1
|
Fan P, Kim Y, Han DW, Kim S, Wang T. Alterations in the Neuromuscular Control Mechanism of the Legs During a Post-Fatigue Landing Make the Lower Limbs More Susceptible to Injury. Bioengineering (Basel) 2025; 12:233. [PMID: 40150697 PMCID: PMC11939312 DOI: 10.3390/bioengineering12030233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/31/2025] [Accepted: 02/11/2025] [Indexed: 03/29/2025] Open
Abstract
Fatigue causes the lower limb to land in an injury-prone state, but the underlying neuromuscular control changes remain unclear. This study aims to investigate lower limb muscle synergies during landing in basketball players, both before and after fatigue, to examine alterations in neuromuscular control strategies induced by fatigue. Eighteen male recreational basketball players performed landing tasks pre- and post-fatigue induced by 10 × 10 countermovement jumps. Electromyographic (EMG) data from eight muscles, including the erector spinae (ES), rectus abdominus (RA), gluteus maximus (GM), rectus femoris (RF), biceps femoris (BF), lateral gastrocnemius (LG), soleus (SM), and tibialis anterior (TA) muscles, were analyzed using non-negative matrix factorization to extract muscle synergies. Post-fatigue results revealed significant changes: synergy primitive 1 decreased before landing (18-30% phase) and synergy primitive 2 decreased after landing (60-100% phase). Muscle weights of the LG and SM in synergy module 2 increased. Fatigue reduced synergistic muscle activation levels, compromising joint stability and increasing knee joint loading due to greater reliance on calf muscles. These changes heighten the risk of lower limb injuries. To mitigate fatigue-induced injury risks, athletes should improve thigh muscle endurance and enhance neuromuscular control, fostering better synergy between thigh and calf muscles during fatigued conditions.
Collapse
Affiliation(s)
- Penglei Fan
- College of Education and Sports Sciences, Yangtze University, Jingzhou 434020, China;
| | - Youngsuk Kim
- Department of Physical Education, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - Dong-Wook Han
- Department of Sport Science, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - Sukwon Kim
- Department of Physical Education, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - Ting Wang
- College of Education and Sports Sciences, Yangtze University, Jingzhou 434020, China;
| |
Collapse
|
2
|
Chen Y, Yang C, Côté JN. Few sex-specific effects of fatigue on muscle synergies in a repetitive pointing task. J Biomech 2024; 163:111905. [PMID: 38183760 DOI: 10.1016/j.jbiomech.2023.111905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 10/30/2023] [Accepted: 12/13/2023] [Indexed: 01/08/2024]
Abstract
Previous studies have identified some sex differences in how individual muscles change their activation during repetitive multi-joint arm motion-induced fatigue. However, little is known about how indicators of multi-muscle coordination change with fatigue in males and females. Fifty-six (29 females) asymptomatic young adults performed a repetitive, forward-backward pointing task until scoring 8/10 on a Borg CR10 scale while surface electromyographic activity of upper trapezius, anterior deltoid, biceps brachii, and triceps brachii was recorded. Activation coefficient, synergy structure, and relative weight of each muscle within synergies were calculated using the non-negative matrix factorization method. Two muscle synergies were extracted from the fatiguing task. The synergy structures were mostly preserved after fatigue, while the activation coefficients were altered. A significant Sex × Fatigue interaction effect showed more use of the anterior deltoid in males especially before fatigue in synergy 1 during shoulder stabilization (p = 0.04). As for synergy 2, it was characterized by variations in the relative weight of biceps, which was higher by 16 % in females compared to males (p = 0.04), and increased with fatigue (p = 0.03) during the elbow flexion acceleration phase and the deceleration phase of the backward pointing movement. Findings suggest that both sexes adapted to fatigue similarly, using fixed synergy structures, with alterations in synergy activation patterns and relative weights of individual muscles. Results support previous findings of an important role for the biceps and anterior deltoid in explaining sex differences in patterns of repetitive motion-induced upper limb fatigue.
Collapse
Affiliation(s)
- Yiyang Chen
- Department of Kinesiology and Physical Education, McGill University, 475 Pine Avenue West, Montreal, QC H2W 1S4, Canada; CRIR Research Centre, Jewish Rehabilitation Hospital, 3205 Alton-Goldbloom Place, Laval, QC H7V 1R2, Canada.
