1
|
de Oliveira GFPB, de Cássia Silva R, de Souza da Silva G, Chapeta ACO, Marinho LRM, Alves MM, Simões JAS, Zonta E, de Pinho CF. Effect of liming using Lithothamnium calcareum on atrazine and S-metolachlor leaching and persistence in soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:9985-9999. [PMID: 40169530 DOI: 10.1007/s11356-025-36334-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/25/2025] [Indexed: 04/03/2025]
Abstract
The objective of this study was to evaluate the effect of soil liming using Lithothamnium calcareum in comparison to dolomitic limestone and unlimed soil on leaching and persistence of atrazine and S-metolachlor herbicides in soil. The highest atrazine concentration was obtained between 0 and 20 cm in the unlimed soil, between 30 and 40 cm in the dolomitic limestone-treated soil, and between 10 and 20 cm in soil treated with L. calcareum. The highest S-metolachlor concentration was obtained between 20 and 30 cm in the unlimed soil, between 10 and 20 cm in the soil treated with dolomitic limestone, and between 0 and 10 cm in the soil treated with L. calcareum. The half-life of atrazine was 8.3 days in unlimed soil and 7.9 days in limed soil. The half-life of S-metolachlor was 12.1 days in unlimed soil, 13.5 days in soil using dolomitic limestone, and 11.6 days in soil using L. calcareum. Cucumber plants were controlled up to 90 days after application (DAA) of atrazine for all soil treatments. Sorghum plants were controlled up to 15 DAA of S-metolachlor for the unlimed soil and up to 30 DAA for the limed soil. Soil liming and type of soil improver influence atrazine e S-metolachlor leaching and persistence in soil, which may affect crops and adjacent areas and surface and groundwater.
Collapse
Affiliation(s)
| | - Rita de Cássia Silva
- Department of Phytotechnics, Institute of Agronomy, Federal Rural University of Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil
| | - Gabriela de Souza da Silva
- Department of Phytotechnics, Institute of Agronomy, Federal Rural University of Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil
| | - Ana Carolina Oliveira Chapeta
- Department of Phytotechnics, Institute of Agronomy, Federal Rural University of Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil
| | - Lucas Rêgo Mendonça Marinho
- Department of Phytotechnics, Institute of Agronomy, Federal Rural University of Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil
| | - Monique Macedo Alves
- Department of Phytotechnics, Institute of Agronomy, Federal Rural University of Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil
| | - Jonathan Almeida Santos Simões
- Department of Phytotechnics, Institute of Agronomy, Federal Rural University of Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil
| | - Everaldo Zonta
- Department of Soil, Institute of Agronomy, Federal Rural University of Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil
| | - Camila Ferreira de Pinho
- Department of Phytotechnics, Institute of Agronomy, Federal Rural University of Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Gao Z, Dai Z, Wang R, Li Y. Adsorption kinetics and mechanism of atrazine on iron-modified algal residue biochar in the presence of soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27373-8. [PMID: 37147544 DOI: 10.1007/s11356-023-27373-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/27/2023] [Indexed: 05/07/2023]
Abstract
Atrazine has been widely used as an herbicide, and its harm has attracted more and more attention. In this study, magnetic algal residue biochar (MARB) was prepared from algae residue, a by-product of aquaculture, by ball milling it with ferric oxide to study the adsorption and removal of the triazine herbicide atrazine in a soil medium. The adsorption kinetics and isotherm results showed that atrazine removal by MARB reached 95.5% within 8 h at a concentration of 10 mg·L-1, but the removal rate dropped to 78.4% in the soil medium. The pseudo-first- and pseudo-second-order kinetics and Langmuir isotherms best described atrazine adsorption on MARB. It is estimated that the maximum adsorption capacity of MARB can reach 10.63 mg·g-1. The effects of pH, humic acids, and cations on the adsorption performance of MARB for atrazine were also studied. When pH was 3, the adsorption capacity of MARB was twice that of other pHs. Only in the presence of 50 mg·L-1 HA and 0.1 mol·L-1 NH4+, Na, and K, the adsorption capacity of MARB to AT decreased by 8% and 13%, respectively. The results showed that MARB had a stable removal profile over a wide range of conditions. The adsorption mechanisms involved multiple interaction forms, among which the introduction of iron oxide promoted hydrogen bonding formation and π-π interactions by enriching -OH and -COO on the surface of MARB. Overall, the magnetic biochar prepared in this study can be used as an effective adsorbent to remove atrazine in complex environments and is ideal for algal biomass waste treatment and environmental governance.+.
