1
|
Song L, Cai C, Chen Z, Lin C, Lv Y, Ye X, Liu Y, Dai X, Liu M. Lactic acid production from food waste: Advances in microbial fermentation and separation technologies. BIORESOURCE TECHNOLOGY 2024; 414:131635. [PMID: 39401659 DOI: 10.1016/j.biortech.2024.131635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
China generates over 100 million tons of food waste annually, leading to significant environmental pollution and health risks if not managed properly. Converting FW into a high-value-added platform molecule, lactic acid (LA), through fermentation offers a promising approach for both waste treatment and resource recovery. This paper presents a comprehensive review of recent advancements in LA production from FW, focusing on pure strains fermentation and open fermentation technologies, metabolic mechanisms, and problems in fermentation. It also assesses purification methods, including molecular distillation, adsorption, membrane separation, precipitation, esterification and hydrolysis, solvent extraction, and in-situ separation, analyzing their efficiency, advantages, and disadvantages. However, current research encounters several challenges, including low LA yield, low optical purity of L-(+)-LA, and difficulties in the separation and purification of LA. The integration of in-situ separation technology coupled with multiple separation methods is highlighted as a promising direction for future advancements.
Collapse
Affiliation(s)
- Liang Song
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Chenhang Cai
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Zengpeng Chen
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Chunxiang Lin
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Yuancai Lv
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Xiaoxia Ye
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Yifan Liu
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Minghua Liu
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China.
| |
Collapse
|
2
|
Ngamnurak P, Plangklang P, Pomdaeng P, Ko TW, Reungsang A, Chu CY. Synergistic sodium alginate- and biochar-immobilized cells for enhancing fermentative hydrogen production from food waste. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:64524-64533. [PMID: 39412715 DOI: 10.1007/s11356-024-35323-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 10/12/2024] [Indexed: 12/08/2024]
Abstract
An immobilized hydrogen-producing consortium investigated biohydrogen production from food waste using a combination of sodium alginate and cassava rhizome biochar. We investigated the effect of varying the biochar concentration from 0 to 3% and the size of immobilized cells from 1 to 7 mm. Immobilized cells were prepared using 50% (v/v) enriched hydrogen-producing consortium, 2% (w/v) sodium alginate, and 0 to 3% (w/v) cassava rhizome biochar. The optimal conditions for achieving the highest hydrogen production in the batch fermentation reactor were identified as a biochar concentration of 2% (w/v) and an immobilized cell size of 2 mm. The highest hydrogen yield, maximum hydrogen production rate, and lag time recorded were 0.69 mmol H2/g-COD, 0.02 mmol H2/g-COD.h, and 41.51 h, respectively. This research highlights the potential of cassava biochar technology for efficient biohydrogen production from food waste, contributing to renewable energy generation and sustainable waste management.
Collapse
Affiliation(s)
- Phonsini Ngamnurak
- Graduate School, Khon Kaen University, Khon Kaen, 40002, Thailand
- Department of Biology Technology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Pensri Plangklang
- Department of Biology Technology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand
- Research Group for Development of Microbial Hydrogen Production Process From Biomass, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Prakaidao Pomdaeng
- Institute of Green Products, Feng Chia University, Taichung, Taiwan
- Ph.D. Program of Mechanical and Aeronautical Engineering, Feng Chia University, Taichung, Taiwan
| | - Ting-Wu Ko
- Institute of Green Products, Feng Chia University, Taichung, Taiwan
- Master's Program of Green Energy Science and Technology, Feng Chia University, Taichung, Taiwan
| | - Alissara Reungsang
- Department of Biology Technology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand
- Research Group for Development of Microbial Hydrogen Production Process From Biomass, Khon Kaen University, Khon Kaen, 40002, Thailand
- Academy of Science, Royal Society of Thailand, Bangkok, 10300, Thailand
| | - Chen-Yeon Chu
- Institute of Green Products, Feng Chia University, Taichung, Taiwan.
- Ph.D. Program of Mechanical and Aeronautical Engineering, Feng Chia University, Taichung, Taiwan.
- Master's Program of Green Energy Science and Technology, Feng Chia University, Taichung, Taiwan.
| |
Collapse
|
3
|
Xue T, Yan X, Li W, Xu J, Yang X. Synergistic effect and microbial community structure of waste-activated sludge and kitchen waste solids residue mesophilic anaerobic co-digestion. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:3163-3177. [PMID: 39150418 DOI: 10.2166/wst.2024.186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/17/2024] [Indexed: 08/17/2024]
Abstract
Anaerobic co-digestion was conducted on the solid residues after three-phase separation of kitchen waste (KWS) and waste-activated sludge (WAS), the synergistic effects and process performance were studied during co-digestion at different ratios of KWS to WAS. KWS and WAS mix ratios of 0:1, 1:4, 1:3, 1:2, 1:1, 2:1, 3:1, 4:1 and 1:0 (based on TS). The results showed that a ratio of KWS to WAS of 1:1 got a very high methane recovery with a methane yield of 310.45 ± 30.05 mL/g VSadded. The highest concentration of free ammonia among all reaction systems was only 70.23 ± 5.53 mg/L, which was not enough to produce ammonia inhibition in the anaerobic co-digestion system. However, when the KWS content exceeded 50%, methane inhibition and prolongation of the lag phase were observed due to the accumulation of volatile fatty acids (VFAs), and during the lag phase. Microbial community analysis showed that various bacterial groups involved in acid production and hydrolysis were mainly dominated by phylum Firmicutes, Chloroflexi, Proteobacteria and Bacteroidetes. Hydrogenotrophic methanogen was found to dominate all archaeal communities in the digesters. Co-digestion of KWS with WAS significantly increased the relative abundance of Methanobacterium compared with anaerobic digestion of WAS alone.
Collapse
Affiliation(s)
- Tongzhan Xue
- School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, Anhui 230601, China; Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Hefei, Anhui 230601, China
| | - Xiangyu Yan
- School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, Anhui 230601, China E-mail:
| | - Weihua Li
- School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, Anhui 230601, China; Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Hefei, Anhui 230601, China
| | - Jiajia Xu
- School of Architectural Engineering, Tongling University, Tongling, Anhui 244000, China
| | - Xinlei Yang
- School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, Anhui 230601, China
| |
Collapse
|
4
|
Yang Y, Bu J, Tiong YW, Xu S, Zhang J, He Y, Zhu M, Tong YW. Enhanced thermophilic dark fermentation of hydrogen production from food waste by Fe-modified biochar. ENVIRONMENTAL RESEARCH 2024; 244:117946. [PMID: 38104915 DOI: 10.1016/j.envres.2023.117946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/02/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
The industrialization of hydrogen production through dark fermentation of food waste faces challenges, such as low yields and unpredictable fermentation processes. Biochar has emerged as a promising green additive to enhance hydrogen production in dark fermentation. Our study demonstrated that the introduction of Fe-modified biochar (Fe-L600) significantly boosted hydrogen production during thermophilic dark fermentation of food waste. The addition of Fe-L600 led to a remarkable 31.19% increase in hydrogen yield and shortened the time needed for achieving stabilization of hydrogen production from 18 h to 12 h. The metabolite analysis revealed an enhancement in the butyric acid pathway as the molar ratio of acetic acid to butyric acid decreased from 3.09 to 2.69 but hydrogen yield increased from 57.12 ± 1.48 to 76.78 ± 2.77 mL/g, indicating Fe-L600 improved hydrogen yield by regulating crucial metabolic pathways of hydrogen production. The addition of Fe-L600 also promoted the release of Fe2+ and Fe3+ and increased the concentrations of Fe2+ and Fe3+ in the fermentation system, which might promote the activity of hydrogenase and ferredoxin. Microbial community analysis indicated a substantial increase in the relative abundance of Thermoanaerobacterium after thermophilic dark fermentation. The relative abundances of microorganisms responsible for hydrolysis and acidogenesis were also observed to be improved in the system with Fe-L600 addition. This research provides a feasible strategy for improving hydrogen production of food waste and deepens the understanding of the mechanisms of biochar.
Collapse
Affiliation(s)
- Yongjun Yang
- School of Biology and Biological Engineering, Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou, 510006, People's Republic of China
| | - Jie Bu
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability Solutions for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, 138602, Singapore
| | - Yong Wei Tiong
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability Solutions for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, 138602, Singapore
| | - Shuai Xu
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore
| | - Jingxin Zhang
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 201306, People's Republic of China
| | - Yiliang He
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 201306, People's Republic of China
| | - Mingjun Zhu
- School of Biology and Biological Engineering, Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou, 510006, People's Republic of China.
| | - Yen Wah Tong
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability Solutions for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive, 117585, Singapore.
| |
Collapse
|
5
|
Sharma P, Bano A, Singh SP, Atkinson JD, Lam SS, Iqbal HM, Tong YW. Biotransformation of food waste into biogas and hydrogen fuel – A review. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 2024; 52:46-60. [DOI: 10.1016/j.ijhydene.2022.08.081] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
|
6
|
Zhao Y, Wei R, He D, Niu D, Zhou T. Enhanced volatile fatty acid production from food waste via anaerobic fermentation: effect of irons with different sizes. ENVIRONMENTAL TECHNOLOGY 2024; 45:50-60. [PMID: 35792808 DOI: 10.1080/09593330.2022.2099309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
ABSTRACTFood waste is an excellent organic matter for anaerobic fermentation. This study provided a cost-effective and highly efficient volatile fatty acid (VFA) production strategy by the addition of zero-valent iron (ZVI). Results showed that VFA concentration of 44.6 g/L was obtained with the optimized conditions of 200-mesh iron powder at a dosage of 20.0 g, fermentation time of 11 d, total solids (TS) of 10 wt.%, and fermentation temperature of 37 ℃. Further, the iron of different particle sizes (iron scraps, 200-mesh iron powder, and 800-mesh iron powder) had a differential influence on total organic carbon (TOC), total nitrogen (TN), and VFA concentrations. For the reactor containing 200-mesh iron powder, the conversion rate of organic compound into VFA increased with the increase of dosage, which reached 58.4% at the 40.0 g dosage. The mechanism revealed that the VFA production was enhanced by micro-electrolysis, which can rapidly inactivate bacteria and increase the conversion of macromolecular organics into micromolecular organics.