| | - Chen Yang
- Department of Kinesiology and Physical Education, McGill University, 475 Pine Avenue West, Montreal, QC H2W 1S4, Canada; CRIR Research Centre, Jewish Rehabilitation Hospital, 3205 Alton-Goldbloom Place, Laval, QC H7V 1R2, Canada; Max Nader Lab for Rehabilitation Technologies and Outcomes Research, Shirley Ryan AbilityLab, Chicago, IL 60611, United States
| | - Julie N Côté
- Department of Kinesiology and Physical Education, McGill University, 475 Pine Avenue West, Montreal, QC H2W 1S4, Canada; CRIR Research Centre, Jewish Rehabilitation Hospital, 3205 Alton-Goldbloom Place, Laval, QC H7V 1R2, Canada
| |
Collapse
|
3
|
Yoon S, Bailey CA, Côté JN. Sex-specific muscle activation and oxygenation kinetics during a repetitive forward pointing task. Appl Physiol Nutr Metab 2022; 47:502-516. [PMID: 35050824 DOI: 10.1139/apnm-2021-0664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We compared the minute-by-minute muscle activity and oxygenation responses to a repetitive arm motion-induced fatiguing task between the sexes in order to address the literature gap on these time-dependent fatigue responses. Twenty-six (13 females) healthy adults performed a repetitive pointing task (RPT) with the arm moving forward/backward at shoulder height until reaching 8/10 (Borg CR10) for neck/shoulder perceived exertion (RPE). Neck/shoulder RPE, oxygenation and electromyography were recorded every minute and compared between first and second half of the task and between the sexes. Greater changes in oxygen supply and activation amplitude occurred during the second half of the task. Despite similar time to fatigue-terminal (p > 0.05), females showed greater anterior deltoid activation amplitude at all time points than males, and only the males showed increases in anterior and posterior deltoid activation amplitudes. In females, middle (ρ = -0.34, p = 0.04) and posterior (ρ = -0.44, p = 0.01) deltoid amplitudes were negatively correlated with perceived exertion during the first half of the task. Results suggest that reduced modulation of anterior deltoid activation amplitude in females may reflect a sub-optimal fatigue-mitigation mechanism compared with males and may help explain their greater susceptibility to neck/shoulder musculoskeletal disorders. Novelty: Despite similar fatigability and trapezius oxygenation, females showed greater deltoid activation throughout the task. Deltoid activation increased in males but not in females. The results support the important role of the deltoid in sex-specific neck/shoulder injury mechanisms.
Collapse
Affiliation(s)
- SangHoon Yoon
- Department of Kinesiology and Physical Education, McGill University, Montréal, QC H2W 1S4, Canada.,Department of Kinesiology and Physical Education, McGill University, Montréal, QC H2W 1S4, Canada
| | - Christopher A Bailey
- Department of Kinesiology and Physical Education, McGill University, Montréal, QC H2W 1S4, Canada.,Department of Kinesiology and Physical Education, McGill University, Montréal, QC H2W 1S4, Canada
| | - Julie N Côté
- Department of Kinesiology and Physical Education, McGill University, Montréal, QC H2W 1S4, Canada.,Department of Kinesiology and Physical Education, McGill University, Montréal, QC H2W 1S4, Canada
| |
Collapse
|
4
|
Keller JL, Anders JPV, Neltner TJ, Housh TJ, Schmidt RJ, Johnson GO. Sex differences in muscle excitation and oxygenation, but not in force fluctuations or active hyperemia resulting from a fatiguing, bilateral isometric task. Physiol Meas 2021; 42. [PMID: 34847546 DOI: 10.1088/1361-6579/ac3e86] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/30/2021] [Indexed: 01/25/2023]
Abstract
It remains to be fully elucidated if there are sex-specific physiological adjustments within the human neuromuscular and vascular systems that contribute to symptoms of fatigue during a sustained bilateral task. This, in part, is likely due to various limitations in experimental design such as an inability to independently record force fluctuations from each limb.Objective. Therefore, the purpose of the current study was to examine the fatigue-induced changes in muscle excitation, force fluctuations, skeletal muscle tissue saturation (StO2), and muscle blood flow resulting from a sustained, bilateral task.Approach. Thirty healthy, college-aged adults (15 males, 15 females) performed a bilateral leg task at 25% of maximum voluntary isometric (MVIC). Before and after the task, MVICs were completed. Resting and post-task femoral artery blood flow (FABF) were determined. Muscle excitation was quantified as electromyographic amplitude (EMG AMP) from the right and left vastus lateralis. During the task, force fluctuations were determined independently from each leg. The StO2signal was collected with a near-infrared spectroscopy device attached to the right vastus lateralis. The rate of change in these variables was calculated via simple linear regression. The exercise-induced magnitude of change in MVIC (i.e. performance fatigability) and FABF (i.e. active hyperemia) was determined.Main Results. There was no sex difference in the percent decline in MVIC (20.5 ± 20.1% versus 16.4 ± 3.5%;p> 0.05). There were no inter-leg differences in EMG AMP or force fluctuations. The males exhibited a faster rate of increase in EMG AMP (b= 0.13 versusb= 0.08;p< 0.001), whereas the females exhibited a slower rate of decline in StO2(b= -0.049 versusb= -0.080). There was no sex difference in force fluctuations or change in FABF.Significance. Males and females likely have different neuromuscular strategies and muscle characteristics, but these did not elicit a sex difference in performance fatigability.
Collapse
Affiliation(s)
- Joshua L Keller
- Integrative Laboratory of Exercise and Applied Physiology (iLEAP), Department of Health, Kinesiology, and Sport, College of Education and Professional Studies, University of South Alabama, Mobile, AL 36606, United States of America
| | - John Paul V Anders
- Exercise Physiology Laboratory, Department of Nutrition and Health Sciences, College of Education, University of Nebraska-Lincoln, Lincoln, NE 68588, United States of America
| | - Tyler J Neltner
- Exercise Physiology Laboratory, Department of Nutrition and Health Sciences, College of Education, University of Nebraska-Lincoln, Lincoln, NE 68588, United States of America
| | - Terry J Housh
- Exercise Physiology Laboratory, Department of Nutrition and Health Sciences, College of Education, University of Nebraska-Lincoln, Lincoln, NE 68588, United States of America
| | - Richard J Schmidt
- Exercise Physiology Laboratory, Department of Nutrition and Health Sciences, College of Education, University of Nebraska-Lincoln, Lincoln, NE 68588, United States of America
| | - Glen O Johnson
- Exercise Physiology Laboratory, Department of Nutrition and Health Sciences, College of Education, University of Nebraska-Lincoln, Lincoln, NE 68588, United States of America
| |
Collapse
|