Collapse
Affiliation(s)
- Ziqiang Gao
- School of Environmental Science and Engineering, Xiamen University of Technology, Xiamen, 361024, China
| | - Zhineng Dai
- School of Environmental Science and Engineering, Xiamen University of Technology, Xiamen, 361024, China.
- Key Laboratory of Environmental Biotechnology (XMUT), Fujian Province University, Xiamen, China.
| | - Rui Wang
- School of Environmental Science and Engineering, Xiamen University of Technology, Xiamen, 361024, China
| | - Yang Li
- School of Environment, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
3
|
Miškelytė D, Žaltauskaitė J. Effects of elevated temperature and decreased soil moisture content on triclosan ecotoxicity to earthworm E. fetida. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:51018-51029. [PMID: 36807863 DOI: 10.1007/s11356-023-25951-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 02/10/2023] [Indexed: 04/16/2023]
Abstract
Emerging pollutants and climate change are two main challenges affecting soil organisms today. Changes in temperature and soil moisture with climate change are key factors determining activity and fitness of soil dwelling organisms. The occurrence and toxicity of antimicrobial agent triclosan (TCS) in terrestrial environment is of high concern, while no data are available on TCS toxicity changes to terrestrial organisms under global climate change. The study's aim was to assess the impact of elevated temperature, decreased soil moisture content, and their complex interaction on triclosan-induced changes in Eisenia fetida life cycle parameters (growth, reproduction, and survival). Eight-week TCS-contaminated soil (10-750 mg TCS kg-1) experiments with E. fetida were performed at four different treatments: C (21 °C + 60% water holding capacity (WHC)); D (21 °C and 30% WHC); T (25 °C + 60% WHC); and T + D (25 °C + 30% WHC). TCS had negative impact on the earthworm mortality, growth, and reproduction. Changing climate conditions have altered TCS toxicity to E. fetida. Drought and drought in combination with elevated temperature enhanced the adverse effects of TCS on earthworm survival, growth rate, and reproduction, while single elevated temperature slightly reduced TCS lethal toxicity as well as toxicity to growth rate and reproduction.
Collapse
Affiliation(s)
- Diana Miškelytė
- Department of Environmental Sciences, Vytautas Magnus University, Universiteto 10, Akademija, Kaunas, Lithuania.
| | - Jūratė Žaltauskaitė
- Department of Environmental Sciences, Vytautas Magnus University, Universiteto 10, Akademija, Kaunas, Lithuania
| |
Collapse
|
4
|
Singh RP, Mahajan M, Gandhi K, Gupta PK, Singh A, Singh P, Singh RK, Kidwai MK. A holistic review on trend, occurrence, factors affecting pesticide concentration, and ecological risk assessment. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:451. [PMID: 36890356 DOI: 10.1007/s10661-023-11005-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Demographic outbursts and increased food demands invoke excessive use of pesticides in the agricultural field for increasing productivity which leads to the relentless decline of riverine health and its tributaries. These tributaries are connected to a plethora of point and non-point sources that transport pollutants including pesticides into the Ganga river's mainstream. Simultaneous climate change and lack of rainfall significantly increase pesticide concentration in the soil and water matrix of the river basin. This paper is intended to review the paradigm shift of pesticide pollution in the last few decades in the river Ganga and its tributaries. Along with this, a comprehensive review suggests the ecological risk assessment method which facilitates policy development, sustainable riverine ecosystem management, and decision-making. Before 2011, the total mixture of Hexachlorocyclohexane was found at 0.004-0.026 ng/mL in Hooghly, but now, the concentration has increased up to 0.465-4.132 ng/mL. Aftermath of critical review, we observed maximum residual commodities and pesticide contamination reported in Uttar Pradesh > West Bengal > Bihar > Uttara Khand possibly because of agricultural load, increasing settlement, and incompetency of sewage treatment plant in the reclamation of pesticide contamination.
