1
|
Yang J, Song J, Gao X, Li M, Qin H, Niu Y, Luan H, Chen X, Guo J, Yuan T, Liu W. Integrated toxicity of secondary, tertiary, wetland effluents on human stem cells triggered by ERα and PPARγ agonists. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 937:173419. [PMID: 38802024 DOI: 10.1016/j.scitotenv.2024.173419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/23/2024] [Accepted: 05/19/2024] [Indexed: 05/29/2024]
Abstract
Residual pollutants in discharged and reused water pose both direct and indirect human exposure. However, health effects caused by whole effluent remain largely unknown due to the lack of human relevant model for toxicity test. Effluents from four secondary wastewater treatment plants (SWTPs), a tertiary wastewater treatment plant (TWTP) and a constructed wetland (CW) were evaluated for the integrated toxicity of the organic extractions. Multiple-endpoint human mesenchymal stem cells (MSCs) assay was used as an in vitro model relevant to human health. The effluents caused cytotoxicity, oxidative stress and genotoxicity in MSCs. The osteogenic and neurogenic differentiation were inhibited and the adipogenic differentiation were stimulated by some of the effluent extractions. The SWTP, TWTP and CW treatments reduced integrated biomarker response (IBR) by 26.3 %, 17.5 % and 33.3 % respectively, where the IBR values of final CW (8.3) and TWTP (8.2) effluents were relatively lower than SWTPs (9.1). Among multiple biomarkers, the inhibition of osteogenesis was the least reduced by wastewater treatment. Besides, ozone disinfection in tertiary treatment increased cytotoxicity and differentiation effects suggesting the generation of toxic products. The mRNA expressions of estrogen receptor alpha (ERα) and peroxisome proliferator-activated receptor gamma (PPARγ) were significantly upregulated by effluents. The inhibitory effects of effluents on neural differentiation were mitigated after antagonizing ERα and PPARγ in the cells. It is suggested that ERα and PPARγ agonists in effluents were largely accountable for the impairment of stem cell differentiation. Besides, the concentrations of n-C29H60, o-cresol, fluorene and phenanthrene in the effluents were significantly correlated with the intergrated stem cell toxicity. The present study provided toxicological evidence for the relation between water contamination and human health, with an insight into the key toxicity drivers. The necessity for deep water treatment and the potential means were suggested for improving water quality.
Collapse
Affiliation(s)
- Jing Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jingyang Song
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xin Gao
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Minghan Li
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hui Qin
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yuxin Niu
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Haiyang Luan
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xiaofeng Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Junyan Guo
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Tuwan Yuan
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Wei Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
2
|
Sari Erkan H, Çağlak A, Soysaloglu A, Takatas B, Onkal Engin G. Performance evaluation of conventional membrane bioreactor and moving bed membrane bioreactor for synthetic textile wastewater treatment. JOURNAL OF WATER PROCESS ENGINEERING 2020; 38:101631. [PMID: 38620672 PMCID: PMC7511180 DOI: 10.1016/j.jwpe.2020.101631] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 05/13/2023]
Abstract
In this study, conventional membrane bioreactor (MBR) and moving bed-membrane bioreactor (MB-MBR) processes were compared in synthetic textile wastewater treatment. For this purpose, the bioreactors were operated as a conventional MBR, an MB-MBR with a biocarrier filling ratio of 20 % and an MB-MBR with a biocarrier filling ratio of 10 %, respectively. In the conventional MBR operation, 93.1 % chemical oxygen demand (COD) and 87.1 % color (Reactive Red 390) removal efficiencies were obtained. In both MB-MBR operations, almost equal COD and color removal efficiencies were found as 98.5 % and 89.5 %, respectively. Moreover, offline physical and chemical membrane cleaning processes were applied every other day and every 15 days throughout the conventional MBR operation, respectively, while no physical or chemical membrane cleaning was required during both MB-MBR operations. Furthermore, lower polysaccharide concentrations of extracellular polymeric substances (EPS) and floc sizes of sludge and higher zeta potential of sludge were determined in MB-MBR. Considering the obtained results, it may be stated that the MB-MBR process is an attractive treatment technology for reducing membrane fouling propensity for treatment of textile wastewater.
