1
|
Leavitt ME, Reba ML, Seyfferth AL, Runkle BRK. Agronomic solutions to decrease arsenic concentrations in rice. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:209. [PMID: 40379822 PMCID: PMC12084250 DOI: 10.1007/s10653-025-02508-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 04/07/2025] [Indexed: 05/19/2025]
Abstract
Rice plants accumulate arsenic (As), a toxic metalloid found both naturally and as a form of anthropogenic pollution in rice fields. Arsenic concentrations in rice grain may pose human health risks, particularly when consumed regularly or used in food products for infants and young children. The purpose of this review is to summarize evidence-based mitigation strategies for minimizing the As content of rice and establish recommendations for their implementation. Mitigation strategies include irrigation management practices that introduce aerobic periods, applying soil and foliar amendments that decrease As plant-uptake, selecting and developing cultivars with lower rates of As-uptake, and post-harvest processing. In addition to a literature review, we interviewed rice producers and stakeholders to identify barriers or knowledge gaps to implementing the mitigation strategies. Alternate wetting and drying irrigation showed high effectiveness in decreasing grain As concentrations and is also climate-smart and can be cost-neutral. Combining irrigation management with select amendments maximized the decrease of grain As concentrations. Combining treatments will allow a choice of options to accommodate different farm circumstances, though nearly all field-level treatments lack experimental evidence from trials at production-scale operations (i.e., > 1 ha, with commercial management). Thus, more research is needed to develop best management strategies at the field scale in collaboration with farmers.
Collapse
Affiliation(s)
- Marguerita E Leavitt
- Department of Biological & Agricultural Engineering, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Michele L Reba
- USDA-ARS Delta Water Management Research Unit, Jonesboro, AR, 72401, USA
| | - Angelia L Seyfferth
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Benjamin R K Runkle
- Department of Biological & Agricultural Engineering, University of Arkansas, Fayetteville, AR, 72701, USA.
| |
Collapse
|
2
|
Wu W, Qi D, Chen Y, Wang J, Zhang G, Wang Q, Niu H, Zhao Q, Peng T. Exogenous selenium mitigates cadmium uptake and accumulation in two rice (Oryza sativa L.) varieties in cadmium-contaminated soil. Sci Rep 2024; 14:21248. [PMID: 39261527 PMCID: PMC11390724 DOI: 10.1038/s41598-024-72113-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024] Open
Abstract
Rice grown in cadmium (Cd)-contaminated soil, is a potential threat to human health, but exogenous selenium (Se) application on rice can mitigate Cd toxicity. However, the mechanisms underlying Se mitigation of Cd stress in ratoon rice (RR) are still poorly understood. We conducted a pot experiment with moderate Cd-contaminated yellow-brown paddy soil on two rice varieties 'Taoyouxiangzhan' (TX) and 'Liangyou 6326'(LY). For all treatments, 1.0 mg kg-1 sodium selenite solution was added to soil. Treatment T1 was sodium selenite only, and in the other treatments 100 mg L-1 Se solution was sprayed on the leaves at seedling stage (T2), at tillering stage (T3), and in early anthesis stage (T4). Se treatments decreased Cd accumulation in rice grains and herbage. Under foliar spraying 100 mg L-1 Se at the seedling + 1.0 mg kg-1 Se in soil (T2), leaf Cd content decreased 16.95% in the current season and grains content decreased 46.67% in the subsequent season. Furthermore, grain Se content increased 0.94 mg kg-1 for the TX variety combined with the analysis of Cd bio-accumulation factor in grains, and Se treatments effectively decreased Cd grain concentrations due to reduced Cd translocation from roots to grains. TX variety rice showed a more pronounced response to Se treatments than LY.
Collapse
Affiliation(s)
- Wenjiang Wu
- Innovation Center of Henan Grain Crops, Henan Key Laboratory of Rice Biology, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China
| | - Deqiang Qi
- Innovation Center of Henan Grain Crops, Henan Key Laboratory of Rice Biology, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China
| | - Yalong Chen
- Innovation Center of Henan Grain Crops, Henan Key Laboratory of Rice Biology, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China
| | - Jiaqi Wang
- Innovation Center of Henan Grain Crops, Henan Key Laboratory of Rice Biology, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China
| | - Ganggang Zhang
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China
| | - Qinghua Wang
- Forestry and Fruit Research Institute of Beijing Academy of Agricultural Sciences, Beijing, 100089, People's Republic of China
| | - Hongbin Niu
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China
| | - Quanzhi Zhao
- Innovation Center of Henan Grain Crops, Henan Key Laboratory of Rice Biology, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China.
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China.
- College of Agronomy, Guizhou University, Guiyang, 550025, Guizhou, People's Republic of China.
| | - Ting Peng
- Innovation Center of Henan Grain Crops, Henan Key Laboratory of Rice Biology, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China.
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China.
| |
Collapse
|
3
|
Huang F, Chen L, Zhou Y, Huang J, Wu F, Hu Q, Chang N, Qiu T, Zeng Y, He H, White JC, Yang W, Fang L. Exogenous selenium promotes cadmium reduction and selenium enrichment in rice: Evidence, mechanisms, and perspectives. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135043. [PMID: 38941835 DOI: 10.1016/j.jhazmat.2024.135043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Cadmium (Cd) accumulation in rice, a global environmental issue, poses a significant threat to human health due to its widespread presence and potential transfer through the food chain. Selenium (Se), an essential micronutrient for humans and plants, can reduce Cd uptake in rice and alleviate Cd-induced toxicity. However, the effects and mechanisms of Se supplementation on rice performance in Cd-contaminated soil remain largely unknown. Here, a global meta-analysis was conducted to evaluate the existing knowledge on the effects and mechanisms by which Se supplementation impacts rice growth and Cd accumulation. The result showed that Se supplementation has a significant positive impact on rice growth in Cd-contaminated soil. Specifically, Se supplementation decreased Cd accumulation in rice roots by 16.3 % (11.8-20.6 %), shoots by 24.6 % (19.9-29.1 %), and grain by 37.3 % (33.4-40.9 %), respectively. The grain Cd reduction was associated with Se dose and soil Cd contamination level but not Se type or application method. Se influences Cd accumulation in rice by regulating the expression of Cd transporter genes (OSLCT1, OSHMA2, and OSHMA3), enhancing Cd sequestration in the cell walls, and reducing Cd bioavailability in the soil. Importantly, Se treatment promoted Se enrichment in rice and alleviated oxidative damage associated with Cd exposure by stimulating photosynthesis and activating antioxidant enzymes. Overall, Se treatment mitigated the health hazard associated with Cd in rice grains, particularly in lightly contaminated soil. These findings reveal that Se supplementation is a promising strategy for simultaneous Cd reduction and Se enrichment in rice.
Collapse
Affiliation(s)
- Fengyu Huang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China; Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
| | - Li Chen
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China.
| | - Ying Zhou
- College of Environment and Resource, Xichang University, Xichang 615000, China
| | - Jingqiu Huang
- College of Environment and Resource, Xichang University, Xichang 615000, China
| | - Fang Wu
- College of Environment and Resource, Xichang University, Xichang 615000, China
| | - Qing Hu
- College of Environment and Resource, Xichang University, Xichang 615000, China
| | - Nan Chang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Tianyi Qiu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yi Zeng
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Haoran He
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, CT 06511, United States
| | - Wenchao Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| | - Linchuan Fang
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China; College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
4
|
Tian Y, Xie L, Hao S, Zhou X. Application of selenium to reduce heavy metal(loid)s in plants based on meta-analysis. CHEMOSPHERE 2024; 364:143150. [PMID: 39181458 DOI: 10.1016/j.chemosphere.2024.143150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
Agricultural soils are currently at risk of pollution from toxic heavy metal(loid)s (HMs) due to human activities, resulting in the excessive accumulation of arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), mercury (Hg), manganese (Mn), lead (Pb) and zinc (Zn) in food plants. This poses significant risks to human health. Exogenous selenium (Se) has been proposed as a potential solution to reduce HMs accumulation in plants. However, there is currently a lack of comprehensive quantitative overview regarding its influence on the accumulation of HMs in plants. This study utilized meta-analysis to consolidate the existing knowledge on the impact of Se amendments on plant HMs accumulation from contaminated soil media. The present study conducted a comprehensive meta-analysis on literature published prior to December 2023, investigating the effects of different factors on HMs accumulation by meta-subgroup analysis and meta-regression model. Se application showed an inhibitory effect on plant uptake of Hg (28.9%), Cr (25.5%), Cd (25.2%), Pb (22.0%), As (18.3%) and Cu (6.00%) concentration. There was a significant difference in the levels of HMs between treatments with Se application and those without Se application in various plant organs. The percentage changes in the HMs contents of the organs varied from -13.0% to -22.0%. Compared with alkaline soil (pH > 8), Se application can reduce more HMs contents in plants in acidic soil (pH < 5.5) and neutral soil (pH = 5.5-8). For daily food plants(e.g. rice, wheat and corn), Se application can reduce HMs contents in Oryza sp., Triticum sp. and Zea sp., ranging from 14.0-20.0%. Our study emphasizes that the impact of Se on reducing HMs depends on the single or combined effects of Se concentration, plant organs, plant genera and soil pH condition.
