1
|
Maturi KC, Haq I, Kalamdhad AS. Biodegradation of an intrusive weed Parthenium hysterophorus through in-vessel composting technique: toxicity assessment and spectroscopic study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:84600-84615. [PMID: 35788476 DOI: 10.1007/s11356-022-21816-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Parthenium hysterophorus is a toxic terrestrial weed with its erratic behavior brought on by the presence of toxic compounds. A numerous works have been conducted on the complete eradication of this weed, but due to the residuals exists in soil, the weed re-grows. Current study therefore aims at examining the transformation of this weed by an in-vessel composting approach (rotary drum composter) and the evaluation of toxicity characteristics using Vigna radiata and Allium cepa as bioindicators. The nutritional content such as total Kjeldahl nitrogen (TKN), total phosphorus (TP), and total potassium were increased by 38.8, 39.1, and 49.5%, respectively, and the reactor was effective in reducing the biochemical content such as lignin, hemicellulose, and cellulose by 43.5, 50.7, and 57.3%, respectively, in the final compost. The thermophilic degradation phase in the reactor existed up to the 8th day of the composting process, which exhibits the highest degradation phase. Meanwhile, the degradation of phenolic, aliphatic, and lignocellulose was investigated and validated using Fourier transform infrared spectroscopy (FTIR) and powdered X-ray diffraction (PXRD) analysis. Although P. hysterophorus exhibited phytotoxic and cyto-genotoxic effects in plant models at the beginning of the composting process, the toxicity potential appeared to be reduced after 20 days of composting. Therefore, the study's findings proved that the in-vessel composting of P. hysterophorus can produce a nontoxic, nutrient-rich compost product that could be used as a soil conditioner in agricultural farmlands. The insights of the study are not limited to the nutritional, stability, and quality characteristics but also the toxicity characteristics during the composting process.
Collapse
Affiliation(s)
- Krishna Chaitanya Maturi
- Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India.
| | - Izharul Haq
- Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Ajay S Kalamdhad
- Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| |
Collapse
|
2
|
Zhang X, Liu C, Chen Y, Zheng G, Chen Y. Source separation, transportation, pretreatment, and valorization of municipal solid waste: a critical review. ENVIRONMENT, DEVELOPMENT AND SUSTAINABILITY 2022; 24:11471-11513. [PMID: 34776765 PMCID: PMC8579419 DOI: 10.1007/s10668-021-01932-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 10/25/2021] [Indexed: 05/19/2023]
Abstract
Waste sorting is an effective means of enhancing resource or energy recovery from municipal solid waste (MSW). Waste sorting management system is not limited to source separation, but also involves at least three stages, i.e., collection and transportation (C&T), pretreatment, and resource utilization. This review focuses on the whole process of MSW management strategy based on the waste sorting perspective. Firstly, as the sources of MSW play an essential role in the means of subsequent valorization, the factors affecting the generation of MSW and its prediction methods are introduced. Secondly, a detailed comparison of approaches to source separation across countries is presented. Constructing a top-down management system and incentivizing or constraining residents' sorting behavior from the bottom up is believed to be a practical approach to promote source separation. Then, the current state of C&T techniques and its network optimization are reviewed, facilitated by artificial intelligence (AI) and the Internet of Things technologies. Furthermore, the advances in pretreatment strategies for enhanced sorting and resource recovery are introduced briefly. Finally, appropriate methods to valorize different MSW are proposed. It is worth noting that new technologies, such as AI, show high application potential in waste management. The sharing of (intermediate) products or energy of varying processing units will inject vitality into the waste management network and achieve sustainable development.
Collapse
Affiliation(s)
- Xuemeng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092 People’s Republic of China
| | - Chao Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092 People’s Republic of China
| | - Yuexi Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092 People’s Republic of China
| | - Guanghong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092 People’s Republic of China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092 People’s Republic of China
| |
Collapse
|
3
|
Basinas P, Rusín J, Chamrádová K. Dry anaerobic digestion of the fine particle fraction of mechanically-sorted organic fraction of municipal solid waste in laboratory and pilot reactor. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 136:83-92. [PMID: 34653853 DOI: 10.1016/j.wasman.2021.09.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/06/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
High-solid anaerobic digestion of the very small particle fraction of mechanically-sorted organic fraction of municipal solid waste (OFMSW) was examined in mesophilic digestion tests in a conventional laboratory (0.013 m3) and a pilot (0.300 m3) reactor. The non-biodegradable and recalcitrant molecules together with the low protein and starch contents of the small-particles of OFMSW limited the methane generation potential of substrate. In the conventional AD system, methane yields remained low at 0.139 m3kgVS-1 due to formation of a non-reacting layer on digestate surface, which restricted utilization of the available in OFMSW digestible organics. The absence of surface solid crust in the pilot unit favoured consumption of a greater proportion of volatile solids of the OFMSW. Dry AD was remarkably stable over the entire period and negligibly effected by the toxic H2S yields. Methane generation (0.167 m3kgVS-1) was increased 1.2-fold compared to the conventional system due to a better mixing of substrate and microorganisms achieved inside the pilot reactor, which led to an increase of the digested volatile organics. Digestate presented low stability and high heavy metal content, both of which restrain its implementation as soil conditioner or fertilizer in agriculture. A secondary co-digestion treatment may be required for the neutralization of digestate.
