1
|
Srinivasan K, Hariharapura RC, Mallikarjuna SV. Pharmaceutical waste management through microbial bioremediation. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:488. [PMID: 40163141 PMCID: PMC11958392 DOI: 10.1007/s10661-025-13912-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/17/2025] [Indexed: 04/02/2025]
Abstract
Pharmaceuticals play a significant role in enhancing the quality of life. However, pharmaceutical products (PPs) manufacturing presents challenges, particularly in terms of waste generated, posing a risk to the ecosystem. Existing physical and chemical remediation methods are expensive and are not directly applicable for pharmaceutical remediation. Bioremediation using various microbial consortia has the potential to become a cost-effective solution when applied optimally. This review highlights the various pharmaceutical products, their occurrence in the environment, and their associated health risks. Further, various microorganisms employed in the bioremediation process and the techniques utilized to degrade diverse categories of pharmaceutical pollutants are discussed. Finally, the review highlights the limitations of using bioremediation for treating pharmaceutical waste and discusses alternative sustainable green pharmacy approaches to reduce the impact of pharmaceutical contaminants on the environment.
Collapse
Affiliation(s)
- Kishore Srinivasan
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Raghu Chandrashekar Hariharapura
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Subrahmanyam Volety Mallikarjuna
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| |
Collapse
|
2
|
Alexandrino DAM, Carvalho MF. Defluorination as the key trait to gauge the biodegradability of fluorinated pollutants in environmental microbial communities. Methods Enzymol 2024; 696:321-338. [PMID: 38658086 DOI: 10.1016/bs.mie.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Research on microbial defluorination is largely centred on controlled experiments using axenic or well defined microbial inocula. These approaches serve a relevant purpose in the field, offering fundamental biochemical and mechanistic insights on the intricacies of biological defluorination. However, they fail to account for the effective contribution of environmental microbial communities in the recycling of fluoroorganic pollutants, a highly relevant perspective from an environmental risk assessment standpoint, while also missing an important outlook on how community-wide dynamics can leverage the breakdown of C─F bonds in these recalcitrant compounds. With that in mind, this chapter provides experimental and methodological insights on the study of microbial defluorination in wild environmental communities, using this critical catabolic step as the de facto endpoint to evolve, select and cultivate microorganisms with improved defluorination performances.
Collapse
Affiliation(s)
- Diogo A M Alexandrino
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal; Department of Environmental Health, School of Health, P. Porto, Porto, Portugal
| | - Maria F Carvalho
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal; ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal.
| |
Collapse
|
3
|
Lukić Bilela L, Matijošytė I, Krutkevičius J, Alexandrino DAM, Safarik I, Burlakovs J, Gaudêncio SP, Carvalho MF. Impact of per- and polyfluorinated alkyl substances (PFAS) on the marine environment: Raising awareness, challenges, legislation, and mitigation approaches under the One Health concept. MARINE POLLUTION BULLETIN 2023; 194:115309. [PMID: 37591052 DOI: 10.1016/j.marpolbul.2023.115309] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/09/2023] [Accepted: 07/16/2023] [Indexed: 08/19/2023]
Abstract
Per- and polyfluorinated alkyl substances (PFAS) have long been known for their detrimental effects on the ecosystems and living organisms; however the long-term impact on the marine environment is still insufficiently recognized. Based on PFAS persistence and bioaccumulation in the complex marine food network, adverse effects will be exacerbated by global processes such as climate change and synergies with other pollutants, like microplastics. The range of fluorochemicals currently included in the PFAS umbrella has significantly expanded due to the updated OECD definition, raising new concerns about their poorly understood dynamics and negative effects on the ocean wildlife and human health. Mitigation challenges and approaches, including biodegradation and currently studied materials for PFAS environmental removal are proposed here, highlighting the importance of ongoing monitoring and bridging research gaps. The PFAS EU regulations, good practices and legal frameworks are discussed, with emphasis on recommendations for improving marine ecosystem management.