Collapse
Affiliation(s)
- Ye Tian
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Linzhi Xie
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Shangyan Hao
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Xinbin Zhou
- College of Resources and Environment, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
5
|
Lan Y, Luo X, Fan X, Wang G, Zheng S, Shi K. Arsenite Mediates Selenite Resistance and Reduction in Enterobacter sp. Z1, Thereby Enhancing Bacterial Survival in Selenium Environments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4204-4213. [PMID: 38373240 DOI: 10.1021/acs.est.3c08346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Arsenic (As) is widely present in the environment, and virtually all bacteria possess a conserved ars operon to resist As toxicity. High selenium (Se) concentrations tend to be cytotoxic. Se has an uneven regional distribution and is added to mitigate As contamination in Se-deficient areas. However, the bacterial response to exogenous Se remains poorly understood. Herein, we found that As(III) presence was crucial for Enterobacter sp. Z1 to develop resistance against Se(IV). Se(IV) reduction served as a detoxification mechanism in bacteria, and our results demonstrated an increase in the production of Se nanoparticles (SeNPs) in the presence of As(III). Tandem mass tag proteomics analysis revealed that the induction of As(III) activated the inositol phosphate, butanoyl-CoA/dodecanoyl-CoA, TCA cycle, and tyrosine metabolism pathways, thereby enhancing bacterial metabolism to resist Se(IV). Additionally, arsHRBC, sdr-mdr, purHD, and grxA were activated to participate in the reduction of Se(IV) into SeNPs. Our findings provide innovative perspectives for exploring As-induced Se biotransformation in prokaryotes.
Collapse
Affiliation(s)
- Yan Lan
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiong Luo
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xia Fan
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang 438000, Hubei, China
| | - Gejiao Wang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shixue Zheng
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Kaixiang Shi
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
6
|
Wan Y, Liu J, Zhuang Z, Wang Q, Li H. Heavy Metals in Agricultural Soils: Sources, Influencing Factors, and Remediation Strategies. TOXICS 2024; 12:63. [PMID: 38251018 PMCID: PMC10819638 DOI: 10.3390/toxics12010063] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024]
Abstract
Soil heavy metal pollution is a global environmental challenge, posing significant threats to eco-environment, agricultural development, and human health. In recent years, advanced and effective remediation strategies for heavy metal-contaminated soils have developed rapidly, and a systematical summarization of this progress is important. In this review paper, first, the anthropogenic sources of heavy metals in agricultural soils, including atmospheric deposition, animal manure, mineral fertilizers, and pesticides, are summarized. Second, the accumulation of heavy metals in crops as influenced by the plant characteristics and soil factors is analyzed. Then, the reducing strategies, including low-metal cultivar selection/breeding, physiological blocking, water management, and soil amendment are evaluated. Finally, the phytoremediation in terms of remediation efficiency and applicability is discussed. Therefore, this review provides helpful guidance for better selection and development of the control/remediation technologies for heavy metal-contaminated agricultural soils.
Collapse
Affiliation(s)
| | | | | | | | - Huafen Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (Y.W.); (J.L.); (Z.Z.); (Q.W.)
| |
Collapse
|
7
|
Huang S, Deng Q, Zhao Y, Chen G, Geng A, Wang X. l-Glutamate Seed Priming Enhances 2-Acetyl-1-pyrroline Formation in Fragrant Rice Seedlings in Response to Arsenite Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18443-18453. [PMID: 37975831 DOI: 10.1021/acs.jafc.3c06369] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
2-Acetyl-1-pyrroline (2-AP) is a fragrance compound and flavor in fragrant rice whose precursors are generally glutamate (Glu) and proline (Pro). Our previous study revealed that exogenous Glu enhanced the arsenic (As) tolerance in fragrant rice by improving the ascorbic acid-glutathione cycle and the Pro content in roots. However, less is known about how Glu is involved in 2-AP biosynthesis in fragrant rice under As stress. Herein, a hydroponic experiment of L-Glu seed priming with 0, 100, and 500 μM l-glutamic acid solutions was conducted with two fragrant rice varieties. After that, the 10-day-old seedlings were cultured under 0 and 100 μM arsenite stress for 10 d. Results showed that the 2-AP and Pro contents were increased by 18-30% and 21-78% under As100 μM-Glu100 μM treatment in comparison to the control As100 μM to Glu0 μM, while the activities of pyrroline-5-carboxylate synthetase (P5CS) and proline dehydrogenase (ProDH) were increased by 19-46% and 3-19%, respectively. Furthermore, the 2-AP, Pro contents, and P5CS activity were correlated positively. Correspondingly, a significant abundance of differential expressed metabolites (18) and differential expressed genes (26) was observed in amino acid metabolism and glutathione metabolism pathways. In addition, several essential genes were verified and grouped into the pathways of glutathione metabolism, proline, and arginine metabolism with antioxidant defense system to comodulate 2-AP biosynthesis and stress detoxification. Therefore, the Glu seed priming treatment had a positive impact on the 2-AP biosynthesis of fragrant rice under 100 μM arsenite toxicity.
Collapse
Affiliation(s)
- Suihua Huang
- Institute of Quality Standard and Monitoring Technology for Agro-Products, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality and Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Quanqing Deng
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yarong Zhao
- Institute of Quality Standard and Monitoring Technology for Agro-Products, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality and Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Guang Chen
- Institute of Quality Standard and Monitoring Technology for Agro-Products, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality and Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Anjing Geng
- Institute of Quality Standard and Monitoring Technology for Agro-Products, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality and Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Xu Wang
- Institute of Quality Standard and Monitoring Technology for Agro-Products, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality and Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| |
Collapse
|
8
|
Di X, Qin X, Wei Y, Liang X, Wang L, Xu Y, Yuebing S, Huang Q. Selenate reduced wheat grain cadmium accumulation by inhibiting cadmium absorption and increasing root cadmium retention. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108108. [PMID: 37864926 DOI: 10.1016/j.plaphy.2023.108108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/10/2023] [Accepted: 10/16/2023] [Indexed: 10/23/2023]
Abstract
Selenium (Se) fertilizer has been recently used to reduce cadmium (Cd) accumulation in plant. A pot culture was performed to analyze Cd uptake, translocation, and distribution in wheat plants during the reproductive growth period in a Cd-contaminated soil after selenate was applied to the soil, and a hydroponic culture was carried out to investigate the effects of selenate application on Cd2+ influx, subcellular Cd distribution, and Cd accumulation in wheat seedlings. Results showed that selenate application had no significant effect on DTPA-Cd and Cd fraction in soil. The application of selenate greatly inhibited the whole-plant Cd absorption by 14%-23%. In addition, selenate prompted the retention of Cd in root by increasing the Cd distribution in the vacuole, which reduced the root-to-shoot Cd translocation by 18%-53%. The application of selenate increased the Cd concentration in nodes, inhibited Cd remobilization from nutritive organs to grain, and ultimately reduced Cd accumulation in wheat grain. Further, heading to grain filling was the key growth stage for exogenous selenate to regulate grain Cd accumulation. In summary, soil selenate application is an effective method to reduce grain Cd concentration in wheat, which provided scientific basis for remediation of Cd-contaminated soil.