Collapse
Affiliation(s)
- Rajeev Pratap Singh
- Waste management, Resource recovery & Ecotoxicology (WRE) Laboratory, Department of Environment and Sustainable Development, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, India.
| | - Monika Mahajan
- Waste management, Resource recovery & Ecotoxicology (WRE) Laboratory, Department of Environment and Sustainable Development, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, India
| | - Kavita Gandhi
- Pesticide Residue Laboratory, Sophisticated Environmental Analytical Facility, CSIR-National Environmental Engineering Research Institute, Nagpur, India
| | - Pankaj Kumar Gupta
- Faculty of Environment, University of Waterloo, 200 University Ave W, Waterloo, ON, N2L 3G1, Canada
| | - Anita Singh
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Prafull Singh
- Remote Sensing & Groundwater Modeling Lab, Department of Geology, Central University South Bihar (CUSB), Gaya, 824236, India
| | - Rahul Kumar Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Mohd Kashif Kidwai
- Department of Energy & Environmental Sciences, Chaudhary Devi Lal University, Sirsa, Haryana, India
| |
Collapse
|
5
|
Tandon S, Singh A. Residue Behavior of Clopyralid Herbicide in Soil and Sugar Beet Crop under Subtropical Field Conditions. J Food Prot 2022; 85:735-739. [PMID: 35051274 DOI: 10.4315/jfp-21-355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 01/19/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT Sugar beet is a major crop for the sugar industry. With growing awareness of unsystematic use of pesticides, health problem, and environmental issues, assessment of pesticide residues in soil and crops has become necessary. Studies of subtropical conditions on dissipation and residue analysis of clopyralid have not yet been reported. Therefore, dissipation kinetics and terminal residues of clopyralid for two cropping seasons in the soil and the sugar beet crop were studied under field conditions. An experiment was laid out in a randomized block design, and a herbicide was applied as a postemergent. Clopyralid was extracted from the matrix by basic water, subjected to solid phase extraction cleanup, and quantified by high-pressure liquid chromatography-UV. The method was validated, and recovery percentage of pesticide ranged from 81 to 88, 77 to 85, 78 to 86, and 89 to 94% in the soil, sugar beet roots, sugar beet leaves, and water, respectively. After application in the soil, clopyralid dissipated rapidly following monophasic first-order kinetics, with a half-life of 13.39 days. Limits of detection and quantitation were 0.007 and 0.02 μg g-1, respectively. Clopyralid does not persist long in soil, and residues were below the European Union's maximum residue levels (0.5 mg kg-1) in the roots and leaves of sugar beet. Residues were also not detected in the groundwater. It can be concluded that clopyralid could be considered a safe herbicide from the environmental aspect due to its nonpersistence and that it would not have an adverse effect on human or animal health. HIGHLIGHTS
Collapse
Affiliation(s)
- Shishir Tandon
- Department of Chemistry (Agricultural Chemicals Division), College of Basic Sciences and Humanities, G. B. Pant University of Agriculture & Technology, Pantnagar 263 145, Udham Singh Nagar (Uttarakhand), India
| | - Anand Singh
- Department of Chemistry (Agricultural Chemicals Division), College of Basic Sciences and Humanities, G. B. Pant University of Agriculture & Technology, Pantnagar 263 145, Udham Singh Nagar (Uttarakhand), India
| |
Collapse
|
6
|
New-Aaron M, Abimbola O, Mohammadi R, Famojuro O, Naveed Z, Abadi A, Bell JE, Bartelt-Hunt S, Rogan EG. Low-Level Groundwater Atrazine in High Atrazine Usage Nebraska Counties: Likely Effects of Excessive Groundwater Abstraction. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:13241. [PMID: 34948848 PMCID: PMC8701136 DOI: 10.3390/ijerph182413241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022]
Abstract
Recent studies observed a correlation between estrogen-related cancers and groundwater atrazine in eastern Nebraska counties. However, the mechanisms of human exposure to atrazine are unclear because low groundwater atrazine concentration was observed in counties with high cancer incidence despite having the highest atrazine usage. We studied groundwater atrazine fate in high atrazine usage Nebraska counties. Data were collected from Quality Assessed Agrichemical Contaminant Nebraska Groundwater, Parameter-Elevation Regressions on Independent Slopes Model (PRISM), and water use databases. Descriptive statistics and cluster analysis were performed. Domestic wells (59%) were the predominant well type. Groundwater atrazine was affected by well depth. Clusters consisting of wells with low atrazine were characterized by excessive groundwater abstraction, reduced precipitation, high population, discharge areas, and metropolitan counties. Hence, low groundwater atrazine may be due to excessive groundwater abstraction accompanied by atrazine. Human exposure to atrazine in abstracted groundwater may be higher than the estimated amount in groundwater.