Collapse
Affiliation(s)
- Youcai Zhao
- The State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, People's Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, People's Republic of China
| | - Ran Wei
- The State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, People's Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, People's Republic of China
| | - Dongwei He
- The State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, People's Republic of China
| | - Dongjie Niu
- The State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, People's Republic of China
| | - Tao Zhou
- The State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, People's Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, People's Republic of China
| |
Collapse
|
7
|
Kongthong O, Dokmaingam P, Chu CY. Fermentative Biohydrogen and Biomethane Production from High-Strength Industrial Food Waste Hydrolysate Using Suspended Cell Techniques. Mol Biotechnol 2023:10.1007/s12033-023-00939-0. [PMID: 37934388 DOI: 10.1007/s12033-023-00939-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/28/2023] [Indexed: 11/08/2023]
Abstract
The food waste was very difficult to treat in a proper way since its high-organic matter. The novel biohythane (H2 + CH4) production from high-strength industry food waste hydrolysate in two steps anaerobic well mixed batch bioreactor was carried out in this study using cultivated microflora. The temperature was controlled at 37 °C and initial substrate concentration of industrial food waste hydrolysate varied from 60, 80, 100, and 120 g COD/L, respectively. The pH, TS, VS, and SCOD were analyzed from the influent and effluent samples. These analytical parameters showed the correlations between the biogas production rates and yields in the batch fermentation system. This study was the first time to use the industry food waste hydrolysate which was collected from the subcritical water hydrolysis process. In this study, the optimal biohydrogen and biomethane yield production by using suspended cells were 0.65 mL H2/g COD and 203.72 mL CH4/g COD where the initial substrate concentrations of total COD and SCOD were 60 g/L and 39.80 g/L, respectively. The optimal of the biohydrogen and biomethane yields production by using suspended cells were 0.65 mL H2/g COD and 203.72 mL CH4/g COD where the initial substrate concentrations of total COD and SCOD were 60 g/L and 39.80 g/L, respectively. The results of this study supported that the cultivation of inoculum in a suspended cell type can have a higher tolerance for the biohydrogen and biomethane production in a high-strength initial substrate concentration of 60 g COD/L.
Collapse
Affiliation(s)
- Onjira Kongthong
- Environmental Health Program, School of Health Science, Mae Fah Luang University, 333 M.1 Tasud, Muang, Chiang Rai, 57100, Thailand
| | - Pannipha Dokmaingam
- Environmental Health Program, School of Health Science, Mae Fah Luang University, 333 M.1 Tasud, Muang, Chiang Rai, 57100, Thailand.
- Research Center of Circular Economy for Waste-Free Thailand, School of Science, Mae Fah Luang University, 333 M.1 Tasud, Muang, Chiang Rai, 57100, Thailand.
| | - Chen-Yeon Chu
- Institute of Green Products, Feng Chia University, 100, Wenhua Rd. Xitun Dist., Taichung City, 407102, Taiwan.
- Master's Program of Green Energy Science and Technology, Feng Chia University, 100, Wenhua Rd. Xitun Dist., Taichung City, 407102, Taiwan.
| |
Collapse
|
8
|
Gidi L, Amalraj J, Tenreiro C, Ramírez G. Recent progress, trends, and new challenges in the electrochemical production of green hydrogen coupled to selective electrooxidation of 5-hydroxymethylfurfural (HMF). RSC Adv 2023; 13:28307-28336. [PMID: 37753399 PMCID: PMC10519153 DOI: 10.1039/d3ra05623f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
The production of clean electrical energy and the correct use of waste materials are two topics that currently concern humanity. In order to face both problems, extensive work has been done on the electrolytic production of green H2 coupled with the electrooxidative upgrading of biomass platform molecules. 5-Hydroxymethylfurfural (HMF) is obtained from forest waste biomass and can be selectively oxidized to 2,5-furandicarboxylic acid (FDCA) by electrochemical pathways. FDCA is an attractive precursor to polyethylene furanoate (PEF), with the potential to replace petroleum-based polyethylene terephthalate (PET). An integrated electrochemical system can simultaneously produce H2 and FDCA at a lower energy cost than that required for electrolytic water splitting. Here, the benefits of the electrochemical production of H2 and FDCA over other production methods are presented, as well as the innovative applications of each reaction product and the advantages of carrying out both reactions in a coupled system. The recently reported progress is disclosed, through an exploration of electrocatalyst materials used in simultaneous production, including the use of nickel foams (NF) as modification substrates, noble and non-noble metals, metal non-oxides, metal oxides, spinel oxides and the introduction of oxygen vacancies. Based on the latest trends, the next challenges associated with its large-scale production are proposed for its implementation in the industrial world. This work can offer a guideline for the detailed understanding of the electrooxidation of HMF towards FDCA with the production of H2, as well as the design of advanced electrocatalysts for the sustainable use of renewable resources.
Collapse
Affiliation(s)
- Leyla Gidi
- Laboratory of Material Science, Chemistry Institute of Natural Resources, Universidad de Talca P.O. Box 747 Talca 3460000 Chile
| | - John Amalraj
- Laboratory of Material Science, Chemistry Institute of Natural Resources, Universidad de Talca P.O. Box 747 Talca 3460000 Chile
| | - Claudio Tenreiro
- Industrial Technologies Department, Faculty of Engineering, Universidad de Talca Curicó 3340000 Chile
| | - Galo Ramírez
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile Av. Vicuña Mackenna 4860 Santiago 7820436 Chile
- Millenium Institute on Green Ammonia as Energy Vector (MIGA) Av. Vicuña Mackenna 4860, Macul Santiago 7820436 Chile
| |
Collapse
|
9
|
Potential and Restrictions of Food-Waste Valorization through Fermentation Processes. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Food losses (FL) and waste (FW) occur throughout the food supply chain. These residues are disposed of on landfills producing environmental issues due to pollutants released into the air, water, and soil. Several research efforts have focused on upgrading FL and FW in a portfolio of added-value products and energy vectors. Among the most relevant research advances, biotechnological upgrading of these residues via fermentation has been demonstrated to be a potential valorization alternative. Despite the multiple investigations performed on the conversion of FL and FW, a lack of comprehensive and systematic literature reviews evaluating the potential of fermentative processes to upgrade different food residues has been identified. Therefore, this article reviews the use of FL and FW in fermentative processes considering the composition, operating conditions, platforms, fermentation product application, and restrictions. This review provides the framework of food residue fermentation based on reported applications, experimental, and theoretical data. Moreover, this review provides future research ideas based on the analyzed information. Thus, potential applications and restrictions of the FL and FW used for fermentative processes are highlighted. In the end, food residues fermentation must be considered a mandatory step toward waste minimization, a circular economy, and the development of more sustainable production and consumption patterns.
Collapse
|
10
|
Pimpeach W, Polprasert C, Panyapinyopol B, Polprasert S, Mahasandana S, Patthanaissaranukool W. Enhancing anaerobic co-digestion of primary settled-nightsoil sludge and food waste for phosphorus extraction and biogas production: effect of operating parameters and determining phosphorus transformation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:23173-23183. [PMID: 36318410 DOI: 10.1007/s11356-022-23853-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
The study aimed to comprehensively determine P extraction efficiency and co-digestion of food waste (FW) and primary settled-nightsoil sludge (PSNS) process performance influenced by different hydraulic retention times (4, 7, 10, and 15 days) and mixture ratios of FW:PSNS in substrates (100:0, 75:25, 50:50, 25:75, and 0:100). P-transformation was evaluated to identify P fractionation in both supernatant and sludge accumulated in reactors. The results showed that anaerobic co-digestion was inhibited by the accumulation of undigested feedstock due to higher %PSNS found in AD4 (25FW:75PSNS) and AD5 (100PSNS). A more stable process was found in AD2 (75FW:25PSNS) under hydraulic retention time (HRT) 15 days in which COD removal efficiency and P release were 97.2 and 80.2%, respectively. This recommended condition allowed a high organic loading rate (OLR) at 12 gVS/L/day resulting in the highest biogas yield of 0.93 L/L/day. Distribution of P data demonstrated that most of P in feedstock was deposited and accumulated in sediment up to 97.8%. Poor biodegradability resulting from using shortened HRT led to high increased P-solid content in effluent. In addition, available P in effluents and accumulated P-solids in sediment obtained from the AcoD process has the potential to serve as sources for P recovery.
Collapse
Affiliation(s)
- Wanida Pimpeach
- Department of Sanitary Engineering, Faculty of Public Health, Mahidol University, Bangkok, 10400, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, 10400, Thailand
| | - Chongchin Polprasert
- Department of Sanitary Engineering, Faculty of Public Health, Mahidol University, Bangkok, 10400, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, 10400, Thailand
| | - Bunyarit Panyapinyopol
- Department of Sanitary Engineering, Faculty of Public Health, Mahidol University, Bangkok, 10400, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, 10400, Thailand
| | - Supawadee Polprasert
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, 10400, Thailand
- Department of Environmental Health Sciences, Faculty of Public Health, Mahidol University, Ratchathewi District, 420/1 Rajvithee Road, Bangkok, 10400, Thailand
| | - Suwisa Mahasandana
- Department of Sanitary Engineering, Faculty of Public Health, Mahidol University, Bangkok, 10400, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, 10400, Thailand
| | - Withida Patthanaissaranukool
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, 10400, Thailand.