Collapse
Affiliation(s)
- Hanife Sari Erkan
- Yildiz Technical University, Civil Engineering Faculty, Environmental Engineering Department, 34220 Davutpasa, Esenler, Istanbul, Turkey
| | - Abdulkadir Çağlak
- Yildiz Technical University, Civil Engineering Faculty, Environmental Engineering Department, 34220 Davutpasa, Esenler, Istanbul, Turkey
| | - Ayberk Soysaloglu
- Yildiz Technical University, Civil Engineering Faculty, Environmental Engineering Department, 34220 Davutpasa, Esenler, Istanbul, Turkey
| | - Betul Takatas
- Yildiz Technical University, Civil Engineering Faculty, Environmental Engineering Department, 34220 Davutpasa, Esenler, Istanbul, Turkey
| | - Guleda Onkal Engin
- Yildiz Technical University, Civil Engineering Faculty, Environmental Engineering Department, 34220 Davutpasa, Esenler, Istanbul, Turkey
| |
Collapse
|
3
|
Santra B, Ramrakhiani L, Kar S, Ghosh S, Majumdar S. Ceramic membrane-based ultrafiltration combined with adsorption by waste derived biochar for textile effluent treatment and management of spent biochar. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2020; 18:973-992. [PMID: 33312617 PMCID: PMC7721960 DOI: 10.1007/s40201-020-00520-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/05/2020] [Indexed: 06/12/2023]
Abstract
PURPOSE Effluents produced in the textile industries are important sources of water pollution due to the presence of toxic dyes, auxiliary chemicals, organic substances etc. Recycling of such industrial wastewater is one major aspect of sustainable water management; hence present study is focused on an eco-friendly process development for reclamation of higher loading textile wastewater. METHOD Industrial effluent samples with varying loading were collected from textile processing units located in and around Kolkata city. Vegetable waste collected from local market was utilized to prepare an efficient biochar for elimination of the recalcitrant dyes. Prior to adsorption, ceramic ultrafiltration (UF) process was used for reduction of the organic loading and other suspended and dissolved components. RESULTS A remarkably high BET surface area of 1216 m2g-1 and enhanced pore volume of 1.139 cm3g-1 was observed for biochar. The maximum adsorption capacity obtained from the Langmuir isotherm was about 300 mg.g-1. The combined process facilitated >99% removal of dyes and 77-80% removal of chemical oxygen demand (COD) from the various samples of effluent. The treated effluent was found suitable to discharge or reuse in other purposes. About 95% of dye recovery was achieved during biochar regeneration with acetone solution. The dye loaded spent biochar was composted with dry leaves and garden soil as bulking agent. Prepared compost could achieve the recommended parameters with high nutritional value after 45 days. CONCLUSIONS The overall study showed potential of the proposed process towards treatment of toxic dye loaded textile effluent in an environment friendly and sustainable approach.
Collapse
Affiliation(s)
- Bhaskar Santra
- Water Technology Division, CSIR- Central Glass and Ceramic Research Institute, 196, Raja S.C. Mullick Road, Kolkata, 700032 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Lata Ramrakhiani
- Water Technology Division, CSIR- Central Glass and Ceramic Research Institute, 196, Raja S.C. Mullick Road, Kolkata, 700032 India
| | - Susmita Kar
- Water Technology Division, CSIR- Central Glass and Ceramic Research Institute, 196, Raja S.C. Mullick Road, Kolkata, 700032 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Sourja Ghosh
- Water Technology Division, CSIR- Central Glass and Ceramic Research Institute, 196, Raja S.C. Mullick Road, Kolkata, 700032 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Swachchha Majumdar
- Water Technology Division, CSIR- Central Glass and Ceramic Research Institute, 196, Raja S.C. Mullick Road, Kolkata, 700032 India
| |
Collapse
|
4
|
Treatment of Textile Wastewater by CAS, MBR, and MBBR: A Comparative Study from Technical, Economic, and Environmental Perspectives. WATER 2020. [DOI: 10.3390/w12051306] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, three different biological methods—a conventional activated sludge (CAS) system, membrane bioreactor (MBR), and moving bed biofilm reactor (MBBR)—were investigated to treat textile wastewater from a local industry. The results showed that technically, MBR was the most efficient technology, of which the chemical oxygen demand (COD), total suspended solids (TSS), and color removal efficiency were 91%, 99.4%, and 80%, respectively, with a hydraulic retention time (HRT) of 1.3 days. MBBR, on the other hand, had a similar COD removal performance compared with CAS (82% vs. 83%) with halved HRT (1 day vs. 2 days) and 73% of TSS removed, while CAS had 66%. Economically, MBBR was a more attractive option for an industrial-scale plant since it saved 68.4% of the capital expenditures (CAPEX) and had the same operational expenditures (OPEX) as MBR. The MBBR system also had lower environmental impacts compared with CAS and MBR processes in the life cycle assessment (LCA) study, since it reduced the consumption of electricity and decolorizing agent with respect to CAS. According to the results of economic and LCA analyses, the water treated by the MBBR system was reused to make new dyeings because water reuse in the textile industry, which is a large water consumer, could achieve environmental and economic benefits. The quality of new dyed fabrics was within the acceptable limits of the textile industry.