Collapse
Affiliation(s)
- Moses New-Aaron
- Department of Environmental Health, Occupational Health and Toxicology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (A.A.); (J.E.B.); (E.G.R.)
| | - Olufemi Abimbola
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583-0726, USA
| | - Raheleh Mohammadi
- Department of Epidemiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (R.M.); (O.F.)
| | - Oluwaseun Famojuro
- Department of Epidemiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (R.M.); (O.F.)
| | - Zaeema Naveed
- School of Population and Public Health, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada;
| | - Azar Abadi
- Department of Environmental Health, Occupational Health and Toxicology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (A.A.); (J.E.B.); (E.G.R.)
| | - Jesse E. Bell
- Department of Environmental Health, Occupational Health and Toxicology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (A.A.); (J.E.B.); (E.G.R.)
| | - Shannon Bartelt-Hunt
- Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Omaha, NE 68182-0178, USA;
| | - Eleanor G. Rogan
- Department of Environmental Health, Occupational Health and Toxicology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (A.A.); (J.E.B.); (E.G.R.)
| |
Collapse
|
7
|
Potential Impacts of Climate Change on the Toxicity of Pesticides towards Earthworms. J Toxicol 2021; 2021:8527991. [PMID: 34456999 PMCID: PMC8397574 DOI: 10.1155/2021/8527991] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/28/2021] [Accepted: 08/13/2021] [Indexed: 11/17/2022] Open
Abstract
This review examined one of the effects of climate change that has only recently received attention, i.e., climate change impacts on the distribution and toxicity of chemical contaminants in the environment. As ecosystem engineers, earthworms are potentially threatened by the increasing use of pesticides. Increases in temperature, precipitation regime changes, and related extreme climate events can potentially affect pesticide toxicity. This review of original research articles, reviews, and governmental and intergovernmental reports focused on the interactions between toxicants and environmental parameters. The latter included temperature, moisture, acidification, hypoxia, soil carbon cycle, and soil dynamics, as altered by climate change. Dynamic interactions between climate change and contaminants can be particularly problematic for organisms since organisms have an upper and lower physiological range, resulting in impacts on their acclimatization capacity. Climate change variables such as temperature and soil moisture also have an impact on acidification. An increase in temperature will impact precipitation which might impact soil pH. Also, an increase in precipitation can result in flooding which can reduce the population of earthworms by not giving juvenile earthworms enough time to develop into reproductive adults. As an independent stressor, hypoxia can affect soil organisms, alter bioavailability, and increase the toxicity of chemicals in some cases. Climate change variables, especially temperature and soil moisture, significantly affect the bioavailability of pesticides in the soil and the growth and reproduction of earthworm species.
Collapse
|
8
|
Kibria G, Nugegoda D, Rose G, Haroon AKY. Climate change impacts on pollutants mobilization and interactive effects of climate change and pollutants on toxicity and bioaccumulation of pollutants in estuarine and marine biota and linkage to seafood security. MARINE POLLUTION BULLETIN 2021; 167:112364. [PMID: 33933897 DOI: 10.1016/j.marpolbul.2021.112364] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
This article provides an overview of the impacts of climate change stressors (temperature, ocean acidification, sea-level rise, and hypoxia) on estuarine and marine biota (algae, crustaceans, molluscs, corals, and fish). It also assessed possible/likely interactive impacts (combined impacts of climate change stressors and pollutants) on pollutants mobilization, pollutants toxicity (effects on growth, reproduction, mortality) and pollutants bioaccumulation in estuarine and marine biota. An increase in temperature and extreme events may enhance the release, degradation, transportation, and mobilization of both hydrophobic and hydrophilic pollutants in the estuarine and marine environments. Based on the available pollutants' toxicity trend data and information it reveals that the toxicity of several high-risk pollutants may increase with increasing levels of climate change stressors. It is likely that the interactive effects of climate change and pollutants may enhance the bioaccumulation of pollutants in seafood organisms. There is a paucity of literature relating to realistic interactive effects of climate change and pollutants. Therefore, future research should be directed towards the combined effects of climate change stressors and pollutants on estuarine and marine bota. A sustainable solution for pollution control caused by both greenhouse gas emissions (that cause climate change) and chemical pollutants would be required to safeguard the estuarine and marine biota.