- Department of Environmental Health Sciences, Faculty of Public Health, Mahidol University, Ratchathewi District, 420/1 Rajvithee Road, Bangkok, 10400, Thailand.
| |
Collapse
|
11
|
Environmental and Economic Life Cycle evaluation of potential Energy Efficiency Measures on Latvian fish supply chain. FUTURE FOODS 2022. [DOI: 10.1016/j.fufo.2022.100203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
12
|
Dahiya S, Venkata Mohan S. Synergy of selective buffering, intermittent pH control and bioreactor configuration on acidogenic volatile fatty acid production from food waste. CHEMOSPHERE 2022; 302:134755. [PMID: 35490753 DOI: 10.1016/j.chemosphere.2022.134755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/21/2022] [Accepted: 04/24/2022] [Indexed: 06/14/2023]
Abstract
The production of volatile fatty acids (VFAs) and biohydrogen (bio-H2) from food waste (FW) by acidogenic process is one of the promising strategies. The present study was performed to evaluate the role of initial (phase I) and intermittent pH (phase II) control strategies utilising combination of sodium hydroxide (NaOH) and sodium carbonate (Na2CO3) as buffering/neutralizing agents on VFAs and bio-H2 production from FW. The study was carried out in two bioreactor configurations (biofilm (UAFBB) and a suspended mode bioreactor (UASB)). Intermittent pH adjustment (phase II) increased hydrolysis and FW acidification compared to the initially adjusted pH (phase I), but had a detrimental influence on bio-H2 generation in both the studied bioreactor configurations. Combining NaOH and Na2CO3 resulted in higher buffering capacity and VFA production. The studied parameters in UAFBB aided in higher VFA (14.05 g/L; 48 h of cycle operation) and bio-H2 (56%; 12 h of cycle operation) production during phase II and phase I operation, respectively. Overall, the results showed a synergy between the examined parameters, resulting in increased VFA production from FW.
Collapse
Affiliation(s)
- Shikha Dahiya
- Bioengineering and Environmental Science Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500 007, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - S Venkata Mohan
- Bioengineering and Environmental Science Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, 500 007, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
13
|
Deciphering the blackbox of omics approaches and artificial intelligence in food waste transformation and mitigation. Int J Food Microbiol 2022; 372:109691. [DOI: 10.1016/j.ijfoodmicro.2022.109691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 04/18/2022] [Accepted: 04/23/2022] [Indexed: 01/29/2023]
|
14
|
Microbial Biogas Production from Pork Gelatine. HYDROGEN 2022. [DOI: 10.3390/hydrogen3020012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This research describes the results of the anaerobic digestion of gelatine as a potential hydrogen source with heat-shocked inoculum. The concentrations of applied gelatine were of VSS (volatile suspended solids) ranging from 10 g VSS/L to 30 g VSS/L. The initial process pH was 5.5, and, depending on the concentration, reached pH values from 7.5 to 7.8 after 55 days. Although the inoculum was heat-shocked in 30 g VSS/L of collagen, the process that occurred was hydrogenotrophic anaerobic digestion. In gelatine concentrations below 30 g VSS/L, hydrogen production was dominant only during the first 5 days of the experiments. Then, there was a change from dark fermentation to hydrogenotrophic methane production. The optimal hydrogen and methane yields resulted from the concentrations of 10 g VSS/L (7.65 mL ± 0.01 mL H2/g VSS and 3.49 ± 0.01 L CH4/g VSS). Additionally, 10 g VSS/L had the lowest accumulated emission of hydrogen sulphide (10.3 ± 0.01 mL of H2S), while 30 g VSS/L (0.440 ± 0.01mL H2S/g VSS) produced the lowest yield. After a lag time, the hydrogen production and hydrogen sulphide grew with a specific ratio, depending on the concentration. The hydrogen sulphide emission and sulphur added analysis proved that hydrogen sulphide originating from biogas created by bacteria remains longer than that from a substrate.
Collapse
|
15
|
Mirzajani H, Mirlou F, Istif E, Singh R, Beker L. Powering smart contact lenses for continuous health monitoring: Recent advancements and future challenges. Biosens Bioelectron 2022; 197:113761. [PMID: 34800926 DOI: 10.1016/j.bios.2021.113761] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/15/2021] [Accepted: 10/29/2021] [Indexed: 12/16/2022]
Abstract
As the tear is noninvasively and continuously available, it has been turned into a convenient biological interface as a wearable medical device for out-of-hospital and self-monitoring applications. Recent progress in integrated circuits (ICs) and biosensors coupled with wireless data communication techniques have led to the implementation of smart contact lenses that can continuously sample tear fluid, analyze physiological conditions, and wirelessly transmit data to an electronic device such as smartphone, which can send data to relevant healthcare units. Continuous analyte monitoring is one of the significant characteristics of wearable biosensors. However, despite several advantages over other on-skin wearable medical devices, batteries cannot be incorporated on smart contact lenses for continuous electrical power supply due to the limited area. Herein, we review the progress of power delivery techniques of smart contact lenses for the first time. Different approaches, including wireless power transmission (WPT), biofuel cells, supercapacitors, flexible batteries, wired connections, and hybrid methods, are thoroughly discussed to understand the principles of self-sustainable contact lens biosensors comprehensively. Additionally, recent progress in contact lens biosensors is reviewed in detail, thereby providing the prospects for further developments of smart contact lenses as a common biosensing platform for various disease monitoring and diagnostic applications.
Collapse
Affiliation(s)
- Hadi Mirzajani
- Department of Mechanical Engineering, Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul, 34450, Turkey
| | - Fariborz Mirlou
- Department of Electrical and Electronics Engineering, Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul, 34450, Turkey
| | - Emin Istif
- Department of Mechanical Engineering, Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul, 34450, Turkey
| | - Rahul Singh
- Department of Mechanical Engineering, Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul, 34450, Turkey
| | - Levent Beker
- Department of Mechanical Engineering, Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul, 34450, Turkey; Koç University Research Center for Translational Research (KUTTAM), Rumelifeneri Yolu, Sarıyer, Istanbul, 34450, Turkey.
| |
Collapse
|
16
|
Spatial Succession for Degradation of Solid Multicomponent Food Waste and Purification of Toxic Leachate with the Obtaining of Biohydrogen and Biomethane. ENERGIES 2022. [DOI: 10.3390/en15030911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A huge amount of organic waste is generated annually around the globe. The main sources of solid and liquid organic waste are municipalities and canning and food industries. Most of it is disposed of in an environmentally unfriendly way since none of the modern recycling technologies can cope with such immense volumes of waste. Microbiological and biotechnological approaches are extremely promising for solving this environmental problem. Moreover, organic waste can serve as the substrate to obtain alternative energy, such as biohydrogen (H2) and biomethane (CH4). This work aimed to design and test new technology for the degradation of food waste, coupled with biohydrogen and biomethane production, as well as liquid organic leachate purification. The effective treatment of waste was achieved due to the application of the specific granular microbial preparation. Microbiological and physicochemical methods were used to measure the fermentation parameters. As a result, a four-module direct flow installation efficiently couples spatial succession of anaerobic and aerobic bacteria with other micro- and macroorganisms to simultaneously recycle organic waste, remediate the resulting leachate, and generate biogas.
Collapse
|
17
|
Sundramurthy VP, Nithya TG, Masi C, Gomadurai C, M. Abda E. Recent advances and prospects for industrial waste management and product recovery for environmental appliances. PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2021-0063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Any material when utilized for a required period of time and segment, the leftover residues of those materials are known as waste. Enormous waste is generated during such wear and tear process of materials depending on the usage and functions in a routine lifestyle. Those generated waste when overloaded beyond the capacity of natural recycling processes, would influence the environment and human health. Hence, the waste generated from used materials should be managed according to the environmental impact. Even though wastes are also sometimes rich in organic compounds, nutrients, and energy resources, they are not experimented and managed appropriately. Recently, different feasible techniques are invented and followed to recover and reuse the efficient resources that can create and support sustainable livelihood by creating green economy effects by reducing waste. In this chapter, the emphasis has been given to providing an overview of recent advancements on bio-based waste management and product recoveries such as microbes mediated approaches, biorefineries for waste valorization, and bioenergy from industrial waste.
Collapse
Affiliation(s)
- Venkatesa Prabhu Sundramurthy
- Department of Chemical Engineering , Center of Excellence for Bioprocess and Biotechnology, Addis Ababa Science and Technology University , Addis Ababa , Ethiopia
| | - Thirumullaivoyal G. Nithya
- Department of Biotechnology , College of Science and Humanities, SRM Institute of Science and Technology , Kattankulathur , Tamil Nadu , 603203 , India
| | - Chandran Masi
- Department of Biotechnology , Addis Ababa Science and Technology University , Akaki Kality , Addis Ababa , P.O. Box: 16417 , Ethiopia
| | - Chinnasamy Gomadurai
- Department of Chemical Engineering , Kongu Engineering College , Perundurai , Erode , Tamil Nadu , 638060 , India
| | - Ebrahim M. Abda
- Department of Biotechnology , Addis Ababa Science and Technology University , Akaki Kality , Addis Ababa , P.O. Box: 16417 , Ethiopia
| |
Collapse
|
18
|
Roy K, Debnath SC, Pongwisuthiruchte A, Potiyaraj P. Recent advances of natural fibers based green rubber composites: Properties, current status, and future perspectives. J Appl Polym Sci 2021. [DOI: 10.1002/app.50866] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Kumarjyoti Roy
- Department of Materials Science, Faculty of Science Chulalongkorn University Bangkok Thailand
| | | | - Aphiwat Pongwisuthiruchte
- Department of Materials Science, Faculty of Science Chulalongkorn University Bangkok Thailand
- Center of Excellence on Petrochemical and Materials Technology Chulalongkorn University Bangkok Thailand
| | - Pranut Potiyaraj
- Department of Materials Science, Faculty of Science Chulalongkorn University Bangkok Thailand
- Center of Excellence on Petrochemical and Materials Technology Chulalongkorn University Bangkok Thailand
| |
Collapse
|
19
|
Abstract
The accumulation of solid and liquid organic waste requires their treatment to develop energy biotechnologies and prevent environment pollution. Aim. The goal of the work was to study the efficiency of the purification of the filtrate from dissolved organic compounds by aerobic oxidation and methane fermentation. Methods. The standard methods were used to determine рН and redox potential (Eh), the gas composition, the content of short-chain fatty acids, the concentration of dissolved organic compounds counting to the total сarbon. The efficiency of two types of microbial metabolism for the degradation of soluble organic compounds of filtrate was compared. Results. The aerobic oxidation was established to provide 1.9 times more efficient removal of dissolved organic compounds, compared with the anaerobic methane fermentation. However, it provided CH4 yield 1 L/dm3 of filtrate (сarbon concentration — 1071 mg/L). The necessity to optimize the methods for purifying filtrate to increase the efficiency of the process was determined. Conclusions. The obtained results will be the basis to develop complex biotechnology providing not only the production of environmentally friendly energy H2 via the fermentation of solid food waste, but also the purification of filtrate to solve the ecological and energy (CH4 production) problem of society.