Collapse
Affiliation(s)
- Xuerong Di
- Innovation Team of Heavy Metal Ecotoxicity and Pollution Remediation, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin, 300191, China
| | - Xu Qin
- Innovation Team of Heavy Metal Ecotoxicity and Pollution Remediation, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin, 300191, China
| | - Yihua Wei
- Institute for Quality & Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Xuefeng Liang
- Innovation Team of Heavy Metal Ecotoxicity and Pollution Remediation, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin, 300191, China
| | - Lin Wang
- Innovation Team of Heavy Metal Ecotoxicity and Pollution Remediation, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin, 300191, China
| | - Yingming Xu
- Innovation Team of Heavy Metal Ecotoxicity and Pollution Remediation, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin, 300191, China
| | - Sun Yuebing
- Innovation Team of Heavy Metal Ecotoxicity and Pollution Remediation, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin, 300191, China.
| | - Qingqing Huang
- Innovation Team of Heavy Metal Ecotoxicity and Pollution Remediation, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin, 300191, China.
| |
Collapse
|
9
|
Chen J, Hao S, Bañuelos G, Zhou X. A quantitative review of the effects of Se application on the reduction of Hg concentration in plant: a meta-analysis. FRONTIERS IN PLANT SCIENCE 2023; 14:1199721. [PMID: 37409302 PMCID: PMC10318138 DOI: 10.3389/fpls.2023.1199721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/30/2023] [Indexed: 07/07/2023]
Abstract
Mercury (Hg) is a highly toxic heavy metal entering the human body through the food chain after absorption by plant. Exogenous selenium (Se) has been suggested as a potential solution to reduce Hg concentration in plants. However, the literature does not provide a consistent picture of the performance of Se on the accumulation of Hg in plant. To obtain a more conclusive answer on the interactions of Se and Hg, 1,193 data records were collected from 38 publications for this meta-analysis, and we tested the effects of different factors on Hg accumulation by meta-subgroup analysis and meta-regression model. The results highlighted a significant dose-dependent effect of Se/Hg molar ratio on the reduction of Hg concentration in plants, and the optimum condition for inhibiting Hg accumulation in plants is at a Se/Hg ratio of 1-3. Exogenous Se significantly reduced Hg concentrations in the overall plant species, rice grains, and non-rice species by 24.22%, 25.26%, and 28.04%, respectively. Both Se(IV) and Se(VI) significantly reduced Hg accumulation in plants, but Se(VI) had a stronger inhibiting effect than Se(IV). Se significantly decreased the BAFGrain in rice, which indicated that other physiological processes in rice may be involved in restricting uptake from soil to rice grain. Therefore, Se can effectively reduce Hg accumulation in rice grain, which provides a strategy for effectively alleviating the transfer of Hg to the human body through the food chain.
Collapse
Affiliation(s)
- Jiefei Chen
- College of Resources and Environment, Southwest University, Chongqing, China
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shangyan Hao
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Gary Bañuelos
- United States Department of Agriculture-Agricultural Research Service, Parlier, CA, United States
| | - Xinbin Zhou
- College of Resources and Environment, Southwest University, Chongqing, China
| |
Collapse
|
10
|
Wu Z, Yuan L, Sun C, Xu X, Shi W, Han L, Wu C. Effects of selenite on the responses of lettuce (Lactuca sativa L.) to polystyrene nano-plastic stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115138. [PMID: 37320918 DOI: 10.1016/j.ecoenv.2023.115138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/30/2023] [Accepted: 06/11/2023] [Indexed: 06/17/2023]
Abstract
Nowadays, nano-plastics are widespread in agricultural soils and could be uptaken by crops to cause an increased risk for food safety. As a beneficial element for plants, selenium (Se) can alleviate oxidative damages under various environmental stresses (eg. heavy metals, heat, cold). This study investigated the single and co-applications of nano-size polystyrene (PS) (80 nm and 200 nm) and selenite (0.8 ppm and 5 ppm) in lettuce (Lactuca sativa L.). Results showed nano-PS significantly decreased the root-shoot fresh biomass ratios, inhibited physiological functions in roots and leaves (e.g. root length, chlorophyll content and net photosynthetic rate), as well as stimulated the activities of the antioxidant enzymes in roots and shoots with greater toxicity at the smaller particle size (80 nm). However, both exogenous selenite applications significantly alleviated the above toxic effects of nano-PS in lettuces, especially at a high Se level of 5 ppm. Regression Path Analysis (RPA) revealed that regulation of chlorophyll levels by Se might be a key mechanism for counteracting PS stress in lettuces, which led to the increase in indigenous defense capacity. The present findings provide a novel but safer and cleaner agricultural strategy to alleviate or minimize nano-plastics toxicity in agricultural soils for staple crops and vegetables via application of Se.
Collapse
Affiliation(s)
- Zejun Wu
- Department of Health and Environmental Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou 215123, Jiangsu, China
| | - Linxi Yuan
- Department of Health and Environmental Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou 215123, Jiangsu, China.
| | - Chengxi Sun
- Department of Health and Environmental Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou 215123, Jiangsu, China
| | - Xiao Xu
- Department of Health and Environmental Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou 215123, Jiangsu, China
| | - Wenyao Shi
- Department of Health and Environmental Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou 215123, Jiangsu, China
| | - Lei Han
- Department of Health and Environmental Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou 215123, Jiangsu, China
| | - Chenxi Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
11
|
Nie M, Wu C, Tang Y, Shi G, Wang X, Hu C, Cao J, Zhao X. Selenium and Bacillus proteolyticus SES synergistically enhanced ryegrass to remediate Cu-Cd-Cr contaminated soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121272. [PMID: 36780973 DOI: 10.1016/j.envpol.2023.121272] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Heavy metal compound contaminated soil is an ecological threat, and soil containing copper (Cu), cadmium (Cd) and chromium (Cr) simultaneously is widely distributed. The application of phytoremediation in heavy metal combined contamination is still limited. In this study, to explore whether and how exogenous selenium (Se) and Bacillus proteolyticus SES enhance the remediation of combined Cu-Cd-Cr contaminated soil by ryegrass, pot experiments were carried out. Se alone or in combination with B. proteolyticus SES treatment increased the removal rates of heavy metals in the rhizosphere soil by 17.38%-157.25% relative to the control, while Se + B. proteolyticus SES treatment played a greater role in improving the heavy metals tolerance of ryegrass and increasing the activity of soil acid phosphatase. Moreover, Se and B. proteolyticus SES favored the preferential recruitment of specific taxa with the capacity of plant growth promotion and heavy metals resistance to the rhizosphere. The rhizosphere soil of Se treatment was specifically enriched with Lysobacter, Rhodanobacter, Micrococcales, Paenarthrobacter, and Adhaeribacter, while from class Bacilli to genus Bacillus enriched extensively and specifically in the rhizosphere of B. proteolyticus SES + Se treatment. Furthermore, five functional beneficial rhizosphere microbes including: Microbacterium sp., Pseudomonas extremaustralis, Bacillus amyloliquefaciens, Priestia megaterium, and Bacillus subtilis were isolated from the two treatments with the best remediation effect and synthetic communities (SynComs) were constructed. SynComs inoculation experiment further demonstrated the role of specific beneficial microbes in regulating the bioavailability of heavy metals. Results revealed that Se supplementation efficiently facilitated the phytoextraction of combined Cu-Cd-Cr contaminated soil, and B. proteolyticus SES inoculation showed the synergistical enhancement effect in the presence of Se.
Collapse
Affiliation(s)
- Min Nie
- College of Resources and Environment, Huazhong Agricultural University / Research Center of Trace Elements, Wuhan, 430070, China; Fujian Provincial Key Laboratory of Resources and Environment Monitoring & Sustainable Management and Utilization, Sanming University, Sanming, 365004, China
| | - Chihhung Wu
- Fujian Provincial Key Laboratory of Resources and Environment Monitoring & Sustainable Management and Utilization, Sanming University, Sanming, 365004, China
| | - Yanni Tang
- College of Resources and Environment, Huazhong Agricultural University / Research Center of Trace Elements, Wuhan, 430070, China
| | - Guangyu Shi
- College of Environment Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xu Wang
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Chengxiao Hu
- College of Resources and Environment, Huazhong Agricultural University / Research Center of Trace Elements, Wuhan, 430070, China
| | - Jun Cao
- College of Resources and Environment, Huazhong Agricultural University / Research Center of Trace Elements, Wuhan, 430070, China
| | - Xiaohu Zhao
- College of Resources and Environment, Huazhong Agricultural University / Research Center of Trace Elements, Wuhan, 430070, China.
| |
Collapse
|
12
|
Paniz FP, Pedron T, Procópio VA, Lange CN, Freire BM, Batista BL. Selenium Biofortification Enhanced Grain Yield and Alleviated the Risk of Arsenic and Cadmium Toxicity in Rice for Human Consumption. TOXICS 2023; 11:362. [PMID: 37112588 PMCID: PMC10143363 DOI: 10.3390/toxics11040362] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
Arsenic (As) and Cadmium (Cd) are toxic to rice plants. However, selenium (Se) has the potential to regulate As and Cd toxicity. The present study aimed to evaluate the co-exposure to As5+ and Se6+ species in two rice cultivars, BRS Pampa and EPAGRI 108. The plants were divided into six groups and cultivated until complete maturation of the grains, under greenhouse conditions. Regarding total As and inorganic As (i-As) accumulation in grains, the highest concentrations were found for BRS Pampa. For Se, EPAGRI 108 presented the highest concentration of inorganic and organic Se (i-Se and o-Se). The exposure assessments showed that Se biofortification can mitigate the As accumulation in rice and, consequently, the risk of As and Cd toxicity in grains for human consumption. The combined effect of As and Se in rice plants could represent an alternative to biofortify this food in a safe way and with a higher percentage of bioavailable Se. Although Se is able to mitigate As toxicity in rice plants, in the present study we showed that co-exposure in different cultivars under the same growing conditions may present different responses to As and Se exposure.