Collapse
|
5
|
Sathya U, Nithya M, Balasubramanian N. Evaluation of advanced oxidation processes (AOPs) integrated membrane bioreactor (MBR) for the real textile wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 246:768-775. [PMID: 31228690 DOI: 10.1016/j.jenvman.2019.06.039] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 06/04/2019] [Accepted: 06/08/2019] [Indexed: 06/09/2023]
Abstract
A novel submerged membrane bioreactor integrated with ozonation and photocatalysis has been developed to treat the real textile wastewater and study the fouling behaviour. This study evaluates the performance efficiency in pilot-scale for the three reactors such as membrane bioreactor, ozonised membrane bioreactor and further clubbed with photocatalysis. The membrane filtration consists of polyvinilidine difluoride hollow fibre membrane module having pore size 0.1 μm. Tungsten oxide, a visible photocatalyst was made into spongy alginate beads and used in photocatalytic reactor. The photocatalyst dose has been optimised as 500 mg/L. About 10% membrane filterability ratio has been achieved by integrating ozone with MBR with the maximal ozone dosage of 5 g/h. It showed better removal efficiency in colour and chemical oxygen demand of 94% and 93% respectively. The biodegradability efficiency also was enhanced from 0.2 to 0.4 with optimised ozone dosage (5 g/h). The study on reversible and irreversible fouling has been done to understand the fouling nature. The important analysis such as microbial community and scanning electron microscopy analysis were done to study the biofouling and extent of fouling after filtration. The treatability studies implemented for textile wastewater showed that integrated MBR systems are suitable in meeting the discharge norms prescribed by the Indian statutory body in terms of chemical oxygen demand, colour and total suspended solids.
Collapse
Affiliation(s)
- U Sathya
- Department of Chemistry, CEG Campus, Anna University, Chennai, India
| | - M Nithya
- Department of Chemistry, CEG Campus, Anna University, Chennai, India
| | - N Balasubramanian
- Department of Chemical Engineering, A.C.Tech Campus, Anna University, Chennai, India
| |
Collapse
|
6
|
Giwa A, Dindi A, Kujawa J. Membrane bioreactors and electrochemical processes for treatment of wastewaters containing heavy metal ions, organics, micropollutants and dyes: Recent developments. JOURNAL OF HAZARDOUS MATERIALS 2019; 370:172-195. [PMID: 29958700 DOI: 10.1016/j.jhazmat.2018.06.025] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 06/10/2018] [Accepted: 06/11/2018] [Indexed: 05/26/2023]
Abstract
Research and development activities on standalone systems of membrane bioreactors and electrochemical reactors for wastewater treatment have been intensified recently. However, several challenges are still being faced during the operation of these reactors. The current challenges associated with the operation of standalone MBR and electrochemical reactors include: membrane fouling in MBR, set-backs from operational errors and conditions, energy consumption in electrochemical systems, high cost requirement, and the need for simplified models. The advantage of this review is to present the most critical challenges and opportunities. These challenges have necessitated the design of MBR derivatives such as anaerobic MBR (AnMBR), osmotic MBR (OMBR), biofilm MBR (BF-MBR), membrane aerated biofilm reactor (MABR), and magnetically-enhanced systems. Likewise, electrochemical reactors with different configurations such as parallel, cylindrical, rotating impeller-electrode, packed bed, and moving particle configurations have emerged. One of the most effective approaches towards reducing energy consumption and membrane fouling rate is the integration of MBR with low-voltage electrochemical processes in an electrically-enhanced membrane bioreactor (eMBR). Meanwhile, research on eMBR modeling and sludge reuse is limited. Future trends should focus on novel/fresh concepts such as electrically-enhanced AnMBRs, electrically-enhanced OMBRs, and coupled systems with microbial fuel cells to further improve energy efficiency and effluent quality.