Collapse
|
20
|
Habashy MM, Ong ES, Abdeldayem OM, Al-Sakkari EG, Rene ER. Food Waste: A Promising Source of Sustainable Biohydrogen Fuel. Trends Biotechnol 2021; 39:1274-1288. [PMID: 33992456 DOI: 10.1016/j.tibtech.2021.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 12/20/2022]
Abstract
Annually, approximately 1.3 billion tons of food is lost worldwide, accounting for one-third of annual food production. Therefore, turning food waste into energy is of enormous environmental significance because of its sustainable nature. Nutrients and organic acids present in food waste can be used to produce (bio)products such as biohydrogen through biological processes. However, our understanding of the production of biohydrogen from food waste through photofermentation and dark fermentation is still restricted. This comprehensive study aims to review the potential of food waste for biohydrogen production using microbial mediators, including a brief overview of process parameters that affect the (bio)hydrogen production pathway.
Collapse
Affiliation(s)
- Mahmoud M Habashy
- Department of Water Supply, Sanitation, and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX Delft, The Netherlands.
| | - Ee Shen Ong
- Department of Water Supply, Sanitation, and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX Delft, The Netherlands
| | - Omar M Abdeldayem
- Department of Water Supply, Sanitation, and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX Delft, The Netherlands
| | - Eslam G Al-Sakkari
- Chemical Engineering Department, Cairo University, Cairo University Road, 12613 Giza, Egypt
| | - Eldon R Rene
- Department of Water Supply, Sanitation, and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX Delft, The Netherlands
| |
Collapse
|
21
|
Abstract
The constant increase in the amount of food waste accumulating in landfills and discharged into the water reservoirs causes environment pollution and threatens human health. Solid and liquid food wastes include fruit, vegetable, and meat residues, alcohol bard, and sewage from various food enterprises. These products contain high concentrations of biodegradable organic compounds and represent an inexpensive and renewable substrate for the hydrogen fermentation. The goal of the work was to study the efficiency of hydrogen obtaining and decomposition of solid and liquid food waste via fermentation by granular microbial preparation (GMP). The application of GMP improved the efficiency of the dark fermentation of food waste. Hydrogen yields reached 102 L/kg of solid waste and 2.3 L/L of liquid waste. The fermentation resulted in the 91-fold reduction in the weight of the solid waste, while the concentration of organics in the liquid waste decreased 3-fold. Our results demonstrated the potential of granular microbial preparations in the production of hydrogen via dark fermentation. Further development of this technology may help to clean up the environment and reduce the reliance on fossil fuels by generating green hydrogen via recycling of household and industrial organic wastes.
Collapse
|
22
|
El Barnossi A, Moussaid F, Iraqi Housseini A. Tangerine, banana and pomegranate peels valorisation for sustainable environment: A review. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2021; 29:e00574. [PMID: 33376681 PMCID: PMC7758358 DOI: 10.1016/j.btre.2020.e00574] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/01/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022]
Abstract
Over the last decade the world has been generating a high quantity of tangerine peel waste (TPW), pomegranate peel waste (PPW) and banana peel waste (BPW). These peels have several economic benefits but there is mismanagement or inappropriate valorisation that could present risks to environment and public health. In the current review, we discussed the use of TPW, PPW and BPW directly for animal feed, soil fertilization, specific compost production and bio-adsorbent. We also discussed the valorisation of these peels for manufacturing the value-added products including enzymes, essential oil and other products that can be used in human food, in medical and cosmetic industry. Additionally, recent studies concerning the valorisation of these peels by biorefinery for bioethanol, biogas and biohydrogen production have been discussed. In the same context some other recent studies about valorisation of microorganisms isolated from these peels for medical, agronomic and industrial interests have been also discussed.
Collapse
Affiliation(s)
- Azeddin El Barnossi
- Laboratory of Biotechnology, Environment, Agri-Food and Health, Faculty of Sciences Dhar El Mahraz, Sidi Mohammed Ben Abdellah University, Fez, Morocco
| | - Fatimazhrae Moussaid
- Laboratory of Biotechnology, Environment, Agri-Food and Health, Faculty of Sciences Dhar El Mahraz, Sidi Mohammed Ben Abdellah University, Fez, Morocco
| | - Abdelilah Iraqi Housseini
- Laboratory of Biotechnology, Environment, Agri-Food and Health, Faculty of Sciences Dhar El Mahraz, Sidi Mohammed Ben Abdellah University, Fez, Morocco
| |
Collapse
|
23
|
Talan A, Tiwari B, Yadav B, Tyagi RD, Wong JWC, Drogui P. Food waste valorization: Energy production using novel integrated systems. BIORESOURCE TECHNOLOGY 2021; 322:124538. [PMID: 33352392 DOI: 10.1016/j.biortech.2020.124538] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Management of food waste (FW) is a global challenge due to increasing population and economic activities. Presently, landfill and incineration are the keyways of FW management, while economical and environmental sustainability have been an issue. Therefore, the biological processes have been investigated for resource and energy recovery from FW. However, these biological approaches have certain drawbacks and cannot be a complete solution for FW management. Therefore, this review aims to offer a detailed and complete analysis of current available technologies to achieve environmental and economical sustainability. In this context, zero solid waste discharge for resource and energy recovery has been put into view. Corresponding to which several innovative technologies using integrated biological methods for resource and energy recovery from FW have been elucidated.
Collapse
Affiliation(s)
- Anita Talan
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| | - Bhagyashree Tiwari
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| | - Bhoomika Yadav
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| | - R D Tyagi
- BOSK-Bioproducts, 100-399 rue Jacquard, Québec (QC) G1N 4J6, Canada; School of Technology, Huzhou University, Huzhou 311800, China.
| | - J W C Wong
- Hong Kong Baptist University, 224 Waterloo Rd, Kowloon Tong, Hong Kong, China
| | - P Drogui
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| |
Collapse
|
24
|
Adjusting Organic Load as a Strategy to Direct Single-Stage Food Waste Fermentation from Anaerobic Digestion to Chain Elongation. Processes (Basel) 2020. [DOI: 10.3390/pr8111487] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Production of medium chain carboxylic acids (MCCA) as renewable feedstock bio-chemicals, from food waste (FW), requires complicated reactor configurations and supplementation of chemicals to achieve product selectivity. This study evaluated the manipulation of organic loading rate in an un-supplemented, single stage stirred tank reactor to steer an anaerobic digestion (AD) microbiome towards acidogenic fermentation (AF), and thence to chain elongation. Increasing substrate availability by switching to a FW feedstock with a higher COD stimulated chain elongation. The MCCA species n-caproic (10.1 ± 1.7 g L−1) and n-caprylic (2.9 ± 0.8 g L−1) acid were produced at concentrations comparable to more complex reactor set-ups. As a result, of the adjusted operating strategy, a more specialised microbiome developed containing several MCCA-producing bacteria, lactic acid-producing Olsenella spp. and hydrogenotrophic methanogens. By contrast, in an AD reactor that was operated in parallel to produce biogas, the retention times had to be doubled when fed with the high-COD FW to maintain biogas production. The AD microbiome comprised a diverse mixture of hydrolytic and acidogenic bacteria, and acetoclastic methanogens. The results suggest that manipulation of organic loading rate and food-to-microorganism ratio may be used as an operating strategy to direct an AD microbiome towards AF, and to stimulate chain elongation in FW fermentation, using a simple, un-supplemented stirred tank set-up. This outcome provides the opportunity to repurpose existing AD assets operating on food waste for biogas production, to produce potentially higher value MCCA products, via simple manipulation of the feeding strategy.
Collapse
|
25
|
Lignocellulolytic Enzymes in Biotechnological and Industrial Processes: A Review. SUSTAINABILITY 2020. [DOI: 10.3390/su12187282] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tons of anthropological activities contribute daily to the massive amount of lignocellulosic wastes produced annually. Unfortunately, their full potential usually is underutilized, and most of the biomass ends up in landfills. Lignocellulolytic enzymes are vital and central to developing an economical, environmentally friendly, and sustainable biological method for pre-treatment and degradation of lignocellulosic biomass which can lead to the release of essential end products such as enzymes, organic acids, chemicals, feed, and biofuel. Sustainable degradation of lignocellulosic biomass via hydrolysis is achievable by lignocellulolytic enzymes, which can be used in various applications, including but not limited to biofuel production, the textile industry, waste treatment, the food and drink industry, personal care industry, health and pharmaceutical industries. Nevertheless, for this to materialize, feasible steps to overcome the high cost of pre-treatment and lower operational costs such as handling, storage, and transportation of lignocellulose waste need to be deployed. Insight on lignocellulolytic enzymes and how they can be exploited industrially will help develop novel processes that will reduce cost and improve the adoption of biomass, which is more advantageous. This review focuses on lignocellulases, their use in the sustainable conversion of waste biomass to produce valued-end products, and challenges impeding their adoption.