Collapse
|
13
|
Xu Y, Bi R, Li Y. Effects of anthropogenic and natural environmental factors on the spatial distribution of trace elements in agricultural soils. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114436. [PMID: 36525951 DOI: 10.1016/j.ecoenv.2022.114436] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 11/23/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
The concentrations of trace elements in agricultural soils directly affect the ecological security and quality of agricultural products. A comprehensive study aimed at quantitatively analyze the effects of anthropogenic and natural environmental factors on the spatial distribution of heavy metals (HMs) and selenium (Se) in agricultural soils in a typical grain producing area of China. Factors considered in this study were parent rock, soil physicochemical properties, topography, precipitation, mine activity, and vegetation. Results showed that the median values of Zn, Cd, Cr, and Cu of 111 topsoil samples exceeded the background values of Guangxi province but were lower than the relevant national soil quality standards, and 85% of soil samples were classified as having rich Se levels (0.40 -3.0 mg kg-1). The potential ecological risk index of soil heavy metals as a whole was low, with Cd in 9% of the samples posing moderate ecological risk. The concentrations of heavy metals and Se were relatively high in soils from shale rock. Soil properties, mainly Fe2O3 and Mn played a dominant role on soil HMs and Se concentrations. Based on GeoDetector, we found that the interaction effects of two factors on the spatial differentiation of soil HMs and Se were greater than their sum effect. Among the factors, Mn enhanced the explanatory power of the model the most when interacting with other factors for soil Zn; the greatest interactive effect was between distance from mining area and Mn for Cd (q = 0.70); Fe2O3 significantly promoted the spatial differentiation of soil Cr, Cu and Se when interacting with other factors (q > 0.50). These findings contribute to a better understanding of the factors that drive the distribution of HMs and Se in agricultural soils.
Collapse
Affiliation(s)
- Yuefeng Xu
- College of Resources and Environment, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
| | - Rutian Bi
- College of Resources and Environment, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Yonghua Li
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
14
|
Hao S, Bañuelos G, Zhou X. Can As concentration in crop be controlled by Se fertilization? A meta-analysis and outline of As sequestration mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155967. [PMID: 35588843 DOI: 10.1016/j.scitotenv.2022.155967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/11/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Arsenic (As) is a pollutant with a strong toxic effect on animals, plants and human beings. Exogenous selenium (Se) has been suggested to reduce the accumulation of As in crops, but contradictory results were found in the published literature. In order to clarify the possible processes, we collected the literature that reports on the effects of Se application on As uptake and accumulation in crops, analyzed the data by meta-analysis, and tested the effects of different factors on As accumulation by meta-regression model and subgroup analysis. The results highlighted a significant dose-dependent reduction of As content in crops after Se addition. Exogenous Se can significantly reduce As concentrations in grains by 18.76%. The reduction was dose-dependent for rice grains under aerobic soil conditions but not for rice grains under anoxic soil conditions. Se-enriched soils (greater than 0.5 mg kg-1) significantly reduced As concentrations in grains. Selenium significantly decreased the transfer factor of As from root to shoot. Moreover, selenite had a stronger inhibiting effect on the transport of As from root to shoot than selenate. The inhibition of selenium fertilization on As concentrations seems to take place in root and soil, while physiological processes in rice may be involved in restricting uptake and transport from root to shoot. These findings provide new ideas for effectively alleviating the transfer of As to the human body through the food chain.
Collapse
Affiliation(s)
- Shangyan Hao
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Gary Bañuelos
- United States Department of Agriculture, Agricultural Research Service, Parlier, CA 93648, USA
| | - Xinbin Zhou
- College of Resources and Environment, Southwest University, Chongqing 400715, China.
| |
Collapse
|
15
|
Lan X, Li J, Chen J, Liu J, Cao F, Liao C, Zhang Z, Gu M, Wei Y, Shen F, Wei X, Luo X, Zhang X. Effects of foliar applications of Brassinolide and Selenium on the accumulation of Arsenic and Cadmium in rice grains and an assessment of their health risk. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 25:161-171. [PMID: 35575119 DOI: 10.1080/15226514.2022.2066064] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Arsenic and cadmium pose a potential health risk to human beings via rice grain consumption. In the current study, a pot experiment was conducted to evaluate the effect of Br (5 mM and 20 mM) and Se (1 mM) at rice tillering and filling stages on Cd and As accumulation in rice grain and their health risk indices. The results showed that Br or Se applications at different stages of rice improved the photosynthesis, reduce MDA content in flag leaves by 17.41%-38.65%, increased rice biomass and grain yield by 10.50%-29.94% and 10.50%-36.56%, and enhanced grain N and P uptake by 3.25%-34.90%, and 22.98%-72.05%, respectively. Applications of Br and Se effectively decreased Cd and As concentration in rice grain by 31.74%-86.97% and 16.42%-81.13% respectively. Compared to the individual treatment, combined 20 mM Br and 1 mM Se at the filling stage showed the lowest accumulation of As (0.149 mg·kg-1) and Cd (0.105 mg·kg-1) in grain, and its health risk index was below the acceptable limits (HRI < 1). This implies that application of Br and Se at the filling stage is a promising strategy for the safe production of rice in As and Cd co-contaminated regions.
Collapse
Affiliation(s)
- Xiuquan Lan
- Cultivation Base of Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
- College of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Jiayuan Li
- Cultivation Base of Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Jiancheng Chen
- Cultivation Base of Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Jing Liu
- Cultivation Base of Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Feishu Cao
- Guangxi Bocco Environmental Protection Technology Co., Ltd, Nanning, China
| | - Changjun Liao
- Guangxi Bocco Environmental Protection Technology Co., Ltd, Nanning, China
| | - Zengyu Zhang
- Cultivation Base of Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Minghua Gu
- Cultivation Base of Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Yanyan Wei
- Cultivation Base of Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Fangke Shen
- Cultivation Base of Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Xianghua Wei
- Cultivation Base of Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Xianbao Luo
- Cultivation Base of Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Xiuling Zhang
- Cultivation Base of Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
16
|
Mao P, Wu J, Li F, Sun S, Huang R, Zhang L, Mo J, Li Z, Zhuang P. Joint approaches to reduce cadmium exposure risk from rice consumption. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128263. [PMID: 35074746 DOI: 10.1016/j.jhazmat.2022.128263] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/22/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
In-situ soil cadmium (Cd) immobilization helps to reduce Cd accumulation in rice grain, while its effects on bioaccessibility of Cd in rice during digestion and the associated health risk from rice consumption remain unclear. Here, we combined in-situ soil Cd immobilization and bioaccessibility-corrected health risk assessment (HRA) to minimize both the risk and uncertainty of Cd exposure from rice consumption. Wollastonite with or without four different phosphates (P) were applied to immobilize soil Cd at paddy fields, and their influences on Cd, essential elements, and amino acids in rice grain were analyzed. Moreover, a bioaccessibility-corrected HRA was conducted to accurately reflect the Cd exposure risk from ingesting these rices. The results showed the co-application of wollastonite and four different P reduced Cd concentrations in rice grain equally, while their impacts on bioaccessibility of Cd in rice during simulated human digestion were inconsistent (53-71%). The HRA based on bioaccessibility of Cd in rice revealed that Cd exposure risk from rice consumption was lowest with the application of wollastonite, followed by the co-application of wollastonite and sodium hexametaphosphate. This work highlights the value of bioaccessibility-corrected HRA for screening the optimal Cd immobilization strategy to achieve safer rice consumption.