Collapse
Affiliation(s)
- Lada Lukić Bilela
- Department of Biology, Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina.
| | - Inga Matijošytė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio ave. 7, Vilnius, Lithuania.
| | - Jokūbas Krutkevičius
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio ave. 7, Vilnius, Lithuania.
| | - Diogo A M Alexandrino
- CIIMAR Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal; Department of Environmental Health, School of Health, P. Porto, Porto, Portugal.
| | - Ivo Safarik
- Department of Nanobiotechnology, Biology Centre, ISBB, CAS, Na Sadkach 7, 370 05 Ceske Budejovice, Czech Republic; Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Juris Burlakovs
- Mineral and Energy Economy Research Institute of Polish Academy of Sciences, Józefa Wybickiego 7 A, 31-261 Kraków, Poland.
| | - Susana P Gaudêncio
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Chemistry Department, NOVA Faculty for Sciences and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal.
| | - Maria F Carvalho
- CIIMAR Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal; School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| |
Collapse
|
4
|
Zlotnikov ID, Davydova MP, Danilov MR, Krylov SS, Belogurova NG, Kudryashova EV. Covalent Conjugates of Allylbenzenes and Terpenoids as Antibiotics Enhancers with the Function of Prolonged Action. Pharmaceuticals (Basel) 2023; 16:1102. [PMID: 37631017 PMCID: PMC10459265 DOI: 10.3390/ph16081102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/20/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
The drug resistance of pathogenic bacteria is often due efflux pumps-specific proteins that remove foreign compounds from bacterial cells. To overcome drug resistance, adjuvants are often used that can inhibit efflux pumps or other systems that ensure the resistance of bacteria to the action of antibiotics. We assumed that a new level of effectiveness with the use of an antibiotic + an adjuvant pair could be achieved by their joint delivery into the pathogen. To test this hypothesis, we constructed a series of molecular carriers based on poly-(olygo-, dendry)mers based on cyclodextrin-grafted PEI or mannan, as well as glycol chitosan, covalently bound to antibiotic, adjuvant, and the oligosaccharide ligand to the macrophage mannose receptor (CD206), which we studied earlier and showed high efficiency and selectivity of delivery of a therapeutic "cargo" to macrophages. Moxifloxacin was used as an antibiotic, and terpenoid and allylbenzene compounds were used as adjuvants, for which we previously discovered the ability to inhibit bacterial efflux pumps. We show that: (a) the resulting structures were stable in vitro for a long time (up to 10 days); (b) they were adsorbed on bacterial cells, providing a local increase in the concentration of the antibiotic and adjuvant in pathogen cells; (c) they were internalized by bacterial cells, ensuring the accumulation of both antibiotic and adjuvant inside bacterial cells; (d) the adjuvant, after entering the bacterial cell, provided inhibition of the efflux pumps; (e) due to this action of the adjuvant, combined with the targeted delivery by the carrier, the antibiotic's half-life in rats increased by more than 2 times, the effective concentration of the drug in the blood plasma (AUC) increased up to 8-10 times; (f) a significant increase in the effectiveness of the antibacterial action against Gram+ and Gram- cells was achieved (up to 3 times). Potentially, such an approach would significantly increase the effectiveness of therapies for a number of infectious and other diseases, reduce the dosage of antibiotics, shorten the duration of treatment, and reduce the risk of developing bacterial resistance. Moreover, the use of a polymer carrier with covalently bound organic molecules of different structures will avoid problems linked to different (suboptimal) solubility and bio-distribution of the administered molecules, which would be almost inevitable when using the same compounds separately. It would be very difficult to find antibiotic/adjuvant pairs that simultaneously achieve optimal concentrations in the same target cells. In our case, terpenoids and alkylbenzenes used as adjuvants are practically insoluble as individual compounds, and their unacceptable pharmacological properties would not allow them to be used as efflux pump inhibitors.
Collapse
Affiliation(s)
- Igor D. Zlotnikov
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| | - Maria P. Davydova
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Prospect 27/1, 119192 Moscow, Russia
| | - Milan R. Danilov
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| | - Sergey S. Krylov
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, 47 Leninsky Prospect, 119991 Moscow, Russia
| | - Natalya G. Belogurova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| | - Elena V. Kudryashova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| |
Collapse
|
5
|
Sazykin IS, Sazykina MA. The role of oxidative stress in genome destabilization and adaptive evolution of bacteria. Gene X 2023; 857:147170. [PMID: 36623672 DOI: 10.1016/j.gene.2023.147170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/14/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
The review is devoted to bacterial genome destabilization by oxidative stress. The article discusses the main groups of substances causing such stress. Stress regulons involved in destabilization of genetic material and mechanisms enhancing mutagenesis, bacterial genome rearrangements, and horizontal gene transfer, induced by oxidative damage to cell components are also considered. Based on the analysis of publications, it can be claimed that rapid development of new food substrates and ecological niches by microorganisms occurs due to acceleration of genetic changes induced by oxidative stress, mediated by several stress regulons (SOS, RpoS and RpoE) and under selective pressure. The authors conclude that non-lethal oxidative stress is probably-one of the fundamental processes that guide evolution of prokaryotes and a powerful universal trigger for adaptive destabilization of bacterial genome under changing environmental conditions.