Collapse
|
26
|
Esparza I, Jiménez-Moreno N, Bimbela F, Ancín-Azpilicueta C, Gandía LM. Fruit and vegetable waste management: Conventional and emerging approaches. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 265:110510. [PMID: 32275240 DOI: 10.1016/j.jenvman.2020.110510] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 02/04/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
Valorization of Fruit and Vegetable Wastes (FVW) is challenging owing to logistic-related problems, as well as to their perishable nature and heterogeneity, among other factors. In this work, the main existing routes for food waste valorization are critically reviewed. The study focuses on FVW because they constitute an important potential source for valuable natural products and chemicals. It can be concluded that FVW management can be carried out following different processing routes, though nowadays the best solution is to find an adequate balance between conventional waste management methods and some emerging valorization technologies. Presently, both conventional and emerging technologies must be considered in a coordinated manner to enable an integral management of FVW. By doing so, impacts on food safety and on the environment can be minimized whilst wasting of natural resources is avoided. Depending on the characteristics of FVW and on the existing market demand, the most relevant valorization options are extraction of bioactive compounds, production of enzymes and exopolysaccharides, synthesis of bioplastics and biopolymers and production of biofuels. The most efficient emergent processing technologies must be promoted in the long term, in detriment of the conventional ones used nowadays. In consequence, future integral valorization of FVW will probably comprise two stages: direct processing of FVW into value-added products, followed by processing of the residual streams, byproducts and leftover matter by means of conventional waste management technologies.
Collapse
Affiliation(s)
- Irene Esparza
- Sciences Department, Universidad Pública de Navarra, Campus Arrosadía s/n, 31006, Pamplona, Spain; Institute for Advanced Materials (InaMat), Universidad Pública de Navarra, 31006, Pamplona, Spain
| | - Nerea Jiménez-Moreno
- Sciences Department, Universidad Pública de Navarra, Campus Arrosadía s/n, 31006, Pamplona, Spain
| | - Fernando Bimbela
- Sciences Department, Universidad Pública de Navarra, Campus Arrosadía s/n, 31006, Pamplona, Spain; Institute for Advanced Materials (InaMat), Universidad Pública de Navarra, 31006, Pamplona, Spain
| | - Carmen Ancín-Azpilicueta
- Sciences Department, Universidad Pública de Navarra, Campus Arrosadía s/n, 31006, Pamplona, Spain; Institute for Advanced Materials (InaMat), Universidad Pública de Navarra, 31006, Pamplona, Spain.
| | - Luis M Gandía
- Sciences Department, Universidad Pública de Navarra, Campus Arrosadía s/n, 31006, Pamplona, Spain; Institute for Advanced Materials (InaMat), Universidad Pública de Navarra, 31006, Pamplona, Spain.
| |
Collapse
|
27
|
Kuang Y, Zhao J, Gao Y, Lu C, Luo S, Sun Y, Zhang D. Enhanced hydrogen production from food waste dark fermentation by potassium ferrate pretreatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:18145-18156. [PMID: 32172421 DOI: 10.1007/s11356-020-08207-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 02/24/2020] [Indexed: 06/10/2023]
Abstract
Hydrogen generation from food waste anaerobic dark fermentation is identified as a promising strategy for resource recovery. In this work, an innovative strategy of using potassium ferrate (PF), a strong oxidant, to promote anaerobic dark fermentation of food waste to produce hydrogen has been reported. The experimental results revealed that PF enhanced the hydrogen production from food waste, the maximal hydrogen yield was 173.5 mL/g, and the optimal PF dosage was 0.4 g/g total suspended solids. PF shortened the lag phase for hydrogen generation from 120 to 96 h. Mechanisms investigation revealed that PF accelerated the disintegration of organic compounds and increased the soluble organic matter in the liquid phase. The strong oxidation of PF inhibited the processes of hydrolysis, acidification, acetogenesis, homoacetogenesis, and methanogenesis by using synthetic wastewater in the fermentation process. The inhibition of PF on these processes was further verified by the enzyme activity analysis. Economic analysis indicated that 0.1 g/g PF was the optimal dosage. PF treatment is a promising strategy to enhance the production of hydrogen from food waste dark fermentation.
Collapse
Affiliation(s)
- Yan Kuang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, People's Republic of China
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao, 266033, People's Republic of China
| | - Jianwei Zhao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, People's Republic of China.
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao, 266033, People's Republic of China.
| | - Ying Gao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, People's Republic of China
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao, 266033, People's Republic of China
| | - Chenggang Lu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, People's Republic of China
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao, 266033, People's Republic of China
| | - Siyi Luo
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, People's Republic of China
| | - Yinjie Sun
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, People's Republic of China
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao, 266033, People's Republic of China
| | - Dalei Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, People's Republic of China.
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao, 266033, People's Republic of China.
| |
Collapse
|
28
|
|
29
|
Gallipoli A, Braguglia CM, Gianico A, Montecchio D, Pagliaccia P. Kitchen waste valorization through a mild-temperature pretreatment to enhance biogas production and fermentability: Kinetics study in mesophilic and thermophilic regimen. J Environ Sci (China) 2020; 89:167-179. [PMID: 31892389 DOI: 10.1016/j.jes.2019.10.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 05/14/2023]
Abstract
Biowaste valorization through anaerobic digestion is an attractive option to achieve both climate protection goals and renewable energy production. In this paper, a complete set of batch trials was carried out on kitchen waste to investigate the effects of mild thermal pretreatment, temperature regimen and substrate/inoculum ratio. Thermal pretreatment was effective in the solubilisation of macromolecular fractions, particularly carbohydrates. The ability of the theoretical methodologies in estimating hydrogen and methane yields of complex substrates was evaluated by comparing the experimental results with the theoretical values. Despite the single batch configuration, a significant initial hydrogen production was observed, prior to methane yield. Main pretreatment effect was the gain in hydrogen production; the extent was highly variable according to the other parameters values. High hydrogen yields, up to 113 mL H2/g VSfed, were related to the prompt transformation of soluble sugars. Thermophilic regimen resulted, as expected, in faster digestions (up to 78 mL CH4/gVS/day) and sorted out pH inhibition. The relatively low methane yields (342-398 mL CH4/g VSfed) were the result of the consistent lignocellulosic content and low lipid content. Thermal pretreatment proved to be a promising option for the enhancement of hydrogen production in food waste dark fermentation.
Collapse
Affiliation(s)
- Agata Gallipoli
- Water Research Institute IRSA-CNR, Area Della Ricerca RM1, 00015 Monterotondo, Roma, Italy.
| | - Camilla M Braguglia
- Water Research Institute IRSA-CNR, Area Della Ricerca RM1, 00015 Monterotondo, Roma, Italy
| | - Andrea Gianico
- Water Research Institute IRSA-CNR, Area Della Ricerca RM1, 00015 Monterotondo, Roma, Italy
| | - Daniele Montecchio
- Water Research Institute IRSA-CNR, Area Della Ricerca RM1, 00015 Monterotondo, Roma, Italy
| | - Pamela Pagliaccia
- Water Research Institute IRSA-CNR, Area Della Ricerca RM1, 00015 Monterotondo, Roma, Italy
| |
Collapse
|
30
|
Zan F, Dai J, Jiang F, Chan RC, Chen G. Test of transformation mechanism of food waste and its impacts on sulfide and methane production in the sewer system. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 81:845-852. [PMID: 32460287 DOI: 10.2166/wst.2020.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Food waste (FW) management has become an important issue worldwide. Diverting FW into the sewer system is considered promising to tackle the FW issue. However, the transformation of FW in sewers and its impact on the sewer process have not received adequate attention due to the overlooked sewer networks. In this study, a laboratory-scale sewer reactor system was established to investigate the transformation of FW and the production of sulfide and methane under anaerobic conditions. The transformation of FW in the sewer reactor could result in an increase in the substrate level through hydrolyzing and converting biodegradable substances into preferred substrates. Moreover, the generated substrates from the addition of FW were preferable for the metabolism of key microbes in sewer biofilms. As a result, methane production from the sewer reactor could be enhanced from the addition of FW, whereas sulfide production was not affected at a low sulfate concentration. The findings of this study suggest that the diversion of FW may exert an adverse impact on sewers and the environment in terms of greenhouse gas emission. Hence, more research is necessary to clarify the detailed impacts on FW management and wastewater treatment.
Collapse
Affiliation(s)
- Feixiang Zan
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China E-mail:
| | - Ji Dai
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China E-mail:
| | - Feng Jiang
- School of Environmental Science & Engineering, Sun Yat-sen University, Guangzhou, China
| | - Richard C Chan
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China E-mail:
| | - Guanghao Chen
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China E-mail:
| |
Collapse
|
31
|
Effect of carbon/nitrogen ratio and ferric ion on the production of biohydrogen from palm oil mill effluent (POME). BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2019.101445] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
32
|
Wang D, Guo Z. A bioinspired lubricant infused surface with transparency, hot liquid boiling resistance and long-term stability for food applications. NEW J CHEM 2020. [DOI: 10.1039/c9nj06277g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Inspired by the Nepenthes pitcher plant, the HAP and oleic acid prepared Lubricant Infused Surface (LIS) that exhibits liquid repellency and slipperiness has huge potential in various fields.