Collapse
Affiliation(s)
- Golam Kibria
- School of Science, RMIT University, Australia; Global Artificial Mussels Pollution Watch Programme, Australia.
| | | | - Gavin Rose
- Kinvara Scientific P/L, Kinvara, NSW 2478, Australia
| | - A K Yousuf Haroon
- Food and Agriculture Organisation of the UN (FAO), Dhaka, Bangladesh
| |
Collapse
|
9
|
Exploring Biophysical Linkages between Coastal Forestry Management Practices and Aquatic Bivalve Contaminant Exposure. TOXICS 2021; 9:toxics9030046. [PMID: 33801358 PMCID: PMC7999571 DOI: 10.3390/toxics9030046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 11/17/2022]
Abstract
Terrestrial land use activities present cross-ecosystem threats to riverine and marine species and processes. Specifically, pesticide runoff can disrupt hormonal, reproductive, and developmental processes in aquatic organisms, yet non-point source pollution is difficult to trace and quantify. In Oregon, U.S.A., state and federal forestry pesticide regulations, designed to meet regulatory water quality requirements, differ in buffer size and pesticide applications. We deployed passive water samplers and collected riverine and estuarine bivalves Margaritifera falcata, Mya arenaria, and Crassostrea gigas from Oregon Coast watersheds to examine forestry-specific pesticide contamination. We used non-metric multidimensional scaling and regression to relate concentrations and types of pesticide contamination across watersheds to ownership and management metrics. In bivalve samples collected from eight coastal watersheds, we measured twelve unique pesticides (two herbicides; three fungicides; and seven insecticides). Pesticides were detected in 38% of bivalve samples; and frequency and maximum concentrations varied by season, species, and watershed with indaziflam (herbicide) the only current-use forestry pesticide detected. Using passive water samplers, we measured four current-use herbicides corresponding with planned herbicide applications; hexazinone and atrazine were most frequently detected. Details about types and levels of exposure provide insight into effectiveness of current forest management practices in controlling transport of forest-use pesticides.
Collapse
|
10
|
King SE, Nilsson E, Beck D, Skinner MK. Adipocyte epigenetic alterations and potential therapeutic targets in transgenerationally inherited lean and obese phenotypes following ancestral exposures. Adipocyte 2019; 8:362-378. [PMID: 31755359 PMCID: PMC6948971 DOI: 10.1080/21623945.2019.1693747] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/30/2019] [Accepted: 11/11/2019] [Indexed: 01/01/2023] Open
Abstract
The incidence of obesity has increased dramatically over the past two decades with a prevalence of approximately 40% of the adult population within the United States. The current study examines the potential for transgenerational adipocyte (fat cell) epigenetic alterations. Adipocytes were isolated from the gonadal fat pad of the great-grand offspring F3 generation 1-year old rats ancestrally exposed to DDT (dichlorodiphenyltrichloroethane), atrazine, or vehicle control in order to obtain adipocytes for DNA methylation analysis. Observations indicate that there were differential DNA methylated regions (DMRs) in the adipocytes with the lean or obese phenotypes compared to control normal (non-obese or lean) populations. The comparison of epigenetic alterations indicated that there were substantial overlaps between the different treatment lineage groups for both the lean and obese phenotypes. Novel correlated genes and gene pathways associated with DNA methylation were identified, and may aid in the discovery of potential therapeutic targets for metabolic diseases such as obesity. Observations indicate that ancestral exposures during critical windows of development can induce the epigenetic transgenerational inheritance of DNA methylation changes in adipocytes that ultimately may contribute to an altered metabolic phenotype.
Collapse
Affiliation(s)
- Stephanie E. King
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Eric Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Daniel Beck
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Michael K. Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| |
Collapse
|
11
|
Hackenberger DK, Palijan G, Lončarić Ž, Jovanović Glavaš O, Hackenberger BK. Influence of soil temperature and moisture on biochemical biomarkers in earthworm and microbial activity after exposure to propiconazole and chlorantraniliprole. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 148:480-489. [PMID: 29121590 DOI: 10.1016/j.ecoenv.2017.10.072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/29/2017] [Accepted: 10/31/2017] [Indexed: 06/07/2023]
Abstract
Predicted climate change could impact the effects that various chemicals have on organisms. Increased temperature or change in precipitation regime could either enhance or lower toxicity of pesticides. The aim of this study is to assess how change in temperature and soil moisture affect biochemical biomarkers in Eisenia fetida earthworm and microbial activity in their excrements after exposure to a fungicide - propiconazole (PCZ) and an insecticide - chlorantraniliprole (CAP). For seven days, earthworms were exposed to the pesticides under four environmental conditions comprising combinations of two different temperatures (20°C and 25°C) and two different soil water holding capacities (30% and 50%). After exposure, in the collected earthworm casts the microbial activity was measured through dehydrogenase activity (DHA) and biofilm forming ability (BFA), and in the postmitochondrial fraction of earthworms the activities of acetylcholinesterase (AChE), catalase (CAT) and glutathione-S-transferase (GST) respectively. The temperature and the soil moisture affected enzyme activities and organism's response to pesticides. It was determined that a three-way interaction (pesticide concentration, temperature and moisture) is statistically significant for the CAT and GST after the CAP exposure, and for the AChE and CAT after the PCZ exposure. Interestingly, the AChE activity was induced by both pesticides at a higher temperature tested. The most important two-way interaction that was determined occurred between the concentration and temperature applied. DHA and BFA, as markers of microbial activity, were unevenly affected by PCZ, CAP and environmental conditions. The results of this experiment demonstrate that experiments with at least two different environmental conditions can give a very good insight into some possible effects that the climate change could have on the toxicity of pesticides. The interaction of environmental factors should play a more important role in the risk assessments for pesticides.