Collapse
Affiliation(s)
- Peng Mao
- Guangdong Provincial Key Laboratory of Applied Botany, and Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingtao Wu
- Guangdong Provincial Key Laboratory of Applied Botany, and Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Li
- Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds Research and Application, and School of Chemistry and Environmental Science, Xiangnan University, Chenzhou 423000, China
| | - Shuo Sun
- Guangdong Provincial Key Laboratory of Applied Botany, and Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rong Huang
- Guangdong Provincial Key Laboratory of Applied Botany, and Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lulu Zhang
- Guangdong Provincial Key Laboratory of Applied Botany, and Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Jiangming Mo
- Guangdong Provincial Key Laboratory of Applied Botany, and Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Zhian Li
- Guangdong Provincial Key Laboratory of Applied Botany, and Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China.
| | - Ping Zhuang
- Guangdong Provincial Key Laboratory of Applied Botany, and Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China.
| |
Collapse
|
17
|
Raghuvanshi R, Raut VV, Pandey M, Jeyakumar S, Verulkar S, Suprasanna P, Srivastava AK. Arsenic and cadmium induced macronutrient deficiencies trigger contrasting gene expression changes in rice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 300:118923. [PMID: 35104559 DOI: 10.1016/j.envpol.2022.118923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 12/30/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Arsenic (As) and cadmium (Cd), two major carcinogenic heavy metals, enters into human food chain by the consumption of rice or rice-based food products. Both As and Cd disturb plant-nutrient homeostasis and hence, reduces plant growth and crop productivity. In the present study, As/Cd modulated responses were studied in non-basmati (IR-64) and basmati (PB-1) rice varieties, at physiological, biochemical and transcriptional levels. At the seedling stage, PB-1 was found more sensitive than IR-64, in terms of root biomass; however, their shoot phenotype was comparable under As and Cd stress conditions. The ionomic data revealed significant nutrient deficiencies in As/Cd treated-roots. The principal component analysis identified NH4+ as As-associated key macronutrient; while, NH4+/NO3- and K+ was majorly associated with Cd mediated response, in both IR-64 and PB-1. Using a panel of 21 transporter gene expression, the extent of nutritional deficiency was ranked in the order of PB-1(As)<IR-64(As)<PB-1(Cd)<IR-64(Cd). A feed-forward model is proposed to explain nutrient deficiency induced de-regulation of gene expression, as observed under Cd-treated IR-64 plants, which was also validated at the level of sulphur metabolism related enzymes. Using urea supplementation, as nitrogen-fertilizer, significant mitigation was observed under As stress, as indicated by 1.018- and 0.794-fold increase in shoot biomass in IR-64 and PB-1, respectively compared to that of control. However, no significant amelioration was observed in response to supplementation of urea under Cd or potassium under As/Cd stress conditions. Thus, the study pinpointed the relative significance of various macronutrients in regulating As- and Cd-tolerance and will help in designing suitable strategies for mitigating As and/or Cd stress conditions.
Collapse
Affiliation(s)
- Rishiraj Raghuvanshi
- Department of Plant Molecular Biology and Biotechnology, Indira Gandhi Krishi Vishwavidyalaya, Raipur, 492012, India; Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Vaibhavi V Raut
- Radioanalytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Manish Pandey
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Subbiah Jeyakumar
- Radioanalytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Satish Verulkar
- Department of Plant Molecular Biology and Biotechnology, Indira Gandhi Krishi Vishwavidyalaya, Raipur, 492012, India
| | - Penna Suprasanna
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Ashish Kumar Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India; Homi Bhabha National Institute, Mumbai, 400094, India.
| |
Collapse
|
18
|
Zhang D, Zhou H, Shao L, Wang H, Zhang Y, Zhu T, Ma L, Ding Q, Ma L. Root characteristics critical for cadmium tolerance and reduced accumulation in wheat (Triticum aestivum L.). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 305:114365. [PMID: 34953227 DOI: 10.1016/j.jenvman.2021.114365] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/18/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
Root radial transport is important for cadmium (Cd) absorption and root-shoot translocation. However, the relationship between root structural characteristics and radial transport of Cd in wheat is still unclear. Six wheat cultivars with different Cd tolerance and accumulation characteristics were used to investigate the roles of root phenotype, microstructure, and apoplastic and symplastic pathways in Cd uptake and root-shoot transport in pot culture. Longer root length, smaller root diameter, and more numerous root tips were more conducive to Cd absorption, while thicker roots were able to retain more Cd, thus reducing root-shoot transport and improving Cd tolerance of shoots. Cd stress can induce the deposition of apoplastic barriers in wheat roots, and the deposition of the apoplastic barrier increases under greater stress. The formation of apoplastic barriers can reduce Cd absorption and transfer to the shoot, and the presence of passage cells can weaken this effect. The cell wall thickening induced by Cd stress enhanced Cd adsorption capacity in wheat roots, but there was no significant correlation between Cd content and polysaccharide content in the cell wall. The up-regulated expression of TaHMA3 and TaVP1, which encode proteins related to Cd compartmentalization, was associated with increased Cd tolerance in wheat and decreased Cd translocation to aboveground parts. The morphology and anatomy of roots appear to play critical roles in Cd tolerance, uptake, and translocation in wheat. The present study provides useful information for the selection of wheat cultivars with low Cd accumulation.
Collapse
Affiliation(s)
- Dazhong Zhang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Hao Zhou
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Leilei Shao
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Hairong Wang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuanbo Zhang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Ting Zhu
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Liting Ma
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Qin Ding
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Lingjian Ma
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
19
|
Rizwan M, Ali S, Rehman MZU, Rinklebe J, Tsang DCW, Tack FMG, Abbasi GH, Hussain A, Igalavithana AD, Lee BC, Ok YS. Effects of selenium on the uptake of toxic trace elements by crop plants: A review. CRITICAL REVIEWS IN ENVIRONMENTAL SCIENCE AND TECHNOLOGY 2021. [PMID: 0 DOI: 10.1080/10643389.2020.1796566] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Affiliation(s)
- Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, Pakistan
- Department of Biological Sciences and Technology, China Medical University, Taichung, Taiwan
| | - Muhammad Zia ur Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Jörg Rinklebe
- University of Wuppertal, Soil- and Groundwater-Management, Wuppertal, Germany
- Department of Environment, Energy and Geoinformatics, University of Sejong, Seoul, South Korea
| | - Daniel C. W. Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Filip M. G. Tack
- Department of Green Chemistry and Technology, Ghent University, Ghent, Belgium
| | - Ghulam Hasan Abbasi
- Department of Soil Science, University College of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Afzal Hussain
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, Pakistan
| | - Avanthi Deshani Igalavithana
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
- Department of Soil Science, Faculty of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka
| | - Byung Cheon Lee
- College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Yong Sik Ok
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| |
Collapse
|
20
|
Jiang H, Lin W, Jiao H, Liu J, Chan L, Liu X, Wang R, Chen T. Uptake, transport, and metabolism of selenium and its protective effects against toxic metals in plants: a review. Metallomics 2021; 13:6310585. [PMID: 34180517 DOI: 10.1093/mtomcs/mfab040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/21/2021] [Accepted: 06/25/2021] [Indexed: 12/19/2022]
Abstract
Selenium (Se) is an essential trace element of fundamental importance to humans, animals, and plants. However, the uptake, transport, and metabolic processes of Se and its underlying mechanisms in plants have not been well characterized. Here, we review our current understanding of the adsorption and assimilation of Se in plants. First, we discussed the conversion of Se from inorganic Se into organic forms, the mechanisms underlying the formation of seleno-amino acids, and the detoxification of Se. We then discussed the ways in which Se protects plants against toxic metal ions in the environment, such as by alleviating oxidative stress, regulating the activity of antioxidant enzymes, sequestering metal ions, and preventing metal ion uptake and accumulation. Generally, this review will aid future research examining the molecular mechanisms underlying the antagonistic relationships between Se and toxic metals in plants.