Collapse
Affiliation(s)
- Daheng Wang
- State Key Laboratory of Solid Lubrication
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou
- People's Republic of China
| | - Zhiguang Guo
- State Key Laboratory of Solid Lubrication
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou
- People's Republic of China
| |
Collapse
|
33
|
Dreschke G, Papirio S, Scala A, Lens PNL, Esposito G. High rate continuous biohydrogen production by hyperthermophilic Thermotoga neapolitana. BIORESOURCE TECHNOLOGY 2019; 293:122033. [PMID: 31472408 DOI: 10.1016/j.biortech.2019.122033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
This study focused on continuous-flow hydrogen production by Thermotoga neapolitana at a hydraulic retention time (HRT) decreasing from 24 to 5 h. At each HRT reduction, the hydrogen yield (HY) immediately dropped, but recovered during prolonged cultivation at constant HRT. The final HY in each operating period decreased from 3.4 (±0.1) to 2.0 (±0.0) mol H2/mol glucose when reducing the HRT from 24 to 7 h. Simultaneously, the hydrogen production rate (HPR) and the liquid phase hydrogen concentration (H2aq) increased from 82 (±1) to 192 (±4) mL/L/h and from 9.1 (±0.3) to 15.6 (±0.7) mL/L, respectively. Additionally, the effluent glucose concentration increased from 2.1 (±0.1) to above 10 mM. Recirculating H2-rich biogas prevented the supersaturation of H2aq reaching a value of 9.3 (±0.7) mL/L, resulting in complete glucose consumption and the highest HPR of 277 mL/L/h at an HRT of 5 h.
Collapse
Affiliation(s)
- Gilbert Dreschke
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio, 43, 03043 Cassino, FR, Italy.
| | - Stefano Papirio
- Department of Civil, Architectural and Environmental Engineering, University of Napoli Federico II, Via Claudio 21, 80125 Napoli, Italy
| | - Alessio Scala
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio, 43, 03043 Cassino, FR, Italy
| | - Piet N L Lens
- UNESCO - IHE Institute for Water Education, Westvest 7, 2611-AX Delft, The Netherlands
| | - Giovanni Esposito
- Department of Civil, Architectural and Environmental Engineering, University of Napoli Federico II, Via Claudio 21, 80125 Napoli, Italy
| |
Collapse
|
34
|
Mesophilic and thermophilic dark fermentation course analysis using sensor matrices and chromatographic techniques. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-01010-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
35
|
Bilska B, Kołożyn-Krajewska D. Risk Management of Dairy Product Losses as a Tool to Improve the Environment and Food Rescue. Foods 2019; 8:foods8100481. [PMID: 31614607 PMCID: PMC6835670 DOI: 10.3390/foods8100481] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/28/2019] [Accepted: 10/06/2019] [Indexed: 11/16/2022] Open
Abstract
“Food loss”, defined as food produced for human consumption, which for various reasons leaves the supply chain, can be assigned to a group of new risks. Irrational use of food constitutes a risk to the environment. Moreover, food losses represent a missed opportunity to improve global food security. The aim of this study was to develop a risk management model for dairy product losses using the example of ripening cheese. The necessary data to develop the model were derived from a survey that was conducted in five dairies located in Poland. Total losses for nine products amounted to 1.1% of the average annual production, which accounted for more than 5635 t per annum. The studies that were conducted allowed the identification of three management methods of food loss in dairies: reprocessing, hand over for feed, and disposal. The level of risk was defined as “high” with two suggested courses of action: prevention and tolerance. Risks must be prevented by eliminating any errors that may result in a product of inadequate quality. Another solution is to redistribute or sell products at a reduced price, which despite their reduced quality, are nevertheless suitable for consumption. To some extent, this risk must be tolerated.
Collapse
Affiliation(s)
- Beata Bilska
- Department of Food Gastronomy and Food Hygiene, Faculty of Human Nutrition and Consumer Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159C St., 02-776 Warsaw, Poland.
| | - Danuta Kołożyn-Krajewska
- Department of Food Gastronomy and Food Hygiene, Faculty of Human Nutrition and Consumer Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159C St., 02-776 Warsaw, Poland.
| |
Collapse
|
36
|
Wang S, Zhang T, Bao M, Su H, Xu P. Microbial Production of Hydrogen by Mixed Culture Technologies: A Review. Biotechnol J 2019; 15:e1900297. [PMID: 31556225 DOI: 10.1002/biot.201900297] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 09/05/2019] [Indexed: 12/18/2022]
Abstract
With its high energy content and clean combustion, hydrogen is recognized as a renewable clean energy source with enormous potential. Biological hydrogen production is a promising alternative with significant advantages over conventional petroleum-derived chemical processes. Sustainable hydrogen production from renewable resources such as cassava, wastewater, and other agricultural waste is economically feasible for industrial applications. So far, the major bottlenecks in large-scale biological hydrogen production are the low production rate and yield. This review discusses the various factors that affect the metabolic pathways of dark hydrogen production, and highlights the state-of-the-art development of mixed culture technology. The aim of this review is to provide suggestions for the future directions of mixed culture technology, as well as by-product valorization in dark fermentation.
Collapse
Affiliation(s)
- Shaojie Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Ting Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Meidan Bao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Haijia Su
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
37
|
Mirmohamadsadeghi S, Karimi K, Tabatabaei M, Aghbashlo M. Biogas production from food wastes: A review on recent developments and future perspectives. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2019.100202] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Assessment of Municipal Solid Waste Generation in Universiti Putra Malaysia and Its Potential for Green Energy Production. SUSTAINABILITY 2019. [DOI: 10.3390/su11143909] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The global waste generation keeps increasing over the years and it requires innovative solutions to minimize its impacts on environmental quality and public health. A strategic plan must be ascertained to overcome the future challenges of Municipal solid waste (MSW) locally and globally. Universiti Putra Malaysia (UPM) coined an initiative to demonstrate a showcase pilot plant for green energy production from MSW. The data was obtained from the survey and actual sampling within the UPM compound shows that UPM has generated 5.0–7.0 t/d of MSW generated consist of 30–35% organic fraction. Restaurants are the main source of the organic fraction. Upon separation, the organic fractions were digested into biogas. At a maximum conversion of the organic fraction, 715 kWh of electricity might be generated from the 2.2 t/d of organic waste generated in UPM. In this study, organic components from UPM were proposed to be subsequently used as a substrate via anaerobic digestion to produce green energy in the form of electricity or flammable fuels.
Collapse
|
39
|
Soltan M, Elsamadony M, Mostafa A, Awad H, Tawfik A. Nutrients balance for hydrogen potential upgrading from fruit and vegetable peels via fermentation process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 242:384-393. [PMID: 31059951 DOI: 10.1016/j.jenvman.2019.04.066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 04/07/2019] [Accepted: 04/18/2019] [Indexed: 06/09/2023]
Abstract
The sole, dual and multi-fermentations of fruit and vegetable peels (FVPs) were investigated in order to balance nutrition hierarchy for maximizing hydrogen potential via Batch experiments. The highest volumetric hydrogen production of 2.55 ± 0.07 L/L and hydrogen content of 64.7 ± 3.7% were registered for multi-fermentation of M-PTBO (25% pea +25% tomato + 25% banana +25% orange). These values outperformed sole and dual fermentation. The multi-fermentation of FVPs provided sufficient nutrients and trace elements for anaerobes, where C/N and C/P ratios were at levels of 24.7 ± 0.2 and 113.2 ± 9.4, respectively. In specific, harmonizing of macro and micro-nutrients remarkably maximized activities of amylase, protease and lipase to 4.23 ± 0.42, 0.035 ± 0.002 and 0.31 ± 0.02 U/mL, respectively, as well as, substantially incremented counts of Clostridium and Enterobacter sp. up to 5.81 ± 0.23 × 105 and 2.17 ± 0.09 × 106 cfu/mL, respectively. Furthermore, multi-fermentation of M-PTBO achieved the maximum net energy gain and profit of 1.82 kJ/gfeedstock and 4.11 $/kgfeedstock, respectively. Nutrients balance significantly develops bacterial activity in terms of hydrogen productivity, anaerobes reproduction, enzyme activities and soluble metabolites. As a result, overall fermentation bioprocess performance was improved.
Collapse
Affiliation(s)
- Mohamed Soltan
- Egypt-Japan University of Science and Technology (E-Just), Environmental Engineering Department, P.O. Box 179, New Borg El Arab City, 21934, Alexandria, Egypt
| | - Mohamed Elsamadony
- Public Works Engineering Department, Faculty of Engineering, Tanta University, 31521, Tanta City, Egypt; Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8552, Japan.
| | - Alsayed Mostafa
- Department of Civil Engineering, Inha University, 100 Inharo, Nam-gu, Incheon, 22212, Republic of Korea
| | - Hanem Awad
- National Research Centre, Tanning Materials & Proteins Department, 12622, Dokki, Giza, Egypt
| | - Ahmed Tawfik
- National Research Centre, Water Pollution Research Dept., P.O 12622, Dokki, Giza, Egypt
| |
Collapse
|
40
|
Pandey A, Srivastava S, Rai P, Duke M. Cheese whey to biohydrogen and useful organic acids: A non-pathogenic microbial treatment by L. acidophilus. Sci Rep 2019; 9:8320. [PMID: 31171803 PMCID: PMC6554353 DOI: 10.1038/s41598-019-42752-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 04/03/2019] [Indexed: 11/12/2022] Open
Abstract
The burgeoning organic waste and continuously increasing energy demands have resulted in significant environmental pollution concerns. To address this issue, the potential of different bacteria to produce biogas/biohydrogen from organic waste can be utilized as a source of renewable energy, however these pathogenic bacteria are not safe to use without strict contact isolation. In this study the role of safe food grade lactic acid bacteria (Lactobacillus spp.) was investigated for production of biogas from cheese waste with starting hexose concentration 32 g/L. The bacterium Lactobacillus acidophilus was identified as one of the major biogas producers at optimum pH of 6.5. Further the optimum inoculum conditions were found to be 12.5% at inoculum age of 18 h. During the investigation the maximum biogas production was observed to be 1665 mL after 72 hours of incubation at pH 6.5. The biogas production was accompanied with production of other valuable metabolites in the form of organic acids including pyruvate, propionate, acetate, lactate, formate and butyrate. Thus this research is paving way for nonpathogenic production of biohydrogen from food waste.