Collapse
Affiliation(s)
- Adewale Giwa
- Department of Chemical Engineering, Khalifa University of Science and Technology, Masdar City campus, P.O. Box 54224, Abu Dhabi, United Arab Emirates.
| | - Abdallah Dindi
- Department of Chemical Engineering, Khalifa University of Science and Technology, Masdar City campus, P.O. Box 54224, Abu Dhabi, United Arab Emirates
| | - Joanna Kujawa
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7, Gagarina Street, 87-100 Torun, Poland
| |
Collapse
|
7
|
Aquilino M, Martínez-Guitarte JL, García P, Beltrán EM, Fernández C, Sánchez-Argüello P. Combining the assessment of apical endpoints and gene expression in the freshwater snail Physa acuta after exposure to reclaimed water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 642:180-189. [PMID: 29894877 DOI: 10.1016/j.scitotenv.2018.06.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/05/2018] [Accepted: 06/05/2018] [Indexed: 06/08/2023]
Abstract
Post-treatment wastewater reuses are diverse. Recreational and environmental restoration uses of reclaimed water (RW) can be potentially harmful to aquatic organisms. In this work the freshwater snail Physa acuta was exposed to RW (100%) and its dilution (RW 50%). A simple laboratory mixture of three emerging pollutants was used to address the complex problem of mixture toxicity of RW. Hence fortified reclaimed water (FRW), obtained by adding fluoxetine (400 μg FLX/L), perfluorooctane sulphonic acid (90 μg PFOS/L) and methylparaben (9 μg MP/L), was tested at two dilution percentages: 100% and 50%. The effects of the laboratory mixture of FLX, PFOS and MP on the test medium were also studied. Long-lasting effects, together with early molecular responses, were assessed. Fecundity (cumulative egg production) over 21 days and the hatching of produced eggs (F1) after another 21-day embryonic exposure were monitored. The gene expression of three genes was analysed after 24 h of exposure: two endocrine-related nuclear receptors (ERR and RXR) and one stress protein gene (Hsp70). This reproduction test, with additional assessments of the F1 recovered eggs' hatching success, showed that both RW and FRW significantly reduced fecundity. F1 hatching was affected only by FRW. The gene expression results showed that the RXR response was strikingly similar to the fecundity response, which suggests that this nuclear receptor is involved in the reproductive pathways of gastropods. ERR remained virtually unaltered. Hsp70 was overexpressed by the laboratory mixture in the test medium, but no effect was observed in the fortification of RW. This opposite effect and lack of response for F1 hatching produced by the laboratory mixture in the test medium highlighted the difficulty of predicting mixture effects. The experimental approach allowed us to test the effects caused by RW on P. acuta at different biological organisation levels. Thus, the combination of molecular biomarkers and ecological relevant endpoints is a good strategy to test complex mixtures like RW as it provides a framework to link mechanisms of action and whole organism effects when it is almost impossible to detect the pollutant(s) that cause toxic effects.
Collapse
Affiliation(s)
- Mónica Aquilino
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Senda del Rey 9, 28040 Madrid, Spain
| | - Jose Luis Martínez-Guitarte
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Senda del Rey 9, 28040 Madrid, Spain
| | - Pilar García
- Laboratorio de Ecotoxicología, Departamento de Medio Ambiente, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Crta A Coruña Km 7, 28040 Madrid, Spain
| | - Eulalia Maria Beltrán
- Laboratorio de Ecotoxicología, Departamento de Medio Ambiente, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Crta A Coruña Km 7, 28040 Madrid, Spain
| | - Carlos Fernández
- Laboratorio de Ecotoxicología, Departamento de Medio Ambiente, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Crta A Coruña Km 7, 28040 Madrid, Spain
| | - Paloma Sánchez-Argüello
- Laboratorio de Ecotoxicología, Departamento de Medio Ambiente, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Crta A Coruña Km 7, 28040 Madrid, Spain.