Collapse
Affiliation(s)
- Haiyan Jiang
- Guangdong Province Research Center for Geoanalysis, Guangzhou 510080, China
| | - Weiqiang Lin
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Hongpeng Jiao
- Guangdong Province Research Center for Geoanalysis, Guangzhou 510080, China
| | - Jinggong Liu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 111 Dade Rd, Guangzhou 510120, China
| | - Leung Chan
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Xiaoying Liu
- Shenzhen Agricultural Product Quality and Safety Inspection and Testing Center (Guangdong Provincial Key Laboratory of Supervision and Administration of Edible Agricultural Products, Market Supervision Administration), Shenzhen 518000, China
| | - Rui Wang
- Shenzhen Agricultural Product Quality and Safety Inspection and Testing Center (Guangdong Provincial Key Laboratory of Supervision and Administration of Edible Agricultural Products, Market Supervision Administration), Shenzhen 518000, China
| | - Tianfeng Chen
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| |
Collapse
|
21
|
Feng R, Zhao P, Zhu Y, Yang J, Wei X, Yang L, Liu H, Rensing C, Ding Y. Application of inorganic selenium to reduce accumulation and toxicity of heavy metals (metalloids) in plants: The main mechanisms, concerns, and risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:144776. [PMID: 33545486 DOI: 10.1016/j.scitotenv.2020.144776] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/19/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
Anthropogenic activities such as mining, industrialization and subsequent emission of industrial waste, and agricultural practices have led to an increase in the accumulation of metal(loid)s in agricultural soils and crops, which threatens the health of people; the risk is more pronounced for individuals whose survival depends on food sources from several contaminated regions. Selenium (Se) is an element essential for the normal functioning of the human body and is a beneficial element for plants. Se deficiency in the diet is a common issue in many countries around the world, such as China and Egypt. >40 diseases are associated with Se deficiency. In practice, Se compounds have been applied through foliar sprays or via base application of fertilizers to increase Se concentration in the edible parts of crops and to satisfy the daily Se intake. Moreover, Se at low concentrations has been used to mitigate the toxicity of many metal(loid)s. In this review, we present an overview of the latest knowledge and practices with regards to the utilization of Se to reduce the uptake/toxicity of metal(loid)s in plants. We have focused on the following issues: 1) the current status of understanding the mechanisms of detoxification and uptake restriction of metal(loid)s regulated by Se; 2) the optimal dose and speciation of Se, and stage of plant growth that is optimal for application; 3) the differences in the efficiency of different application methods of Se including seed priming, base application, and foliar spray of Se fertilizers; 4) the possibility of using Se along with other methods to reduce multiple metal(loid) accumulation in crops; and 5) potential risks when Se is used to reduce metal(loid) accumulation in crops.
Collapse
Affiliation(s)
- RenWei Feng
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China.
| | - PingPing Zhao
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - YanMing Zhu
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - JiGang Yang
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - XinQi Wei
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - Li Yang
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - Hong Liu
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - YongZhen Ding
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| |
Collapse
|
22
|
Feng R, Wang L, Yang J, Zhao P, Zhu Y, Li Y, Yu Y, Liu H, Rensing C, Wu Z, Ni R, Zheng S. Underlying mechanisms responsible for restriction of uptake and translocation of heavy metals (metalloids) by selenium via root application in plants. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123570. [PMID: 32745877 DOI: 10.1016/j.jhazmat.2020.123570] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/11/2020] [Accepted: 07/23/2020] [Indexed: 05/07/2023]
Abstract
Since selenium (Se) was shown to be an essential element for humans in 1957, the biofortification of Se to crops via foliar spraying or soil fertilization has been performed for several decades to satisfy the daily nutritional need of humans. Appropriate doses of Se were found to counteract a number of abiotic and biotic stresses, such as exposure to heavy metals (metalloids) (HMs), via influencing the regulation of antioxidant systems, by stimulation of photosynthesis, by repair of damaged cell structures and functions, by regulating the metabolism of some substances and the rebalancing of essential elements in plant tissues. However, few concerns were paid on why and how Se could reduce the uptake of a variety of HMs. This review will mainly address the migration and transformation of HMs regulated by Se in the soil-plant system in order to present a hypothesis of why and how Se can reduce the uptake of HMs in plants. The following aspects will be examined in greater detail, including 1) how the soil characteristics influences the ability of Se to reduce the bioavailability of HMs in soils and their subsequent uptake by plants, which include soil Se speciation, pH, water regime, competing ions and microbes; 2) how the plant root system influenced by Se affects the uptake or the sequestration of HMs, such as root morphology, root iron plaques and root cell wall; 3) how Se combines with HMs and then sequesters them in plant cells; 4) how Se competes with arsenic (As) and thereby reduces As uptake in plants; 5) how Se regulates the expression of genes encoding functions involved in uptake, translocation and sequestration of HMs by Se in plants.
Collapse
Affiliation(s)
- RenWei Feng
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou, 350002, China.
| | - LiZhen Wang
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - JiGang Yang
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - PingPing Zhao
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - YanMing Zhu
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - YuanPing Li
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - YanShuang Yu
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - Hong Liu
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - ZeYing Wu
- Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing, 100125, China
| | - RunXiang Ni
- Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing, 100125, China
| | - ShunAn Zheng
- Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing, 100125, China.
| |
Collapse
|
23
|
Zhou X, Yang J, Kronzucker HJ, Shi W. Selenium Biofortification and Interaction With Other Elements in Plants: A Review. FRONTIERS IN PLANT SCIENCE 2020; 11:586421. [PMID: 33224171 PMCID: PMC7674621 DOI: 10.3389/fpls.2020.586421] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/16/2020] [Indexed: 05/16/2023]
Abstract
Selenium (Se) is an essential element for humans and animals and its deficiency in the diet is a global problem. Crop plants are the main source of Se for consumers. Therefore, there is much interest in understanding the factors that govern the accumulation and distribution of Se in the tissues of crop plants and the mechanisms of interaction of Se absorption and accumulation with other elements, especially with a view toward optimizing Se biofortification. An ideal crop for human consumption is rich in essential nutrient elements such as Se, while showing reduced accumulation of toxic elements in its edible parts. This review focuses on (a) summarizing the nutritional functions of Se and the current understanding of Se uptake by plant roots, translocation of Se from roots to shoots, and accumulation of Se in grains; and (b) discussing the influence of nitrogen (N), phosphorus (P), and sulfur (S) on the biofortification of Se. In addition, we discuss interactions of Se with major toxicant metals (Hg, As, and Cd) frequently present in soil. We highlight key challenges in the quest to improve Se biofortification, with a focus on both agronomic practice and human health.
Collapse
Affiliation(s)
- Xinbin Zhou
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Jing Yang
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Herbert J. Kronzucker
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada
| | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
24
|
He Y, Lin H, Jin X, Dong Y, Luo M. Simultaneous reduction of arsenic and cadmium bioavailability in agriculture soil and their accumulation in Brassica chinensis L. by using minerals. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 198:110660. [PMID: 32361492 DOI: 10.1016/j.ecoenv.2020.110660] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/12/2020] [Accepted: 04/17/2020] [Indexed: 05/22/2023]
Abstract
In situ immobilization of heavy metal cations in contaminated soil using natural minerals is an attractive remediation technique. However, little research has focused on the remediation of arsenic (As) and cadmium (Cd) co-contaminated. In this work, three different crystal structures and chemical compositions minerals, zeolite; bentonite; and dolomite, were applied to simultaneously reduce the uptake of As and Cd in Brassica chinensis L., and the mechanism on reducing As and Cd bioavailability in soil were also investigated. The results showed that the three minerals decreased the bioavailability of As and Cd and restrained their uptake by Brassica chinensis L. with the order followed bentonite > zeolite > dolomite. Particularly, bentonite decreased the exchangeable As and Cd by 4.05% and 32.5% and the concentrations of As and Cd in shoots of Brassica chinensis L. by 36.2% and 64.6%, as compared with the controls. Moreover, with the addition of minerals increased, the dry biomass of Brassica chinensis L. and the rhizosphere microbial functional diversity increased significantly, and the highest biomass increased by 289% at 4.0% addition of bentonite. Correlation analysis indicated that the uptake of As and Cd was positive with the available Cd and As in soil, and was negative with soil pH and available N. Furthermore, the Scanning Electron Microscopy-Energy Dispersive Spectroscopy and Fourier Transform Infrared Spectroscopy analysis illustrated the interaction between minerals and Cd mainly involved ion-exchange and adsorption, while As was mainly immobilized by calcium and magnesium through forming precipitation. In conclusion, this present study implied that the bentonite can be recommended as the more effective amendment to immobilize metal (loid)s in soil and thereby reduce the exposure risk of metal (loid)s associated with grains consumption.
Collapse
Affiliation(s)
- Yinhai He
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Hai Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China.
| | - Xiaona Jin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yingbo Dong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Mingke Luo
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
25
|
Selenite Foliar Application Alleviates Arsenic Uptake, Accumulation, Migration and Increases Photosynthesis of Different Upland Rice Varieties. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17103621. [PMID: 32455743 PMCID: PMC7277401 DOI: 10.3390/ijerph17103621] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 11/17/2022]
Abstract
This study investigates how arsenic (As) uptake, accumulation, and migration responds to selenium (Se) foliar application (0–5.0 mg × kg−1). Rice varieties known to accumulate low (DOURADOAGULHA) and high (SINALOAA68) concentrations of arsenic were chosen to grow on soil with different As concentrations (20.1, 65.2, 83.9 mg × kg−1). The results showed that Se of 1.0 mg × L−1 significantly alleviated As stress on upland rice grown on the As-contaminated soil. Under light (65.2 mg × kg−1) and moderate (83.9 mg × kg−1) As concentration treatments, the biomass of upland rice was increased by 23.15% and 36.46% for DOURADOAGULHA, and 46.3% and 54.9% for SINALOAA68. However, the high Se dose (5.0 mg × kg−1) had no significant effect on biomass and heights of upland rice compared to plants where no Se was added. Se significantly decreased As contents in stems and leaves and had different effects on As transfer coefficients for the two rice varieties: when grown on soil with low and moderate As concentrations, Se could reduce the transfer coefficient from stems to leaves, but when grown on the high As soils, this was not the case. The chlorophyll content in plants grown in soil with the moderate concentration of As could be improved by 27.4%–55.3% compared with no Se treatment. Under different As stress, the Se foliar application increased the net photosynthesis, stomatal conductance, and transpiration rate, which meant that Se could enhance the photosynthesis of rice. The intercellular CO2 concentration variation implied that the stomatal or non-stomatal limitations could both occur for different rice varieties under different Se application doses. In conclusion, under moderate As stress, foliar application of Se (1.0 mg × L−1) is recommend to overcome plant damage and As accumulation.