Collapse
Affiliation(s)
- Anjana Pandey
- Department of Biotechnology, Motilal Nehru National Institute of Technology (MNNIT) Allahabad, Prayagraj, (UP), India.
| | - Saumya Srivastava
- Department of Biotechnology, Motilal Nehru National Institute of Technology (MNNIT) Allahabad, Prayagraj, (UP), India
| | - Priya Rai
- Department of Biotechnology, Motilal Nehru National Institute of Technology (MNNIT) Allahabad, Prayagraj, (UP), India
| | - Mikel Duke
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, Australia.
| |
Collapse
|
41
|
Abreu AA, Tavares F, Alves MM, Cavaleiro AJ, Pereira MA. Garden and food waste co-fermentation for biohydrogen and biomethane production in a two-step hyperthermophilic-mesophilic process. BIORESOURCE TECHNOLOGY 2019; 278:180-186. [PMID: 30703635 DOI: 10.1016/j.biortech.2019.01.085] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/15/2019] [Accepted: 01/19/2019] [Indexed: 06/09/2023]
Abstract
Co-fermentation of garden waste (GW) and food waste (FW) was assessed in a two-stage process coupling hyperthermophilic dark-fermentation and mesophilic anaerobic digestion (AD). In the first stage, biohydrogen production from individual substrates was tested at different volatile solids (VS) concentrations, using a pure culture of Caldicellulosiruptor saccharolyticus as inoculum. FW concentrations (in VS) above 2.9 g L-1 caused a lag phase of 5 days on biohydrogen production. No lag phase was observed for GW concentrations up to 25.6 g L-1. In the co-fermentation experiments, the highest hydrogen yield (46 ± 1 L kg-1) was achieved for GW:FW 90:10% (w/w). In the second stage, a biomethane yield of 682 ± 14 L kg-1 was obtained using the end-products of GW:FW 90:10% co-fermentation. The energy generation predictable from co-fermentation and AD of GW:FW 90:10% is 0.5 MJ kg-1 and 24.4 MJ kg-1, respectively, which represents an interesting alternative for valorisation of wastes produced locally in communities.
Collapse
Affiliation(s)
- A A Abreu
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - F Tavares
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - M M Alves
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal.
| | - A J Cavaleiro
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal.
| | - M A Pereira
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal.
| |
Collapse
|
42
|
Strazzera G, Battista F, Garcia NH, Frison N, Bolzonella D. Volatile fatty acids production from food wastes for biorefinery platforms: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 226:278-288. [PMID: 30121464 DOI: 10.1016/j.jenvman.2018.08.039] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/05/2018] [Accepted: 08/07/2018] [Indexed: 05/28/2023]
Abstract
Volatile fatty acids (VFAs) are a class of largely used compounds in the chemical industry, serving as starting molecules for bioenergy production and for the synthesis of a variety of products, such as biopolymers, reduced chemicals and derivatives. Because of the huge amounts of food waste generated from household and processing industry, 47 and 17 million tons per year respectively only in the EU-28 Countries, food wastes can be the right candidate for volatile fatty acids production. This review investigates all the major topics involved in the optimization of VFAs production from food wastes. Regarding the best operative conditions for the anaerobic fermenter controlled pH in the neutral range (6.0-7.0), short HRT (lower than 10 days), thermophilic temperatures and an organic loading rate of about 10 kgVS/m3d, allowed for an increase in the VFAs concentration between 10 and 25%. It was also found that additions of mineral acids, from 0.5 to 3.0%, and thermal pretreatment in the range 140-170 °C increase the organic matter solubilisation. Applications of VFAs considered in this study were biofuels and bioplastics production as well as nutrients removal in biological wastewater treatment processes.
Collapse
Affiliation(s)
- Giuseppe Strazzera
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Federico Battista
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy.
| | - Natalia Herrero Garcia
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Nicola Frison
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - David Bolzonella
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| |
Collapse
|
43
|
Parthiba Karthikeyan O, Trably E, Mehariya S, Bernet N, Wong JWC, Carrere H. Pretreatment of food waste for methane and hydrogen recovery: A review. BIORESOURCE TECHNOLOGY 2018; 249:1025-1039. [PMID: 29111164 DOI: 10.1016/j.biortech.2017.09.105] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/11/2017] [Accepted: 09/15/2017] [Indexed: 05/16/2023]
Abstract
Food waste (FW) management by biological process is more attractive and eco-friendly approach than thermo-chemical conversion or landfilling. However, FW composition and physico-chemical and biological characteristics affect the overall biological process in terms of product yield and degradation rate. To overcome this major bottle-neck, the pretreatment of FW is proposed. Therefore this review aims to provide a comprehensive summary of the importance of pretreatment of FW with respect to FW management by anaerobic digestion (AD) and dark fermentation (DF). It also reviews the existing knowledge gaps and future research perspectives for better integration of FW pretreatments for AD and DF, which should include (i) the preservation of carbon mass through freeze and thaw, or drying; and (ii) improve the carbon accessibility through particle size reduction and thermal pretreatments for high-rate bioenergy recovery.
Collapse
Affiliation(s)
- Obulisamy Parthiba Karthikeyan
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Eric Trably
- LBE, INRA, Univ Montpellier, Narbonne, France
| | - Sanjeet Mehariya
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | | | - Jonathan W C Wong
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | | |
Collapse
|
44
|
Rafieenia R, Pivato A, Lavagnolo MC, Cossu R. Pre-treating anaerobic mixed microflora with waste frying oil: A novel method to inhibit hydrogen consumption. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 71:129-136. [PMID: 29097127 DOI: 10.1016/j.wasman.2017.10.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/23/2017] [Accepted: 10/25/2017] [Indexed: 06/07/2023]
Abstract
An innovative method was introduced to inhibit methanogenic H2 consumption during dark fermentative hydrogen production by anaerobic mixed cultures. Waste frying oil was used as an inhibitor for hydrogenotrophic methanogens. Simultaneous effect of waste frying oil concentrations (0-20 g/L) and initial pH (5.5, 6.5 and 7.5) on inhibition of methanogenic H2 consumption and enhancement of H2 accumulation were investigated using glucose as substrate. Enhanced hydrogen yields with decreased methane productions were observed with increasing the waste frying oil concentrations. On average, CH4 productions from glucose in the cultures received 10 g/L WFO were reduced by 88%. Increased WFO concentration up to 20 g/L led to negligible CH4 productions and in turn enhanced H2 yields. Hydrogen yields of 209.26, 195.35 and 185.60 mL/g glucoseadded were obtained for the cultures pre-treated with 20 g/L waste frying oil with initial pH of 5.5, 6.5 and 7.5 respectively. H2 production by pre-treated cultures was also studied using a synthetic food waste. Anaerobic mixed cultures were pre-treated with 10 g/L WFO and varying durations (0, 24 and 48 h). A H2 yield of 71.46 mL/g VS was obtained for cultures pre-treated with 10 g/L WFO for 48 h that was 475% higher than untreated control. This study suggests a novel and inexpensive approach for suppressing hydrogenotrophic methanogens during dark fermentative H2 production.
Collapse
Affiliation(s)
- Razieh Rafieenia
- Department of Industrial Engineering, University of Padova, Via Marzolo No. 9, 35131 Padova, Italy
| | - Alberto Pivato
- Department of Industrial Engineering, University of Padova, Via Marzolo No. 9, 35131 Padova, Italy.