Collapse
Affiliation(s)
- Davorka K Hackenberger
- Department of Biology, University of Osijek, Cara Hadrijana 8A, HR-31000 Osijek, Croatia.
| | - Goran Palijan
- Department of Biology, University of Osijek, Cara Hadrijana 8A, HR-31000 Osijek, Croatia.
| | - Željka Lončarić
- Department of Biology, University of Osijek, Cara Hadrijana 8A, HR-31000 Osijek, Croatia.
| | - Olga Jovanović Glavaš
- Department of Biology, University of Osijek, Cara Hadrijana 8A, HR-31000 Osijek, Croatia.
| | | |
Collapse
|
12
|
Zhao X, Wang L, Ma F, Bai S, Yang J, Qi S. Pseudomonas sp. ZXY-1, a newly isolated and highly efficient atrazine-degrading bacterium, and optimization of biodegradation using response surface methodology. J Environ Sci (China) 2017; 54:152-159. [PMID: 28391924 DOI: 10.1016/j.jes.2016.06.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/21/2016] [Accepted: 06/23/2016] [Indexed: 06/07/2023]
Abstract
Atrazine, a widely used herbicide, is increasing the agricultural production effectively, while also causing great environmental concern. Efficient atrazine-degrading bacterium is necessary to removal atrazine rapidly to keep a safe environment. In the present study, a new atrazine-degrading strain ZXY-1, identified as Pseudomonas, was isolated. This new isolated strain has a strong ability to biodegrade atrazine with a high efficiency of 9.09mg/L/hr. Temperature, pH, inoculum size and initial atrazine concentration were examined to further optimize the degradation of atrazine, and the synthetic effect of these factors were investigated by the response surface methodology. With a high quadratic polynomial mathematical model (R2=0.9821) being obtained, the highest biodegradation efficiency of 19.03mg/L/hr was reached compared to previous reports under the optimal conditions (30.71°C, pH7.14, 4.23% (V/V) inoculum size and 157.1mg/L initial atrazine concentration). Overall, this study provided an efficient bacterium and approach that could be potentially useful for the bioremediation of wastewater containing atrazine.
Collapse
Affiliation(s)
- Xinyue Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Li Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shunwen Bai
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jixian Yang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shanshan Qi
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
13
|
Chiu MC, Hunt L, Resh VH. Climate-change influences on the response of macroinvertebrate communities to pesticide contamination in the Sacramento River, California watershed. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 581-582:741-749. [PMID: 28069310 DOI: 10.1016/j.scitotenv.2017.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 01/01/2017] [Accepted: 01/01/2017] [Indexed: 06/06/2023]
Abstract
Limited studies have addressed how future climate-change scenarios may alter the effects of pesticides on biotic assemblages or the effects of exposures to repeated pulses of pesticide mixtures. We used reported pesticide-use data as input to a hydrological fate and transport model (Soil and Water Assessment Tool) under multiple climate-change scenarios to simulate spatiotemporal dynamics of pesticides mixtures in streams on a daily time-step in the Sacramento River watershed of California. We predicted that there will be increased pesticide application with warming across the watershed, especially in upstream areas. Using a statistical model describing the relationship between macroinvertebrate communities and pesticide dynamics, we found that compared to the baseline period of 1970-1999: (1) most climate-change scenarios predicted increased rainfall and warming across the watershed during 2070-2099; and (2) increasing pesticide contamination and increased impact on macroinvertebrates will likely occur in most areas of the watershed by 2070-2099; and (3) lower increases in effects of pesticides on macroinvertebrates were predicted for the downstream areas with intensive agriculture compared to some upstream areas with less-intensive agriculture. Future efforts on practical adaptation and mitigation strategies can be improved by awareness of altered threats of pesticide mixtures under future climate-change conditions.