Collapse
|
26
|
Ji J, He E, Qiu H, Peijnenburg WJGM, Van Gestel CAM, Cao X. Effective Modeling Framework for Quantifying the Potential Impacts of Coexisting Anions on the Toxicity of Arsenate, Selenite, and Vanadate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:2379-2388. [PMID: 31976662 DOI: 10.1021/acs.est.9b06837] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Hardly any study has focused on the quantitative modeling of the toxicity of anionic metal(loid)s and their mixtures in the presence of potentially competing anions. Here, we designed a univariate experiment (420 treatments) to investigate the influence of various anions (phosphate, sulfate, carbonate, and OH-) on the toxicity of single anionic metal(loid)s (arsenate, selenite, and vanadate) and a full factorial mixture experiment (196 treatments) to examine the interactions and toxicity of As-Se mixtures at 4 phosphate levels. Standard root elongation tests with wheat (Triticum aestivum) were performed. A modeling framework, resembling the biotic ligand model (BLM) for cationic metals, was developed, extended, and applied to explain anion competitions and mixture effects. Carbonate significantly alleviated the toxicity of all three metal(loid)s. The toxicity of As was significantly mitigated by phosphate, while V toxicity was significantly relieved by OH-. The BLM-like model successfully explained more than 93% of the observed variance in toxicity. With the parameters derived from single-metal(loid) exposures, the developed BLM-toxic unit model reached an overall prediction performance of 78% in modeling the toxicity of As-Se mixtures at varying phosphate levels, validating the effectiveness of the model framework. It is concluded that by taking possible anion competitions and interactions into account, the BLM-type approaches can serve as promising tools for the risk assessment of single and mixed metal(loid)s contamination.
Collapse
Affiliation(s)
- Jie Ji
- School of Environmental Science and Engineering , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Erkai He
- School of Environmental Science and Engineering , Sun Yat-sen University , Guangzhou 510275 , China
| | - Hao Qiu
- School of Environmental Science and Engineering , Shanghai Jiao Tong University , Shanghai 200240 , China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology , Sun Yat-sen University , Guangzhou 510275 , China
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences , Leiden University , Leiden 2333CC , The Netherlands
- Center for the Safety of Substances and Products , National Institute of Public Health and the Environment , Bilthoven 3720 BA , The Netherlands
| | - Cornelis A M Van Gestel
- Department of Ecological Science, Faculty of Science , Vrije Universiteit , De Boelelaan 1085 , Amsterdam 1081 HV , The Netherlands
| | - Xinde Cao
- School of Environmental Science and Engineering , Shanghai Jiao Tong University , Shanghai 200240 , China
| |
Collapse
|
27
|
Ulhassan Z, Gill RA, Huang H, Ali S, Mwamba TM, Ali B, Huang Q, Hamid Y, Khan AR, Wang J, Zhou W. Selenium mitigates the chromium toxicity in Brassicca napus L. by ameliorating nutrients uptake, amino acids metabolism and antioxidant defense system. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 145:142-152. [PMID: 31689666 DOI: 10.1016/j.plaphy.2019.10.035] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/27/2019] [Accepted: 10/24/2019] [Indexed: 05/04/2023]
Abstract
The phytotoxicity of chromium (Cr) makes it obligatory for the researchers to develop strategies that seek to hinder its accumulation in food chains. While, protective role of selenium (Se) has not been discussed in detail under adverse conditions in oilseed rape. Here, our aim was to investigate the potential use of Se (0, 5 and 10 μM) in alleviating the Cr toxicity (0, 100 and 200 μM) in Brassica napus L. Results delineated that Se-supplementation notably recovered the Cr-phytotoxicity by reducing the Cr accumulation in plant tissues and boosted the inhibition in plant growth and biomass. Under Cr stress, the exogenously applied Se significantly recovered the impairment in photosynthesis related parameters (chlorophyll a, chlorophyll b, carotenoids, net photosynthetic rate, stomatal conductance, and photochemical efficiency of photosystem II), and counteracted the reduction in nutrients uptake and improved the essential amino acids (EAAs) levels. In addition, Se activated the antioxidants enzymes included in AsA-GSH cycle (SOD, CAT, APX, GR, DHAR, MDHAR, GSH, and AsA) and glyoxalase (Gly) system (Gly I and Gly II) and minimized the excessive generation of reactive oxygen species (ROS) and methylglyoxal (MG) contents in response to Cr stress. In a nutshell, Se (more effective at 5 μM) alleviated the Cr and MG induced phytotoxicity and oxidative damages by minimizing their (Cr and MG) accumulation and enhanced the plant growth, nutrients element level, nutrition quality by improving EAAs, antioxidant and Gly system. By considering the above-mentioned biomarkers, the addition of exogenous Se in Cr polluted soils might be effective approach to decrease the Cr uptake and its linked phytotoxicity in B. napus.
Collapse
Affiliation(s)
- Zaid Ulhassan
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Rafaqat Ali Gill
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Huifang Huang
- Hangzhou Municipal Seed Station, Hangzhou, 310020, China
| | - Skhawat Ali
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Theodore Mulembo Mwamba
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Basharat Ali
- Department of Agronomy, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Qian Huang
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Yasir Hamid
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ali Raza Khan
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Jian Wang
- School of Agriculture and Environment and Institute of Agriculture, The University of Western Australia, Crawley, WA, 6009, Australia.
| | - Weijun Zhou
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
28
|
Qingqing H, Yiyun L, Xu Q, Lijie Z, Xuefeng L, Yingming X. Selenite mitigates cadmium-induced oxidative stress and affects Cd uptake in rice seedlings under different water management systems. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 168:486-494. [PMID: 30423513 DOI: 10.1016/j.ecoenv.2018.10.078] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 05/13/2023]
Abstract
Cadmium (Cd) is toxic throughout the food chain. Selenium (Se) can mitigate Cd accumulation in rice plants, although it is unclear why it has such effect. The objectives of this study were to investigate the effects of Se application on Cd-induced oxidative stress and antioxidant activities, and the combined effects of Se application and water management on the formation of iron plaque on the rice surface and Fe, Cd, and Se accumulation in rice plants. Rice seedlings were grown in Cd-contaminated soil with or without the addition of Se, and in aerobic or flooded conditions. Exogenous Se reduced Cd-induced oxidative stress. In the flooded treatment, exogenous selenite significantly decreased Cd concentrations in rice tissues, whereas it noticeably enhanced Cd concentrations in rice tissues in the aerobic treatment. Furthermore, selenite addition and flooding promote the formation of iron plaque and increase Fe concentrations in rice tissues. Pearson correlation analysis shows that plant Cd was significantly negatively correlated with Fe concentrations in rice tissues, and plant Fe was significantly positively correlated with Se concentrations in rice tissues, but no significant correlation was found between Cd and Se concentrations Thus, exogenous selenite may indirectly affect Cd uptake by influencing the formation of iron plaque on rice root surface, Fe uptake and Fe levels in rice.