| | | | - Raffaello Cossu
- Department of Industrial Engineering, University of Padova, Via Marzolo No. 9, 35131 Padova, Italy
| |
Collapse
|
45
|
Liu N, Jiang J, Yan F, Xu Y, Yang M, Gao Y, Aihemaiti A, Zou Q. Optimization of simultaneous production of volatile fatty acids and bio-hydrogen from food waste using response surface methodology. RSC Adv 2018; 8:10457-10464. [PMID: 35540465 PMCID: PMC9078927 DOI: 10.1039/c7ra13268a] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/08/2018] [Indexed: 11/21/2022] Open
Abstract
Anaerobic digestion of food waste (FW) is commonly considered an effective and green technology to convert solid waste into valuable feedstock including volatile fatty acids (VFAs) and hydrogen. Response surface methodology (RSM) was selected to analyze the production of VFAs and hydrogen from food waste in a batch process. The effect of the three variables i.e. total solid content (TS), pH, and reaction time under each variable at three levels on VFAs and hydrogen production was assessed. The optimum conditions determined via RSM were pH = 7.0, TS = 100 g L−1, and reaction time = 3 d. The maximum VFA and hydrogen production was 26.17 g L−1 and 46.03 mL g−1 volatile solids added, respectively. The ratio of observed hydrogen (Ho) to predicted hydrogen (Hp) was x < 1.0 because of inhibition of hydrogen production by VFA accumulation. The subsequent microbial community analysis result was also consistent with the abovementioned results. The evolution of Bacteroidetes, which facilitate VFA production, has been enriched by about 16.1-times at pH 7.0 followed by 10.2-times at pH 6.0 as compared to that in the uncontrolled pH batch. Response surface methodology was applied to optimal VFA production from food waste, which could evaluate the interactive effect of each parameter as compared to the traditional approach about just one variable a time on VFA production.![]()
Collapse
Affiliation(s)
- Nuo Liu
- School of Environment
- Tsinghua University
- Beijing 100084
- China
| | - Jianguo Jiang
- School of Environment
- Tsinghua University
- Beijing 100084
- China
- Key Laboratory for Solid Waste Management and Environment Safety
| | - Feng Yan
- School of Environment
- Tsinghua University
- Beijing 100084
- China
| | - Yiwen Xu
- School of Environment
- Tsinghua University
- Beijing 100084
- China
| | - Meng Yang
- School of Environment
- Tsinghua University
- Beijing 100084
- China
| | - Yuchen Gao
- School of Environment
- Tsinghua University
- Beijing 100084
- China
| | | | - Quan Zou
- School of Environment
- Tsinghua University
- Beijing 100084
- China
| |
Collapse
|
46
|
Stein UH, Wimmer B, Ortner M, Fuchs W, Bochmann G. Maximizing the production of butyric acid from food waste as a precursor for ABE-fermentation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 598:993-1000. [PMID: 28468123 DOI: 10.1016/j.scitotenv.2017.04.139] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 03/31/2017] [Accepted: 04/19/2017] [Indexed: 06/07/2023]
Abstract
The current study reports on the maximization of butyric acid production from food waste using a mixed microbial fermentation. In semi-continuous fermentations the effect of three different pH values (5.5, 7.0 and 9.0), three different temperatures (37°C, 55°C and 70°C) and two levels of hydraulic retention time (HRT, 2days and 6days) on the formation of butyric acid as well as total volatile fatty acid production (tVFA) were investigated. Overall, pH5.5 provided the lowest butyric acid concentrations regardless of the temperature and the HRT. At mesophilic temperature (37°C) alkaline conditions (pH9.0) lead to a strong incline of tVFA as well as butyric acid concentration probably due to a decreased solubilization of the substrate. However, most efficient in terms of butyric acid production was the fermentation conducted at 55°C and pH7 where a butyric acid concentrations of 10.55g/L (HRT 2days) and 13.00g/L (HRT 6days) were achieved. Additional experiments at 70°C showed declining butyric acid production. Increase of the HRT from 2days to 6days provided an increment of butyric acid concentration throughout almost all experimental settings. However, regarding volumetric productivity the increase in concentration does not compensate for the bigger reactor volume required to establish a higher HRT. At pH7 and 55°C the resulting volumetric production rates were 5.27g/L∗d at a HRT 2days and only 2.17g/L∗d at a HRT of 6days.
Collapse
Affiliation(s)
- Ullrich Heinz Stein
- University of Natural Resources and Life Sciences, Institute for Environmental Biotechnology, Vienna, Austria.
| | - B Wimmer
- University of Natural Resources and Life Sciences, Institute for Environmental Biotechnology, Vienna, Austria
| | - M Ortner
- Bioenergy 2020+ GmbH, Graz, Austria
| | - W Fuchs
- University of Natural Resources and Life Sciences, Institute for Environmental Biotechnology, Vienna, Austria
| | - G Bochmann
- University of Natural Resources and Life Sciences, Institute for Environmental Biotechnology, Vienna, Austria
| |
Collapse
|
47
|
Investigation on the anaerobic co-digestion of food waste with sewage sludge. Appl Microbiol Biotechnol 2017; 101:7755-7766. [DOI: 10.1007/s00253-017-8499-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 08/22/2017] [Accepted: 08/26/2017] [Indexed: 10/18/2022]
|
48
|
Hafid HS, Nor 'Aini AR, Mokhtar MN, Talib AT, Baharuddin AS, Umi Kalsom MS. Over production of fermentable sugar for bioethanol production from carbohydrate-rich Malaysian food waste via sequential acid-enzymatic hydrolysis pretreatment. WASTE MANAGEMENT (NEW YORK, N.Y.) 2017; 67:95-105. [PMID: 28527863 DOI: 10.1016/j.wasman.2017.05.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 05/08/2017] [Accepted: 05/11/2017] [Indexed: 06/07/2023]
Abstract
In Malaysia, the amount of food waste produced is estimated at approximately 70% of total municipal solid waste generated and characterised by high amount of carbohydrate polymers such as starch, cellulose, and sugars. Considering the beneficial organic fraction contained, its utilization as an alternative substrate specifically for bioethanol production has receiving more attention. However, the sustainable production of bioethanol from food waste is linked to the efficient pretreatment needed for higher production of fermentable sugar prior to fermentation. In this work, a modified sequential acid-enzymatic hydrolysis process has been developed to produce high concentration of fermentable sugars; glucose, sucrose, fructose and maltose. The process started with hydrothermal and dilute acid pretreatment by hydrochloric acid (HCl) and sulphuric acid (H2SO4) which aim to degrade larger molecules of polysaccharide before accessible for further steps of enzymatic hydrolysis by glucoamylase. A kinetic model is proposed to perform an optimal hydrolysis for obtaining high fermentable sugars. The results suggested that a significant increase in fermentable sugar production (2.04-folds) with conversion efficiency of 86.8% was observed via sequential acid-enzymatic pretreatment as compared to dilute acid pretreatment (∼42.4% conversion efficiency). The bioethanol production by Saccharomyces cerevisiae utilizing fermentable sugar obtained shows ethanol yield of 0.42g/g with conversion efficiency of 85.38% based on the theoretical yield was achieved. The finding indicates that food waste can be considered as a promising substrate for bioethanol production.
Collapse
Affiliation(s)
- Halimatun Saadiah Hafid
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| | - Abdul Rahman Nor 'Aini
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| | - Mohd Noriznan Mokhtar
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| | - Ahmad Tarmezee Talib
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| | - Azhari Samsu Baharuddin
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| | - Md Shah Umi Kalsom
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| |
Collapse
|
49
|
Stelescu MD, Manaila E, Craciun G, Chirila C. Development and Characterization of Polymer Eco-Composites Based on Natural Rubber Reinforced with Natural Fibers. MATERIALS 2017; 10:ma10070787. [PMID: 28773145 PMCID: PMC5551830 DOI: 10.3390/ma10070787] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 07/05/2017] [Accepted: 07/06/2017] [Indexed: 11/16/2022]
Abstract
Natural rubber composites filled with short natural fibers (flax and sawdust) were prepared by blending procedure and the elastomer cross-linking was carried out using benzoyl peroxide. The microbial degradation of composites was carried out by incubating with Aspergillus niger recognized for the ability to grow and degrade a broad range of substrates. The extent of biodegradation was evaluated by weight loss and cross-linking degree study of composites after 2 months incubation in pure shake culture conditions. Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR) have proved to be precious and valuable instruments for morphological as well as structural characterization of the composites before and after incubation with Aspergillus niger.
Collapse
Affiliation(s)
- Maria-Daniela Stelescu
- National R&D Institute for Textile and Leather-Leather and Footwear Research Institute, 93 Ion Minulescu St., 31215 Bucharest, Romania.
| | - Elena Manaila
- National Institute for Laser, Plasma and Radiation Physics, Electron Accelerators Laboratory, 409 Atomistilor St., 077125 Magurele, Romania.
| | - Gabriela Craciun
- National Institute for Laser, Plasma and Radiation Physics, Electron Accelerators Laboratory, 409 Atomistilor St., 077125 Magurele, Romania.
| | - Corina Chirila
- National R&D Institute for Textile and Leather-Leather and Footwear Research Institute, 93 Ion Minulescu St., 31215 Bucharest, Romania.
| |
Collapse
|
50
|
Benyamin MS, Jahnke JP, Mackie DM. Vapor-fed bio-hybrid fuel cell. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:68. [PMID: 28331544 PMCID: PMC5356349 DOI: 10.1186/s13068-017-0755-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 03/10/2017] [Indexed: 06/06/2023]
Abstract
BACKGROUND Concentration and purification of ethanol and other biofuels from fermentations are energy-intensive processes, with amplified costs at smaller scales. To circumvent the need for these processes, and to potentially reduce transportation costs as well, we have previously investigated bio-hybrid fuel cells (FCs), in which a fermentation and FC are closely coupled. However, long-term operation requires strictly preventing the fermentation and FC from harming each other. We introduce here the concept of the vapor-fed bio-hybrid FC as a means of continuously extracting power from ongoing fermentations at ambient conditions. By bubbling a carrier gas (N2) through a yeast fermentation and then through a direct ethanol FC, we protect the FC anode from the catalyst poisons in the fermentation (which are non-volatile), and also protect the yeast from harmful FC products (notably acetic acid) and from build-up of ethanol. RESULTS Since vapor-fed direct ethanol FCs at ambient conditions have never been systematically characterized (in contrast to vapor-fed direct methanol FCs), we first assess the effects on output power and conversion efficiency of ethanol concentration, vapor flow rate, and FC voltage. The results fit a continuous stirred-tank reactor model. Over a wide range of ethanol partial pressures (2-8 mmHg), power densities are comparable to those for liquid-fed direct ethanol FCs at the same temperature, with power densities >2 mW/cm2 obtained. We then demonstrate the continuous operation of a vapor-fed bio-hybrid FC with fermentation for 5 months, with no indication of performance degradation due to poisoning (of either the FC or the fermentation). It is further shown that the system is stable, recovering quickly from disturbances or from interruptions in maintenance. CONCLUSIONS The vapor-fed bio-hybrid FC enables extraction of power from dilute bio-ethanol streams without costly concentration and purification steps. The concept should be scalable to both large and small operations and should be generalizable to other biofuels and waste-to-energy systems.
Collapse
Affiliation(s)
| | - Justin P. Jahnke
- Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20740 USA
| | - David M. Mackie
- Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20740 USA
| |
Collapse
|