Collapse
Affiliation(s)
- I S Sazykin
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don 344090, Russian Federation
| | - M A Sazykina
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don 344090, Russian Federation.
| |
Collapse
|
6
|
Liu Y, Bian C, Li Y, Sun P, Xiao Y, Xiao X, Wang W, Dong X. Aminobenzaldehyde convelently modified graphitic carbon nitride photocatalyst through Schiff base reaction: Regulating electronic structure and improving visible-light-driven photocatalytic activity for moxifloxacin degradation. J Colloid Interface Sci 2023; 630:867-878. [DOI: 10.1016/j.jcis.2022.10.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/12/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022]
|
7
|
Biodegradation and Metabolic Pathway of the Neonicotinoid Insecticide Thiamethoxam by Labrys portucalensis F11. Int J Mol Sci 2022; 23:ijms232214326. [PMID: 36430799 PMCID: PMC9694413 DOI: 10.3390/ijms232214326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/06/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
Thiamethoxam (TMX) is an effective neonicotinoid insecticide. However, its widespread use is detrimental to non-targeted organisms and water systems. This study investigates the biodegradation of this insecticide by Labrys portucalensis F11. After 30 days of incubation in mineral salt medium, L. portucalensis F11 was able to remove 41%, 35% and 100% of a supplied amount of TMX (10.8 mg L-1) provided as the sole carbon and nitrogen source, the sole carbon and sulfur source and as the sole carbon source, respectively. Periodic feeding with sodium acetate as the supplementary carbon source resulted in faster degradation of TMX (10.8 mg L-1); more than 90% was removed in 3 days. The detection and identification of biodegradation intermediates was performed by UPLC-QTOF/MS/MS. The chemical structure of 12 metabolites is proposed. Nitro reduction, oxadiazine ring cleavage and dechlorination are the main degradation pathways proposed. After biodegradation, toxicity was removed as indicated using Aliivibrio fischeri and by assessing the synthesis of an inducible β-galactosidase by an E. coli mutant (Toxi-Chromo test). L. portucalensis F11 was able to degrade TMX under different conditions and could be effective in bioremediation strategies.
Collapse
|
8
|
Jamshaid M, Khan MI, Fernandez J, Shanableh A, Hussain T, Rehman AU. Synthesis of Ti 4+ doped Ca-BiFO 3 for the enhanced photodegradation of moxifloxacin. NEW J CHEM 2022. [DOI: 10.1039/d2nj03084e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In recent years, the continuously increasing demand for wastewater treatment has increased research on perovskite-based materials with narrow band gaps.
Collapse
Affiliation(s)
- Muhammad Jamshaid
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur-63100, Pakistan
| | - Muhammad Imran Khan
- Research Institute of Sciences and Engineering (RISE), University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Javier Fernandez
- Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
- IQS School of Engineering, Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | - Abdallah Shanableh
- Research Institute of Sciences and Engineering (RISE), University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Tajamal Hussain
- School of Chemistry, University of Punjab, Lahore 54590, Pakistan
| | - Aziz ur Rehman
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur-63100, Pakistan
| |
Collapse
|
9
|
Maffessoni D, Grazziotin IC, Klauck CR, Benvenuti T, da Silva SW, Meneguzzi A. Heterogeneous photocatalysis of moxifloxacin at a pilot solar compound parabolic collector: Elimination of the genotoxicity. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 297:113296. [PMID: 34329908 DOI: 10.1016/j.jenvman.2021.113296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 07/02/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Photocatalysis has been applied for the elimination or reduction concentration of emerging pollutants in water. One of them, is the moxifloxacin (MOX), a fluoroquinolone that have a potential to develop resistant bacteria and have been present toxicity. The MOX achieves the environment due to inefficient wastewater treatment and incorrect disposal. Aiming to find a sustainable solution for photocatalytic process, compound parabolic concentrator (CPC) reactors have been proposed. In this sense, the present study investigates the application of CPC reactor for the degradation of MOX using sunlight and artificial light (UV-A lamp). In addition, the acute toxicity for L. sativa seeds and A. cepa bulbs, as well as the MOX cytotoxicity and genotoxicity for A. cepa root were investigated before and after treatment. The MOX degradation was around 65% using the sunlight and 44% with the artificial light. This difference was due to the kind of incident radiation (direct and diffuse), as well as the type of radiation (visible and/or ultraviolet) used in the processes. For L. sativa the acute toxicity was eliminated after MOX treatment using sunlight. A. cepa root length increased before the treatment and reduced significantly after it, what can indicate hormesis occurrence. MOX cytotoxicity was not observed. In contrast, genotoxicity assays showed high frequency of chromosomal aberrations for MOX solution, indicating elevated genotoxicity that was eliminated after solar treatment. The transformation products of MOX after CPC reactor solar treatment did not show cytotoxicity and genotoxicity in A. cepa and acute toxicity in L. Sativa. The results indicates that photocatalysis in a CPC solar reactor is efficient for MOX toxicity removal in the treated solutions.