| |
Collapse
|
8
|
Galiano F, André Schmidt S, Ye X, Kumar R, Mancuso R, Curcio E, Gabriele B, Hoinkis J, Figoli A. UV-LED induced bicontinuous microemulsions polymerisation for surface modification of commercial membranes – Enhancing the antifouling properties. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2017.10.063] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Couto CF, Marques LS, Balmant J, de Oliveira Maia AP, Moravia WG, Santos Amaral MC. Hybrid MF and membrane bioreactor process applied towards water and indigo reuse from denim textile wastewater. ENVIRONMENTAL TECHNOLOGY 2018; 39:725-738. [PMID: 28338418 DOI: 10.1080/09593330.2017.1310307] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/17/2017] [Indexed: 06/06/2023]
Abstract
This work investigates the application of a microfiltration (MF)-membrane bioreactor (MBR) hybrid process for textile dyeing process wastewater reclamation. The indigo blue dye was efficiently retained by the MF membrane (100%), which allows its recovery from the concentrate stream. MF promotes 100% of colour removal, and reduces the chemical oxygen demand (COD) and conductivity by about 65% and 25%, respectively, and improves the wastewater biodegradability. MF flux decline was mostly attributed to concentration polarization and the chemical cleaning was efficient enough to recover initial hydraulic resistance. The MBR provides to be a stable process maintaining its COD and ammonia removal efficiency (73% and 100%, respectively) mostly constant throughout and producing a permeate that meets the reuse criteria for some industry activities, such as washing-off and equipment washdown. The use of an MF or ultrafiltration (UF) membrane in the MBR does not impact the MBR performance in terms of COD removal. Although the membrane of MBR-UF shows permeability lower than MBR-MF membrane, the UF membrane contributes to a more stable operation in terms of permeability.
Collapse
Affiliation(s)
- Carolina Fonseca Couto
- a Department of Sanitary and Environmental Engineering , Federal University of Minas Gerais , Belo Horizonte , Brazil
| | - Larissa Silva Marques
- a Department of Sanitary and Environmental Engineering , Federal University of Minas Gerais , Belo Horizonte , Brazil
| | - Janine Balmant
- a Department of Sanitary and Environmental Engineering , Federal University of Minas Gerais , Belo Horizonte , Brazil
| | - Andreza Penido de Oliveira Maia
- b Department of Environmental Science and Technology , Federal Center of Technological Education of Minas Gerais , Belo Horizonte , Brazil
| | - Wagner Guadagnin Moravia
- b Department of Environmental Science and Technology , Federal Center of Technological Education of Minas Gerais , Belo Horizonte , Brazil
| | - Miriam Cristina Santos Amaral
- a Department of Sanitary and Environmental Engineering , Federal University of Minas Gerais , Belo Horizonte , Brazil
| |
Collapse
|
10
|
Xie G, Hong WX, Zhou L, Yang X, Huang H, Wu D, Huang X, Zhu W, Liu J. An investigation of methyl tert‑butyl ether‑induced cytotoxicity and protein profile in Chinese hamster ovary cells. Mol Med Rep 2017; 16:8595-8604. [PMID: 29039499 PMCID: PMC5779912 DOI: 10.3892/mmr.2017.7761] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 11/15/2016] [Indexed: 11/23/2022] Open
Abstract
Methyl tert-butyl ether (MTBE) is widely used as an oxygenating agent in gasoline to reduce harmful emissions. However, previous studies have demonstrated that MTBE is a cytotoxic substance that has harmful effects in vivo and in vitro. Although remarkable progress has been made in elucidating the mechanisms underlying the MTBE-induced reproductive toxicological effect in different cell lines, the precise mechanisms remain far from understood. The present study aimed to evaluate whether mammalian ovary cells were sensitive to MTBE exposure in vitro by assessing cell viability, lactate dehydrogenase (LDH) leakage, malondialdehyde (MDA) content and antioxidant enzyme activities. In addition, the effect of MTBE exposure on differential protein expression profiles was examined by two-dimensional electrophoresis and matrix-assisted laser desorption/ionization-time of flight mass spectrometry. MTBE exposure induced significant effects on cell viability, LDH leakage, plasma membrane damage and the activity of antioxidant enzymes. In the proteomic analysis, 24 proteins were demonstrated to be significantly affected by MTBE exposure. Functional analysis indicated that these proteins were involved in catalytic activity, binding, structural molecule activity, metabolic processes, cellular processes and localization, highlighting the fact that the cytotoxic mechanisms resulting from MTBE exposure are complex and diverse. The altered expression levels of two representative proteins, heat shock protein family A (Hsp70) members 8 and 9, were further confirmed by western blot analysis. The results revealed that MTBE exposure affects protein expression in Chinese hamster ovary cells and that oxidative stress and altered protein levels constitute the mechanisms underlying MTBE-induced cytotoxicity. These findings provided novel insights into the biochemical mechanisms involved in MTBE-induced cytotoxicity in the reproductive system.