Collapse
Affiliation(s)
- Huang Qingqing
- Innovation Team of Remediation of Heavy Metal-Contaminated Farmlands, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, People's Republic of China; Key Laboratory of Original Environmental Quality of MOA, Agro-Environmental Protection Institute of Ministry of Agriculture, Tianjin 300191, People's Republic of China
| | - Liu Yiyun
- Innovation Team of Remediation of Heavy Metal-Contaminated Farmlands, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, People's Republic of China; Key Laboratory of Original Environmental Quality of MOA, Agro-Environmental Protection Institute of Ministry of Agriculture, Tianjin 300191, People's Republic of China
| | - Qin Xu
- Innovation Team of Remediation of Heavy Metal-Contaminated Farmlands, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, People's Republic of China; Key Laboratory of Original Environmental Quality of MOA, Agro-Environmental Protection Institute of Ministry of Agriculture, Tianjin 300191, People's Republic of China
| | - Zhao Lijie
- Innovation Team of Remediation of Heavy Metal-Contaminated Farmlands, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, People's Republic of China; Key Laboratory of Original Environmental Quality of MOA, Agro-Environmental Protection Institute of Ministry of Agriculture, Tianjin 300191, People's Republic of China
| | - Liang Xuefeng
- Innovation Team of Remediation of Heavy Metal-Contaminated Farmlands, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, People's Republic of China; Key Laboratory of Original Environmental Quality of MOA, Agro-Environmental Protection Institute of Ministry of Agriculture, Tianjin 300191, People's Republic of China
| | - Xu Yingming
- Innovation Team of Remediation of Heavy Metal-Contaminated Farmlands, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, People's Republic of China; Key Laboratory of Original Environmental Quality of MOA, Agro-Environmental Protection Institute of Ministry of Agriculture, Tianjin 300191, People's Republic of China.
| |
Collapse
|
29
|
Huang Q, Xu Y, Liu Y, Qin X, Huang R, Liang X. Selenium application alters soil cadmium bioavailability and reduces its accumulation in rice grown in Cd-contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:31175-31182. [PMID: 30187416 DOI: 10.1007/s11356-018-3068-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 08/27/2018] [Indexed: 05/09/2023]
Abstract
Selenium (Se) alleviates cadmium (Cd) accumulation in several plants. Nevertheless, it is still unclear why it has such effect. Thus, this study aimed to investigate the effects of Se on soil Cd bioavailability, and Cd accumulation in flooded rice plants, and to determine the mechanisms underlying these effects. Concentration of Cd and Se in different rice tissues was determined along Cd and Se concentrations in the soil solution and soil Cd fractions. Results showed that exogenous selenite and selenate treatments significantly increased rice grain Se by 4.25- and 2.39-fold and decreased Cd by 36.5% and 25.3% relative to control treatment, respectively. The addition of Se to Cd-contaminated soil significantly decreased total Cd concentration in the soil solution by 11.2-13.0%, increased soil pH by 0.06-0.32 units, and enhanced soil Cd immobilization in relation to control. Exogenous Se also reduced diethylenetriaminepentaacetic acid-Cd, exchangeable, and residual Cd but increased the levels of Cd bound to carbonate and iron and manganese oxides. Thus, amending Cd-contaminated soil with Se may help decrease Cd content as well as increase Se levels in rice grain, as Se may mitigate Cd accumulation in rice plants by increasing soil pH, reducing Cd bioavailability, and inhibiting Cd translocation from roots to shoots.
Collapse
Affiliation(s)
- Qingqing Huang
- Innovation Team of Remediation of Heavy Metal-Contaminated Farmlands, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin, 300191, People's Republic of China
- Key Laboratory of Original Environmental Quality of MOA, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin, 300191, People's Republic of China
| | - Yingming Xu
- Innovation Team of Remediation of Heavy Metal-Contaminated Farmlands, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin, 300191, People's Republic of China.
- Key Laboratory of Original Environmental Quality of MOA, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin, 300191, People's Republic of China.
| | - Yiyun Liu
- Innovation Team of Remediation of Heavy Metal-Contaminated Farmlands, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin, 300191, People's Republic of China
- Key Laboratory of Original Environmental Quality of MOA, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin, 300191, People's Republic of China
| | - Xu Qin
- Innovation Team of Remediation of Heavy Metal-Contaminated Farmlands, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin, 300191, People's Republic of China
- Key Laboratory of Original Environmental Quality of MOA, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin, 300191, People's Republic of China
| | - Rong Huang
- Innovation Team of Remediation of Heavy Metal-Contaminated Farmlands, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin, 300191, People's Republic of China
- Key Laboratory of Original Environmental Quality of MOA, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin, 300191, People's Republic of China
| | - Xuefeng Liang
- Innovation Team of Remediation of Heavy Metal-Contaminated Farmlands, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin, 300191, People's Republic of China
- Key Laboratory of Original Environmental Quality of MOA, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin, 300191, People's Republic of China
| |
Collapse
|
30
|
Huang B, Xin J, Dai H, Zhou W. Effects of Interaction between Cadmium (Cd) and Selenium (Se) on Grain Yield and Cd and Se Accumulation in a Hybrid Rice (Oryza sativa) System. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:9537-9546. [PMID: 29016122 DOI: 10.1021/acs.jafc.7b03316] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
A pot experiment was conducted to investigate the interactive effects of cadmium (Cd) and selenium (Se) on their accumulation in three rice cultivars, which remains unclear. The results showed that Se reduced Cd-induced growth inhibition, and increased and decreased Se and Cd concentrations in brown rice, respectively. Cadmium concentrations in all tissues of the hybrid were similar to those in its male parent yet significantly lower than those in its female parent. Selenium reduced Cd accumulation in rice when Cd concentration exceeded 2.0 mg kg-1; however Se accumulation depended on the levels of Cd exposure. Finally, Cd had minimal effect on Se translocation within the three cultivars. We concluded that Cd concentration in brown rice is a heritable trait, making crossbreeding a feasible method for cultivating high-yield, low-Cd rice cultivars. Selenium effectively decreased the toxicity and accumulation of Cd, and Cd affected Se uptake but not translocation.
Collapse
Affiliation(s)
- Baifei Huang
- Research Center for Environmental Pollution Control Technology, School of Safety and Environmental Engineering, Hunan Institute of Technology , Hengyang 421002, China
| | - Junliang Xin
- Research Center for Environmental Pollution Control Technology, School of Safety and Environmental Engineering, Hunan Institute of Technology , Hengyang 421002, China
| | - Hongwen Dai
- Research Center for Environmental Pollution Control Technology, School of Safety and Environmental Engineering, Hunan Institute of Technology , Hengyang 421002, China
| | - Wenjing Zhou
- Research Center for Environmental Pollution Control Technology, School of Safety and Environmental Engineering, Hunan Institute of Technology , Hengyang 421002, China
| |
Collapse
|
31
|
Wang TT, Shi ZQ, Hu LB, Xu XF, Han FX, Zhou LG, Chen J. Thymol Ameliorates Cadmium-Induced Phytotoxicity in the Root of Rice (Oryza sativa) Seedling by Decreasing Endogenous Nitric Oxide Generation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:7396-7405. [PMID: 28771007 DOI: 10.1021/acs.jafc.7b02950] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Thymol has been developed as medicine and food preservative due to its immune-regulatory effect and antimicrobial activity, respectively. However, little is currently known about the role of thymol in the modulation of plant physiology. In the present study, we applied biochemical and histochemical approaches to investigate thymol-induced tolerance in rice (Oryza sativa) seedlings against Cd (cadmium) stress. Thymol at 20 μM recovered root growth completely upon CdCl2 exposure. Thymol pronouncedly decreased Cd-induced ROS accumulation, oxidative injury, cell death, and Cd2+ accumulation in roots. Pharmaceutical experiments suggested that endogenous NO mediated Cd-induced phytotoxicity. Thymol decreased Cd-induced NO accumulation by suppressing the activity of NOS (nitric oxide synthase) and NR (nitrate reductase) in root. The application of NO donor (SNP, sodium nitroprusside) resulted in the increase in endogenous NO level, which in turn compromised the alleviating effects of thymol on Cd toxicity. Such findings may helpful to illustrate the novel role of thymol in the modulation of plant physiology, which may be applicable to improve crop stress tolerance.
Collapse
Affiliation(s)
- Ting-Ting Wang
- Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences , Nanjing 210014, China
- College of Life Sciences, Nanjing Normal University , Nanjing 210064, China
| | - Zhi Qi Shi
- Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences , Nanjing 210014, China
- College of Life Sciences, Nanjing Normal University , Nanjing 210064, China
| | - Liang-Bin Hu
- Department of Food Science, Henan Institute of Science and Technology , Xinxiang 453003, China
| | - Xiao-Feng Xu
- College of Life Sciences, Nanjing Normal University , Nanjing 210064, China
| | - Fengxiang X Han
- Department of Chemistry and Biochemistry, Jackson State University , Jackson, Mississippi 39217, United States
| | - Li-Gang Zhou
- Department of Plant Pathology, China Agricultural University , Beijing 100193, China
| | - Jian Chen
- Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences , Nanjing 210014, China
- Department of Food Science, Henan Institute of Science and Technology , Xinxiang 453003, China
- Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Provincial Department of Agriculture and Forestry , Nanjing 210014, China
| |
Collapse
|