Collapse
Affiliation(s)
- Daiana Maffessoni
- Universidade Estadual Do Rio Grande Do Sul (Uergs), Unidade Litoral Norte, Rua Machado de Assis, 1456, Bairro Sulbrasileiro, Osório, RS, Brazil.
| | - Ingrid Costanzi Grazziotin
- Universidade Estadual Do Rio Grande Do Sul (Uergs), Unidade Litoral Norte, Rua Machado de Assis, 1456, Bairro Sulbrasileiro, Osório, RS, Brazil
| | | | - Tatiane Benvenuti
- Universidade Estadual de Santa Cruz - UESC, Rodovia Jorge Amado, Km 16, Ilhéus, BA, Brazil
| | - Salatiel Wohlmuth da Silva
- Universidade Federal Do Rio Grande Do Sul (UFRGS), Instituto de Pesquisas Hidráulicas (IPH) e Programa de Pós-Graduação Em Recursos Hídricos e Saneamento Ambiental, Av. Bento Gonçalves, 9500, Porto Alegre, RS, Brazil
| | - Alvaro Meneguzzi
- Universidade Federal Do Rio Grande Do Sul (UFRGS), Programa de Pós-Graduação Em Engenharia de Minas, Metalúrgica e de Materiais (PPGE3M), Av. Bento Gonçalves, 9500, Porto Alegre, RS, Brazil
| |
Collapse
|
10
|
Pharmaceutical Compounds in Aquatic Environments-Occurrence, Fate and Bioremediation Prospective. TOXICS 2021; 9:toxics9100257. [PMID: 34678953 PMCID: PMC8537644 DOI: 10.3390/toxics9100257] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/01/2021] [Accepted: 10/02/2021] [Indexed: 12/12/2022]
Abstract
Various contaminants of emerging concern (CECs) have been detected in different ecosystems, posing a threat to living organisms and the environment. Pharmaceuticals are among the many CECs that enter the environment through different pathways, with wastewater treatment plants being the main input of these pollutants. Several technologies for the removal of these pollutants have been developed through the years, but there is still a lack of sustainable technologies suitable for being applied in natural environments. In this regard, solutions based on natural biological processes are attractive for the recovery of contaminated environments. Bioremediation is one of these natural-based solutions and takes advantage of the capacity of microorganisms to degrade different organic pollutants. Degradation of pollutants by native microorganisms is already known to be an important detoxification mechanism that is involved in natural attenuation processes that occur in the environment. Thus, bioremediation technologies based on the selection of natural degrading bacteria seem to be a promising clean-up technology suitable for application in natural environments. In this review, an overview of the occurrence and fate of pharmaceuticals is carried out, in which bioremediation tools are explored for the removal of these pollutants from impacted environments.