Collapse
Affiliation(s)
- Panagiotis Basinas
- Institute of Environmental Technology, CEET, VSB - Technical University of Ostrava, 17. Listopadu 2172/15, Ostrava, Poruba 708 00, Czech Republic
| | - Jiří Rusín
- Institute of Environmental Technology, CEET, VSB - Technical University of Ostrava, 17. Listopadu 2172/15, Ostrava, Poruba 708 00, Czech Republic
| | - Kateřina Chamrádová
- Institute of Environmental Technology, CEET, VSB - Technical University of Ostrava, 17. Listopadu 2172/15, Ostrava, Poruba 708 00, Czech Republic.
| |
Collapse
|
4
|
Zhuang H, Lee PH, Wu Z, Jing H, Guan J, Tang X, Tan GYA, Leu SY. Genomic driven factors enhance biocatalyst-related cellulolysis potential in anaerobic digestion. BIORESOURCE TECHNOLOGY 2021; 333:125148. [PMID: 33878497 DOI: 10.1016/j.biortech.2021.125148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/01/2021] [Accepted: 04/04/2021] [Indexed: 06/12/2023]
Abstract
Anaerobic digestion (AD) is a promising technology to recover bioenergy from biodegradable biomass, including cellulosic wastes. Through a few fractionation/separation techniques, cellulose has demonstrated its potential in AD, but the performance of the process is rather substrate-specific, as cellulolysis bacteria are sensitive to the enzyme-substrate interactions. Cellulosome is a self-assembled enzyme complex with many functionalized modules in the bacteria which has been gradually studied, however the genomic fingerprints of the culture-specific cellulosome in AD are relatively unclear especially under processing conditions. To clarify the key factors affecting the cellulosome induced cellulolysis, this review summarized the most recent publications of AD regarding the fates of cellulose, sources and functional genes of cellulosome, and omics methods for functional analyses. Different processes for organic treatment including applying food grinds in sewer, biomass valorization, cellulose fractionation, microaeration, and enzymatic hydrolysis enhanced fermentation, were highlighted to support the sustainable development of AD technology.
Collapse
Affiliation(s)
- Huichuan Zhuang
- Dept. of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Po-Heng Lee
- Dept. of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Zhuoying Wu
- Dept. of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Houde Jing
- Dept. of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Jianyu Guan
- Dept. of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Xiaojing Tang
- Dept. of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Giin-Yu Amy Tan
- Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Shao-Yuan Leu
- Dept. of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| |
Collapse
|
5
|
Basinas P, Rusín J, Chamrádová K. Assessment of high-solid mesophilic and thermophilic anaerobic digestion of mechanically-separated municipal solid waste. ENVIRONMENTAL RESEARCH 2021; 192:110202. [PMID: 32931788 DOI: 10.1016/j.envres.2020.110202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/12/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
Mechanically-sorted organic fraction of municipal solid waste (OFMSW) was tested to determine its biogas and biomethane generation efficiency. Methane production capability of OFMSW was examined in biochemical methane potential (BMP) tests. The factors affecting the high-solid anaerobic digestion (AD) of feedstock were investigated in a series of long-term semi-continuous digestion tests performed at dry mesophilic and thermophilic conditions in a continuously rotating drum reactor with working volume of 0.013 m3. OFMSW presented low biogas and methane generation capacity due to its contained non-biodegradable components and the low proteins and starch proportions. Dry mesophilic AD allowed only a relatively limited fraction of OFMSW volatile solids to be consumed for biogas and methane production. Reducing particle size favoured utilization of higher proportions of the available digestible organic substances, and concurrently promoted biogas and biomethane generation rate. Stability of methane generation was also significantly improved by particle downsizing. Small particles compensated the limited mass transfer and restricted distribution of methane production intermediate metabolites caused by water absence in the dry AD system. Dry thermophilic AD converted sufficient quantity of OFMSWs biodegradable content. The average methane released from dry thermophilic AD (0.176 m3kgVS-1) was higher than that of dry mesophilic AD of fine particles (0.148 m3kgVS-1) and much higher than that of dry mesophilic AD of same grain size (0.114 m3kgVS-1). High temperature proved more suitable for anaerobically digesting mechanically-sorted OFMSW.