Collapse
Affiliation(s)
- Ming-Chih Chiu
- Department of Environmental Science, Policy & Management, University of California, Berkeley, 94720-3114, CA, USA.
| | - Lisa Hunt
- Department of Environmental Science, Policy & Management, University of California, Berkeley, 94720-3114, CA, USA.
| | - Vincent H Resh
- Department of Environmental Science, Policy & Management, University of California, Berkeley, 94720-3114, CA, USA.
| |
Collapse
|
14
|
Lewis SE, Silburn DM, Kookana RS, Shaw M. Pesticide Behavior, Fate, and Effects in the Tropics: An Overview of the Current State of Knowledge. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:3917-3924. [PMID: 27160796 DOI: 10.1021/acs.jafc.6b01320] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This special issue presents a collection of papers covering the environmental fate, effects, and risk of pesticides in tropical environments, which is expected to facilitate improved management of pesticides. Environmental monitoring programs of surface and ground waters in the tropics, including areas of high ecological value, have detected several relatively polar pesticides at concentrations that are of ecological concern. Novel monitoring techniques have the capacity to reveal the spatial and temporal extent of such risks. To best manage these pesticides, their sorption, dissipation rates, leaching, and runoff potential need to be better understood. On these aspects, important insights have been provided by several studies within this issue. Improved understanding of the environmental fate, effects, and risks through studies presented in this special issue is crucial for minimizing the nontarget impacts of pesticides on biodiversity-rich tropical regions.
Collapse
Affiliation(s)
- Stephen E Lewis
- Catchment to Reef Research Group, TropWATER, James Cook University , Townsville, QLD 4811, Australia
| | - D Mark Silburn
- Department of Natural Resources and Mines , Toowoomba, QLD 4350, Australia
- National Centre for Engineering in Agriculture, University of Southern Queensland , Toowoomba, QLD 4350, Australia
| | - Rai S Kookana
- CSIRO Land and Water/University of Adelaide , Waite Campus, Glen Osmond, SA 5064, Australia
| | - Melanie Shaw
- Department of Natural Resources and Mines , Toowoomba, QLD 4350, Australia
| |
Collapse
|
15
|
Bioremediation strategies for removal of residual atrazine in the boreal groundwater zone. Appl Microbiol Biotechnol 2015; 99:10249-59. [DOI: 10.1007/s00253-015-6828-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 07/02/2015] [Accepted: 07/07/2015] [Indexed: 10/23/2022]
|
16
|
Delcour I, Spanoghe P, Uyttendaele M. Literature review: Impact of climate change on pesticide use. Food Res Int 2015. [DOI: 10.1016/j.foodres.2014.09.030] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Masiá A, Campo J, Navarro-Ortega A, Barceló D, Picó Y. Pesticide monitoring in the basin of Llobregat River (Catalonia, Spain) and comparison with historical data. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 503-504:58-68. [PMID: 25034205 DOI: 10.1016/j.scitotenv.2014.06.095] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/17/2014] [Accepted: 06/20/2014] [Indexed: 06/03/2023]
Abstract
Through an extensive sampling in the Llobregat River basin, the presence of 50 currently used pesticides in water, sediment, and biota was assessed. Pesticides were detected primarily in water (up to 56% of the analytes), whereas their presence in sediments was more intermittent, and in biota was scarce. Those at high concentrations in water were the benzimidazoles (carbendazim in 22% of the samples up to 697 ng L(-1)), the organophosphorus (malathion in 54% of the samples up to 320 ng L(-1)), and the ureas (diuron in 54% of the samples up to 159 ng L(-1)). However, this pattern differed in sediments and biota, which were contaminated primarily with organophosphorus (higher Kow) (chlorpyrifos 93% of sediments up to 131 ng g(-1)). According to the results of this study, pesticide residues in the Llobregat River basin do not seem to represent a high risk to biota, even though some algae and fish can be affected. Nevertheless, the monitoring program can be very useful to control the contamination of the river basin, as the availability of historical data on the basin confirmed background contamination in the last 20 years.