Collapse
Affiliation(s)
- Guangshan Xie
- Shenzhen Research Institute of Population and Family Planning, Shenzhen, Guangdong 518040, P.R. China
| | - Wen-Xu Hong
- Shenzhen Research Institute of Population and Family Planning, Shenzhen, Guangdong 518040, P.R. China
| | - Li Zhou
- Key Laboratory of Modern Toxicology of Shenzhen, Medical Key Laboratory of Guangdong Province, Medical Key Laboratory of Health Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong 518055, P.R. China
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Medical Key Laboratory of Guangdong Province, Medical Key Laboratory of Health Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong 518055, P.R. China
| | - Haiyan Huang
- Key Laboratory of Modern Toxicology of Shenzhen, Medical Key Laboratory of Guangdong Province, Medical Key Laboratory of Health Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong 518055, P.R. China
| | - Desheng Wu
- Key Laboratory of Modern Toxicology of Shenzhen, Medical Key Laboratory of Guangdong Province, Medical Key Laboratory of Health Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong 518055, P.R. China
| | - Xinfeng Huang
- Key Laboratory of Modern Toxicology of Shenzhen, Medical Key Laboratory of Guangdong Province, Medical Key Laboratory of Health Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong 518055, P.R. China
| | - Weiguo Zhu
- Department of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, P.R. China
| | - Jianjun Liu
- Shenzhen Research Institute of Population and Family Planning, Shenzhen, Guangdong 518040, P.R. China
| |
Collapse
|
11
|
Couto CF, Marques LS, Amaral MCS, Moravia WG. Coupling of nanofiltration with microfiltration and membrane bioreactor for textile effluent reclamation. SEP SCI TECHNOL 2017. [DOI: 10.1080/01496395.2017.1321670] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Carolina Fonseca Couto
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Larissa Silva Marques
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Míriam Cristina Santos Amaral
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Wagner Guadagnin Moravia
- Department of Environmental Science and Technology, Federal Center of Technological Education of Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
12
|
A novel strategy for the removal of rhodamine B (RhB) dye from wastewater by coal-based carbon membranes coupled with the electric field. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2017.02.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Jegatheesan V, Pramanik BK, Chen J, Navaratna D, Chang CY, Shu L. Treatment of textile wastewater with membrane bioreactor: A critical review. BIORESOURCE TECHNOLOGY 2016; 204:202-212. [PMID: 26776150 DOI: 10.1016/j.biortech.2016.01.006] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/02/2016] [Accepted: 01/05/2016] [Indexed: 06/05/2023]
Abstract
Membrane bioreactor (MBR) technology has been used widely for various industrial wastewater treatments due to its distinct advantages over conventional bioreactors. Treatment of textile wastewater using MBR has been investigated as a simple, reliable and cost-effective process with a significant removal of contaminants. However, a major drawback in the operation of MBR is membrane fouling, which leads to the decline in permeate flux and therefore requires membrane cleaning. This eventually decreases the lifespan of the membrane. In this paper, the application of aerobic and anaerobic MBR for textile wastewater treatment as well as fouling and control of fouling in MBR processes have been reviewed. It has been found that long sludge retention time increases the degradation of pollutants by allowing slow growing microorganisms to establish but also contributes to membrane fouling. Further research aspects of MBR for textile wastewater treatment are also considered for sustainable operations of the process.
Collapse
Affiliation(s)
- Veeriah Jegatheesan
- School of Engineering, RMIT University, GPO Box 2476, Melbourne 3001, Australia.
| | | | - Jingyu Chen
- School of Engineering, Deakin University, Waurn Ponds Campus, Geelong, VIC 3216, Australia
| | - Dimuth Navaratna
- College of Engineering and Science, Victoria University, Footscray Park Campus, Ballarat Road, Footscray, Melbourne, VIC 8001, Australia
| | - Chia-Yuan Chang
- Department of Environmental Engineering and Science, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan
| | - Li Shu
- School of Engineering, RMIT University, GPO Box 2476, Melbourne 3001, Australia
| |
Collapse
|