Collapse
Affiliation(s)
- Panagiotis Basinas
- Institute of Environmental Technology, VSB - Technical University of Ostrava, 17. Listopadu 2172/15, Ostrava, Poruba, 708 00, Czech Republic
| | - Jiří Rusín
- Institute of Environmental Technology, VSB - Technical University of Ostrava, 17. Listopadu 2172/15, Ostrava, Poruba, 708 00, Czech Republic
| | - Kateřina Chamrádová
- Institute of Environmental Technology, VSB - Technical University of Ostrava, 17. Listopadu 2172/15, Ostrava, Poruba, 708 00, Czech Republic.
| |
Collapse
|
6
|
Dehkordi SMMN, Jahromi ART, Ferdowsi A, Shumal M, Dehnavi A. Investigation of biogas production potential from mechanical separated municipal solid waste as an approach for developing countries (case study: Isfahan-Iran). RENEWABLE AND SUSTAINABLE ENERGY REVIEWS 2020; 119:109586. [DOI: 10.1016/j.rser.2019.109586] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
|
7
|
Xiang YL, Lin Q, Cai L, Guan Y, Lu J, Liu W. Study of the effect mechanism of municipal solid waste gasification conditions on the production of H 2 and CO using modelling technique. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 230:301-310. [PMID: 30292018 DOI: 10.1016/j.jenvman.2018.09.097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/19/2018] [Accepted: 09/28/2018] [Indexed: 06/08/2023]
Abstract
The municipal solid waste (MSW) gasification process was numerically studied in the work. The effect mechanisms of particle size, temperature and gasification atmosphere on the production of H2 and CO were investigated in detail. The results demonstrated that the total volume fraction of H2 and CO dropped from 51.7% to 49.7% with particle size increasing from 20 < d < 30 mm to 80 < d < 100 mm under steam atmosphere. With the temperature increasing from 600 °C to 1000 °C, the total volume fraction of H2 and CO was raised from 56.1% to 65.8% under steam atmosphere. Five different gasifying agents: 100%CO2, 21%O2/79%N2, 21%O2/79%H2O, 21%CO2/79%H2O, 21%O2/79%CO2 were simulated, and the total volume fraction of H2 and CO was 51.87%, 19.1%, 56.13%, 48.36% and 42.98%, respectively. In the gasification conditions considered in this work, H + H2O⇔OH + H2 (R84) played a key role in the yield of H2, and the yield of CO was significantly affected by H + CO2⇔OH + CO (R99) and H + CH2CO⇔CH3+CO (R81).
Collapse
Affiliation(s)
- Yan Lei Xiang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Qi Lin
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Lei Cai
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Yanwen Guan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Jianying Lu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Wenbin Liu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| |
Collapse
|
8
|
Fan YV, Klemeš JJ, Lee CT, Perry S. Anaerobic digestion of municipal solid waste: Energy and carbon emission footprint. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 223:888-897. [PMID: 29996113 DOI: 10.1016/j.jenvman.2018.07.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/29/2018] [Accepted: 07/01/2018] [Indexed: 06/08/2023]
Abstract
Anaerobic digestion (AD) serves as a promising alternative for waste treatment and a potential solution to improve the energy supply security. The feasibility of AD has been proven in some of the technologically and agriculturally advanced countries. However, development is still needed for worldwide implementation, especially for AD process dealing with municipal solid waste (MSW). This paper reviews various approaches and stages in the AD of MSW, which used to optimise the biogas production and quality. The assessed stages include pre-treatment, digestion process, post-treatment as well as the waste collection and transportation. The latest approaches and integrated system to improve the AD process are also presented. The stages were assessed in a relatively quantitative manner. The range of energy requirement, carbon emission footprint and the percentage of enhancement are summarised. Thermal hydrolysis pre-treatment is identified to be less suitable for MSW (-5% to +15.4% enhancement), unless conducted in the two-phase AD system. Microwave pre-treatment shows consistent performance in elevating the biogas production of MSW, but the energy consumption (114.24-8,040 kWeh t-1) and carbon emission footprint (59.93-4,217.78 kg CO2 t-1 waste) are relatively high. Chemical (∼0.43 kWeh m-3) and membrane-based (∼0.45 kWeh m-3) post-treatments are suggested to be a lower energy consumption approach for upgrading the biogas. The feasibility in terms of cost (scale up) and other environmental impacts (non-CO2 footprint) needs to be further assessed. This study provides an overview to facilitate further development and extended implementation of AD.
Collapse
Affiliation(s)
- Yee Van Fan
- Sustainable Process Integration Laboratory - SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology - VUT Brno, Technická 2896/2, 616 69, Brno, Czech Republic.
| | - Jiří Jaromír Klemeš
- Sustainable Process Integration Laboratory - SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology - VUT Brno, Technická 2896/2, 616 69, Brno, Czech Republic
| | - Chew Tin Lee
- Department of Bioprocess Engineering, Faculty of Chemical and Energy Engineering Universiti Teknologi Malaysia (UTM), 81310 UTM Johor Bahru, Johor, Malaysia
| | - Simon Perry
- Centre for Process Integration, School of Chemical Engineering and Analytical Science, The University of Manchester, Manchester, M13 9PL, United Kingdom
| |
Collapse
|