Collapse
|
11
|
Tsai JY, Lu PY, Yang CF. Lignocellulosic acid hydrolysis inhibitor impact on 5-hydroxymethylfurfural biotransformation into 2, 5-furandicarboxylic acid using immobilised Burkholderia cells. BIOCATAL BIOTRANSFOR 2021. [DOI: 10.1080/10242422.2021.1901889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Jia-Yin Tsai
- Department of Safety Health and Environmental Engineering, National Yunlin University of Science and Technology, Yunlin, Taiwan
| | - Ping-Yan Lu
- Department of Safety Health and Environmental Engineering, National Yunlin University of Science and Technology, Yunlin, Taiwan
| | - Chu-Fang Yang
- Department of Safety Health and Environmental Engineering, National Yunlin University of Science and Technology, Yunlin, Taiwan
| |
Collapse
|
12
|
Chaturvedi P, Giri BS, Shukla P, Gupta P. Recent advancement in remediation of synthetic organic antibiotics from environmental matrices: Challenges and perspective. BIORESOURCE TECHNOLOGY 2021; 319:124161. [PMID: 33007697 DOI: 10.1016/j.biortech.2020.124161] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
Continuous discharge and persistence of antibiotics in aquatic ecosystem is identified as emerging environment health hazard. Partial degradation and inappropriate disposal induce appearance of diverse antibiotic resistant genes (ARGs) and bacteria, hence their execution is imperative. Conventional methods including waste water treatment plants (WWTPs) are found ineffective for the removal of recalcitrant antibiotics. Therefore, constructive removal of antibiotics from environmental matrices and other alternatives have been discussed. This review summarizes present scenario and removal of micro-pollutants, antibiotics from environment. Various strategies including physicochemical, bioremediation, use of bioreactor, and biocatalysts are recognized as potent antibiotic removal strategies. Microbial Fuel Cells (MFCs) and biochar have emerged as promising biodegradation processes due to low cost, energy efficient and environmental benignity. With higher removal rate (20-50%) combined/ hybrid processes seems to be more efficient for permanent and sustainable elimination of reluctant antibiotics.
Collapse
Affiliation(s)
- Preeti Chaturvedi
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, M.G. Marg, Lucknow 226001, Uttar Pradesh, India; Department of Biotechnology, National Institute of Technology-Raipur, G.E. Road, Raipur 492010, Chhattisgarh, India.
| | - Balendu Shekher Giri
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, M.G. Marg, Lucknow 226001, Uttar Pradesh, India
| | - Parul Shukla
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, M.G. Marg, Lucknow 226001, Uttar Pradesh, India
| | - Pratima Gupta
- Department of Biotechnology, National Institute of Technology-Raipur, G.E. Road, Raipur 492010, Chhattisgarh, India
| |
Collapse
|
13
|
Alexandrino DAM, Mucha AP, Almeida CMR, Carvalho MF. Microbial degradation of two highly persistent fluorinated fungicides - epoxiconazole and fludioxonil. JOURNAL OF HAZARDOUS MATERIALS 2020; 394:122545. [PMID: 32213384 DOI: 10.1016/j.jhazmat.2020.122545] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/10/2020] [Accepted: 03/14/2020] [Indexed: 06/10/2023]
Abstract
Biodegradation of two highly persistent fluorinated fungicides, epoxiconazole (EPO) and fludioxonil (FLU), by microbial consortia enriched from estuarine sediment and agricultural soil is reported. After an enrichment period of 6 months, four microbial consortia were able to completely remove and defluorinate the fungicides in co-metabolic conditions. Defluorination was biologically mediated and results suggest it is not a primary catabolic step, as fungicide removal was always faster than its defluorination. Three of the four enriched consortia had similar biodegradation performances in the absence of a co-substrate. Biodegradation kinetics revealed that microbial degradation followed a first-order kinetics, with cultures being capable of biodegrading concentrations up to 10 mg L-1 of EPO or FLU, in a maximum of 21 days. Estimated half-life values for these compounds were significantly lower than those reported in literature, highlighting the unique metabolic performance of the obtained consortia. Analysis of their microbial composition revealed that they integrate several bacterial species belonging to the Proteobacteria phylum, with the most common genera being Pseudomonas, Ochrobactrum and Comamonas. This is the first study providing clear evidence on the biodegradation of EPO and FLU, opening doors for the design of bioremediation technologies for the recovery of ecosystems polluted with such recalcitrant compounds.
