0.021) and 95% (10.21%, 4.298 ± 0.24 and 4.737 ± 0.45 kJ⋅kg−1⋅km−1, p = 0.005) of VT2. HR significantly increased with the addition of mass (50 g) at 75% of VT2 (p = 0.01) and at 75, 85, and 95% of VT2 (p = 0.035, 0.03, and 0.03, respectively) with the addition of 100 g. TTE was significantly longer (∼22%, ∼42 s, p = 0.002, ES = 0.149) in the Control condition vs. 100 g condition, but not between Control vs. 50 g (∼24 s, p = 0.094, ES = 0.068). Conclusion Overall, our findings suggest that adding 100 g per shoe impairs running economy and performance in trained runners without changes in gait characteristics or neuromuscular variables. These findings further support the use of light footwear to optimize running performance.
Collapse
Affiliation(s)
| | - Fernando González-Mohíno
- Sport Training Lab, University of Castilla-La Mancha, Toledo, Spain.,Facultad de Lenguas y Educación, Universidad Nebrija, Madrid, Spain
| | - Jordan Santos-Concejero
- Department of Physical Education and Sport, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | | |
Collapse
|
9
|
Wang IL, Chen YM, Zhang KK, Gou M, Li JQ, Jiang YH. Effects of the weight of shoes on calf muscle simulation. J Foot Ankle Res 2020; 13:47. [PMID: 32703264 PMCID: PMC7379783 DOI: 10.1186/s13047-020-00415-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 07/20/2020] [Indexed: 11/16/2022] Open
Abstract
The current study investigated the effects of shoes of different weights on calf individual muscle contributions during a running cycle. Twenty male runners ran on a force platform with shoes of four different weights (175 g, 255 g, 335 g, and 415 g). The study evaluated runners’ lower extremity muscle forces under the four shoe weight conditions using a musculoskeletal modeling system. The system generates equality and inequality constraint equations to simulate muscle forces. The individual muscle contributions in each calf were determined using these muscle forces. Data were compared using one-way repeated-measure ANOVA. The results revealed significant differences in the contributions of the gastrocnemius lateralis. Post hoc comparisons revealed that running in the 175 g shoes resulted in a larger contribution of the gastrocnemius lateralis than running in the 415 g shoes during the braking phase. Therefore, wearing lightweight shoes while running may promote fatigue in the gastrocnemius muscle during the braking phase. The calf muscle activation results may indicate that an adaptation period is warranted when changing from heavy to lightweight shoes.
Collapse
Affiliation(s)
- I-Lin Wang
- College of Physical Education, Hubei Normal University, No. 11, Cihu Road, Huangshi, 435002, Hubei Province, China.
| | - Yi-Ming Chen
- College of Physical Education, Hubei Normal University, No. 11, Cihu Road, Huangshi, 435002, Hubei Province, China
| | - Ke-Ke Zhang
- Graduate College, Jilin Sport University, No. 2476 Ziyou, Changchun, 130022, Jilin Province, China
| | - Ming Gou
- Sports Department, Southwest University of Political Science and Law, No.301 Baosheng, Chongqing, 401120, China
| | - Jia-Qi Li
- Health Technology College, Jilin Sport University, No. 2476 Ziyou, Changchun, 130022, Jilin Province, China
| | - Yu-Hong Jiang
- Health Technology College, Jilin Sport University, No. 2476 Ziyou, Changchun, 130022, Jilin Province, China
| |
Collapse
|