Collapse
Affiliation(s)
- Ana Masiá
- Food and Environmental Safety Research Group, Department of Medicine Preventive, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain.
| | - Julián Campo
- Food and Environmental Safety Research Group, Department of Medicine Preventive, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | - Alícia Navarro-Ortega
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, C/ Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Damià Barceló
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, C/ Jordi Girona 18-26, 08034 Barcelona, Spain; Catalan Institute for Water Research (ICRA), C/ Emili Grahit, 101, Edifici H2O, Parc Científic i Tecnològic de la Universitat de Girona, 17003 Girona, Spain
| | - Yolanda Picó
- Food and Environmental Safety Research Group, Department of Medicine Preventive, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| |
Collapse
|
18
|
Jones RM, Stayner LT, Demirtas H. Multiple imputation for assessment of exposures to drinking water contaminants: evaluation with the Atrazine Monitoring Program. ENVIRONMENTAL RESEARCH 2014; 134:466-473. [PMID: 25461881 DOI: 10.1016/j.envres.2014.07.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 05/12/2014] [Accepted: 07/30/2014] [Indexed: 06/04/2023]
Abstract
BACKGROUND Drinking water may contain pollutants that harm human health. The frequency of pollutant monitoring may occur quarterly, annually, or less frequently, depending upon the pollutant, the pollutant concentration, and community water system. However, birth and other health outcomes are associated with narrow time-windows of exposure. Infrequent monitoring impedes linkage between water quality and health outcomes for epidemiological analyses. OBJECTIVES To evaluate the performance of multiple imputation to fill in water quality values between measurements in community water systems (CWSs). METHODS The multiple imputation method was implemented in a simulated setting using data from the Atrazine Monitoring Program (AMP, 2006-2009 in five Midwestern states). Values were deleted from the AMP data to leave one measurement per month. Four patterns reflecting drinking water monitoring regulations were used to delete months of data in each CWS: three patterns were missing at random and one pattern was missing not at random. Synthetic health outcome data were created using a linear and a Poisson exposure-response relationship with five levels of hypothesized association, respectively. The multiple imputation method was evaluated by comparing the exposure-response relationships estimated based on multiply imputed data with the hypothesized association. RESULTS The four patterns deleted 65-92% months of atrazine observations in AMP data. Even with these high rates of missing information, our procedure was able to recover most of the missing information when the synthetic health outcome was included for missing at random patterns and for missing not at random patterns with low-to-moderate exposure-response relationships. CONCLUSIONS Multiple imputation appears to be an effective method for filling in water quality values between measurements.
Collapse
Affiliation(s)
- Rachael M Jones
- Division of Environmental and Occupational Health Sciences, School of Public Health, University of Illinois at Chicago, 2121 W. Taylor St. (M/C 922), Chicago, IL 60612, United States.
| | - Leslie T Stayner
- Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois at Chicago, United States
| | - Hakan Demirtas
- Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois at Chicago, United States
| |
Collapse
|
19
|
Kattwinkel M, Kühne JV, Foit K, Liess M. Climate change, agricultural insecticide exposure, and risk for freshwater communities. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2011; 21:2068-81. [PMID: 21939044 DOI: 10.1890/10-1993.1] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Climate change exerts direct effects on ecosystems but has additional indirect effects due to changes in agricultural practice. These include the increased use of pesticides, changes in the areas that are cultivated, and changes in the crops cultivated. It is well known that pesticides, and in particular insecticides, affect aquatic ecosystems adversely. To implement effective mitigation measures it is necessary to identify areas that are affected currently and those that will be affected in the future. As a consequence, we predicted potential exposure to insecticide (insecticide runoff potential, RP) under current conditions (1990) and under a model scenario of future climate and land use (2090) using a spatially explicit model on a continental scale, with a focus on Europe. Space-for-time substitution was used to predict future levels of insecticide application, intensity of agricultural land use, and cultivated crops. To assess the indirect effects of climate change, evaluation of the risk of insecticide exposure was based on a trait-based, climate-insensitive indicator system (SPEAR, SPEcies At Risk). To this end, RP and landscape characteristics that are relevant for the recovery of affected populations were combined to estimate the ecological risk (ER) of insecticides for freshwater communities. We predicted a strong increase in the application of, and aquatic exposure to, insecticides under the future scenario, especially in central and northern Europe. This, in turn, will result in a severe increase in ER in these regions. Hence, the proportion of stream sites adjacent to arable land that do not meet the requirements for good ecological status as defined by the EU Water Framework Directive will increase (from 33% to 39% for the EU-25 countries), in particular in the Scandinavian and Baltic countries (from 6% to 19%). Such spatially explicit mapping of risk enables the planning of adaptation and mitigation strategies including vegetated buffer strips and nonagricultural recolonization zones along streams.
Collapse
Affiliation(s)
- Mira Kattwinkel
- Department of System Ecotoxicology, Helmholtz Centre for Environmental Research-UFZ, PermoserstraJle 15, 04318 Leipzig, Germany.
| | | | | | | |
Collapse
|