Collapse
Affiliation(s)
- Diogo A M Alexandrino
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| | - Ana P Mucha
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; Faculty of Sciences, University of Porto, Rua do Campo Alegre 790, 4150-171, Porto, Portugal
| | - C Marisa R Almeida
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Maria F Carvalho
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| |
Collapse
|
14
|
Biodegradation of antibiotics: The new resistance determinants – part II. N Biotechnol 2020; 54:13-27. [DOI: 10.1016/j.nbt.2019.08.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 07/17/2019] [Accepted: 08/11/2019] [Indexed: 02/06/2023]
|
15
|
Bessa VS, Moreira IS, Murgolo S, Mascolo G, Castro PML. Carbamazepine is degraded by the bacterial strain Labrys portucalensis F11. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 690:739-747. [PMID: 31301512 DOI: 10.1016/j.scitotenv.2019.06.461] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/24/2019] [Accepted: 06/27/2019] [Indexed: 06/10/2023]
Abstract
The occurrence of pharmaceuticals in the environment is a topic of concern. Carbamazepine (CBZ) is a widespread antiepileptic drug and due to its physical-chemical characteristics minimal removal is achieved in conventional water treatments, and thus has been suggested as a molecular marker of wastewater contamination in surface water and groundwater. The present study reports the biotransformation of CBZ by the bacterial strain Labrys portucalensis F11. When supplied as a sole carbon source, a 95.4% biotransformation of 42.69 μM CBZ was achieved in 30 days. In co-metabolism with acetate, complete biotransformation was attained at a faster rate. Following a target approach, the detection and identification of 14 intermediary metabolites was achieved through UPLC-QTOF/MS/MS. Biotransformation of CBZ by the bacterial strain is mostly based on oxidation, loss of -CHNO group and ketone formation reactions; a biotransformation pathway with two routes is proposed. The toxicity of untreated and treated CBZ solutions was assessed using Vibrio Fischeri and Lepidium sativum acute toxicity tests and Toxi-Chromo Test. The presence of CBZ and/or its degradations products in solution resulted in moderate toxic effect on Vibrio Fischeri, whereas the other organisms were not affected. To the best of our knowledge this is the first report that proposes the metabolic degradation pathway of CBZ by a single bacterial strain.
Collapse
Affiliation(s)
- Vânia S Bessa
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Irina S Moreira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Sapia Murgolo
- CNR, Istituto di Ricerca Sulle Acque, Via F. De Blasio 5, 70132 Bari, Italy
| | - Giuseppe Mascolo
- CNR, Istituto di Ricerca Sulle Acque, Via F. De Blasio 5, 70132 Bari, Italy
| | - Paula M L Castro
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| |
Collapse
|
16
|
Santos F, Mucha AP, Alexandrino DAM, Almeida CMR, Carvalho MF. Biodegradation of enrofloxacin by microbial consortia obtained from rhizosediments of two estuarine plants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 231:1145-1153. [PMID: 30602239 DOI: 10.1016/j.jenvman.2018.11.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/12/2018] [Accepted: 11/05/2018] [Indexed: 05/22/2023]
Abstract
This study aimed to investigate the potential of microbial communities from the rhizosediment of two plants - Phragmites australis and Juncus maritimus - occurring in an estuarine area subjected to a high anthropogenic impact, to biodegrade ENR, a commonly used veterinary antibiotic. An enrichment process with 1 mgL-1 of ENR was conducted during ca. 9 months, using acetate as a co-substrate. After this, the enriched microbial consortia were challenged with higher ENR concentrations of 2 and 3 mgL-1. Microbial cultures enriched with 1 mgL-1 of ENR were capable of biodegrading this antibiotic, though not completely. By the end of the enrichment phase, microbial cultures were defluorinating an average of 50% of the ENR supplemented. Higher ENR concentrations led to lower biodegradation performances, suggesting a possible toxic/inhibitory effect in the microbial cultures. Phylogenetic identification of the microorganisms isolated from microbial cultures enriched with ENR revealed a high taxonomical diversity, with microorganisms belonging mainly to Proteobacteria and Bacteroidetes phyla. Assemblage of the obtained isolated strains (according to the enriched cultures from which they were isolated) revealed that the resulting consortia were also capable of degrading ENR, indicating that the main microbial players in the biodegradation of this antibiotic were isolated. These consortia also showed to be more robust to degrade higher concentrations of ENR than the corresponding enriched cultures. This study shows that microorganisms derived from rhizosediments of the selected plants, exhibit capacity to biodegrade ENR, though not completely for the concentrations tested, and may be further explored for the development of bioremediation strategies for the treatment of this antibiotic.
Collapse
Affiliation(s)
- Filipa Santos
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Faculty of Sciences, University of Porto, Rua do Campo Alegre 790, 4150-171 Porto, Portugal
| | - Ana P Mucha
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Diogo A M Alexandrino
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - C Marisa R Almeida
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Maria F Carvalho
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal.
| |
Collapse
|
17
|
Maia AS, Tiritan ME, Castro PML. Enantioselective degradation of ofloxacin and levofloxacin by the bacterial strains Labrys portucalensis F11 and Rhodococcus sp. FP1. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 155:144-151. [PMID: 29510309 DOI: 10.1016/j.ecoenv.2018.02.067] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/15/2018] [Accepted: 02/22/2018] [Indexed: 06/08/2023]
Abstract
Fluoroquinolones are a class of antibiotics widely prescribed in both human and veterinary medicine of high environmental concern and characterized as environmental micropollutants due to their ecotoxicity and persistence and antibacterial resistance potential. Ofloxacin and levofloxacin are chiral fluoroquinolones commercialized as racemate and in enantiomerically pure form, respectively. Since the pharmacological properties and toxicity of the enantiomers may be very different, understanding the stereochemistry of these compounds should be a priority in environmental monitoring. This work presents the biodegradation of racemic ofloxacin and its (S)-enantiomer levofloxacin by the bacterial strains Labrys portucalensis F11 and Rhodococcus sp. FP1 at a laboratory-scale microcosm following the removal and the behavior of the enantiomers. Strain F11 could degrade both antibiotics almost completely when acetate was supplied regularly to the cultures. Enrichment of the (R)-enantiomer was observed in FP1 and F11 cultures supplied with ofloxacin. Racemization was observed in the biodegradation of the pure (S)-ofloxacin (levofloxacin) by strain F11, which was confirmed by liquid chromatography - exact mass spectrometry. Biodegradation of ofloxacin at 450 µg L-1 by both bacterial strains expressed good linear fits (R2 > 0.98) according to the Rayleigh equation. The enantiomeric enrichment factors were comprised between - 22.5% to - 9.1%, and - 18.7% to - 9.0% in the biodegradation of ofloxacin by strains F11 and FP1, respectively, with no significant differences for the two bacteria under the same conditions. This is the first time that enantioselective biodegradation of ofloxacin and levofloxacin by single bacteria is reported.
Collapse
Affiliation(s)
- Alexandra S Maia
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal; Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital 172, 4200-374 Porto, Portugal
| | - Maria Elizabeth Tiritan
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal; Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal.
| | - Paula M L Castro
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital 172, 4200-374 Porto, Portugal.
| |
Collapse
|
18
|
Biodegradation of mono-, di- and trifluoroacetate by microbial cultures with different origins. N Biotechnol 2018; 43:23-29. [DOI: 10.1016/j.nbt.2017.08.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 05/10/2017] [Accepted: 08/14/2017] [Indexed: 02/07/2023]
|
19
|
Moreira IS, Bessa VS, Murgolo S, Piccirillo C, Mascolo G, Castro PML. Biodegradation of Diclofenac by the bacterial strain Labrys portucalensis F11. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 152:104-113. [PMID: 29407776 DOI: 10.1016/j.ecoenv.2018.01.040] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/16/2018] [Accepted: 01/18/2018] [Indexed: 06/07/2023]
Abstract
Diclofenac (DCF) is a widely used non-steroidal anti-inflammatory pharmaceutical which is detected in the environment at concentrations which can pose a threat to living organisms. In this study, biodegradation of DCF was assessed using the bacterial strain Labrys portucalensis F11. Biotransformation of 70% of DCF (1.7-34 μM), supplied as the sole carbon source, was achieved in 30 days. Complete degradation was reached via co-metabolism with acetate, over a period of 6 days for 1.7 µM and 25 days for 34 μM of DCF. The detection and identification of biodegradation intermediates was performed by UPLC-QTOF/MS/MS. The chemical structure of 12 metabolites is proposed. DCF degradation by strain F11 proceeds mainly by hydroxylation reactions; the formation of benzoquinone imine species seems to be a central step in the degradation pathway. Moreover, this is the first report that identified conjugated metabolites, resulting from sulfation reactions of DCF by bacteria. Stoichiometric liberation of chlorine and no detection of metabolites at the end of the experiments are strong indications of complete degradation of DCF by strain F11. To the best of our knowledge this is the first report that points to complete degradation of DCF by a single bacterial strain isolated from the environment.
Collapse
Affiliation(s)
- Irina S Moreira
- CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal.
| | - Vânia S Bessa
- CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal
| | - Sapia Murgolo
- CNR, Istituto di Ricerca Sulle Acque, Via F. De Blasio 5, 70132 Bari, Italy
| | - Clara Piccirillo
- CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal
| | - Giuseppe Mascolo
- CNR, Istituto di Ricerca Sulle Acque, Via F. De Blasio 5, 70132 Bari, Italy
| | - Paula M L Castro
- CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal
| |
Collapse
|
20
|
Alexandrino DAM, Mucha AP, Almeida CMR, Gao W, Jia Z, Carvalho MF. Biodegradation of the veterinary antibiotics enrofloxacin and ceftiofur and associated microbial community dynamics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 581-582:359-368. [PMID: 28069302 DOI: 10.1016/j.scitotenv.2016.12.141] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/19/2016] [Accepted: 12/20/2016] [Indexed: 05/07/2023]
Abstract
Fluoroquinolones and cephalosporins are two classes of veterinary antibiotics arising as pollutants of emerging concern. In this work, the microbial degradation of two representative antibiotics of both these classes, enrofloxacin (ENR) and ceftiofur (CEF), is reported. Biodegradation of the target antibiotics was investigated by supplementing the culture medium with ENR and CEF, individually and in mixture. Microbial inocula were obtained from rhizosphere sediments of plants derived from experimental constructed wetlands designed for the treatment of livestock wastewaters contaminated with trace amounts of these antibiotics. Selected microbial inocula were acclimated during a period of 5months, where the antibiotics were supplemented every three weeks at the concentration of 1mgL-1, using acetate as a co-substrate. After this period, the acclimated consortia were investigated for their capacity to biodegrade 2 and 3mgL-1 of ENR and CEF. Complete removal of CEF from the inoculated culture medium was always observed within 21days, independently of its concentration or the concomitant presence of ENR. Biodegradation of ENR decreased with the increase in its concentration in the culture medium, with defluorination percentages decreasing from ca. 65 to 4%. Ciprofloxacin and norfloxacin were detected as biodegradation intermediates of ENR in the microbial cultures supplemented with this antibiotic, indicating that defluorination of at least part of ENR in these cultures is not an immediate catabolic step. Abiotic mechanisms showed high influence in the removal of CEF, affecting less ENR degradation. The acclimation process with the target antibiotics led to significant shifts in the structure and diversity of the microbial communities, predominantly selecting microorganisms belonging to the phyla Proteobacteria (e.g. Achromobacter, Variovorax and Stenotrophomonas genera) and Bacteroidetes (e.g. Dysgonomonas, Flavobacterium and Chryseobacterium genera). The results presented in this study indicate that biodegradation can be an important mechanism for the environmental removal of the tested compounds.
Collapse
Affiliation(s)
- Diogo A M Alexandrino
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; Faculty of Sciences, University of Porto, Rua do Campo Alegre 790, 4150-171 Porto, Portugal
| | - Ana P Mucha
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - C Marisa R Almeida
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Wei Gao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, Jiangsu Province, China
| | - Zhongjun Jia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, Jiangsu Province, China
| | - Maria F Carvalho
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
| |
Collapse
|
21
|
Maia AS, Castro PML, Tiritan ME. Integrated liquid chromatography method in enantioselective studies: Biodegradation of ofloxacin by an activated sludge consortium. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1029-1030:174-183. [PMID: 27433982 DOI: 10.1016/j.jchromb.2016.06.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 06/12/2016] [Accepted: 06/15/2016] [Indexed: 01/11/2023]
Abstract
Ofloxacin is a chiral fluoroquinolone commercialized as racemate and as its enantiomerically pure form levofloxacin. This work presents an integrated liquid chromatography (LC) method with fluorescence detection (FD) and exact mass spectrometry (EMS) developed to assess the enantiomeric biodegradation of ofloxacin and levofloxacin in laboratory-scale microcosms. The optimized enantioseparation conditions were achieved using a macrocyclic antibiotic ristocetin A-bonded CSP (150×2.1mm i.d.; particle size 5μm) under reversed-phase elution mode. The method was validated using a mineral salts medium as matrix and presented selectivity and linearity over a concentration range from 5μgL(-1) (quantification limit) to 350μgL(-1) for each enantiomer. The method was successfully applied to evaluate biodegradation of ofloxacin enantiomers at 250μgL(-1) by an activated sludge inoculum. Ofloxacin (racemic mixture) and (S)-enantiomer (levofloxacin) were degraded up to 58 and 52%, respectively. An additional degradable carbon source, acetate, enhanced biodegradation up to 23%. (S)-enantiomer presented the highest extent of degradation (66.8%) when ofloxacin was supplied along with acetate. Results indicated slightly higher biodegradation extents for the (S)-enantiomer when supplementation was done with ofloxacin. Degradation occurred faster in the first 3days and proceeded slowly until the end of the assays. The chromatographic results from LC-FD suggested the formation of the (R)-enantiomer during levofloxacin biodegradation which was confirmed by LC-MS with a LTQ Orbitrap XL.
Collapse
Affiliation(s)
- Alexandra S Maia
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal; Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal
| | - Paula M L Castro
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal
| | - Maria Elizabeth Tiritan
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal; Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal.
| |
Collapse
|