1
|
Wu Z, Lin Z, Wang S, Yang B, Xiao K. Functionalization of melamine sponge for the efficient recovery of Pt(IV) from acid leachates. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:84609-84619. [PMID: 37368212 DOI: 10.1007/s11356-023-28410-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 06/19/2023] [Indexed: 06/28/2023]
Abstract
The recovery of platinum from industrial waste is of critical importance. Usually, the recovery method is to dissolve the solid waste with acid to form a solution where platinum mainly exists in the form of Pt(IV). Therefore, it is urgent to efficiently and selectively adsorb Pt(IV) ions from acid leachates. In this study, a highly efficient adsorbent was developed by grafting of carboxyl and amine groups onto melamine sponge with alginate-Ca and polyethylenimine-glutaraldehyde (ML/ACPG). Combination of SEM, FTIR and XPS showed that the ML/ACPG sponge had a tree structure and the amino, carboxyl and hydroxyl groups were successfully introduced. Maximum adsorption capacity of ML/ACPG sponge reached up to 101.1 mg/L at pH of 1 (optimum initial pH value). The Pt(IV) ions were readily desorbed (within 60-80 min) using 0.1 M HCl + 0.025 M thiourea solution. Desorption efficiency remained higher than 83.3% while adsorption capacity decreased by less than 6.0% after 5 cycles operation. The ML/ACPG sponge was stable in 3 M of HNO3, NaCl after shaking for 72 h at 300 rpm with mass loss less than 2.5%. The mechanism of Pt(IV) adsorption onto ML/ACPG sponge mainly involved coordination by electrostatic attraction and carboxyl groups by protonated amine groups. The above results confirmed that the ML/ACPG sponge has a good practical application potential for Pt(IV) recovery from acid leachates.
Collapse
Affiliation(s)
- Zhaojiang Wu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zheng Lin
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Shengye Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Bo Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ke Xiao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
2
|
Polyethylenimine-crosslinked calcium silicate hydrate derived from oyster shell waste for removal of Reactive Yellow 2. KOREAN J CHEM ENG 2023. [DOI: 10.1007/s11814-022-1243-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
3
|
Facile Synthesis of Polyethylenimine-modified Sugarcane Bagasse Adsorbent for Removal of Anionic Dye in Aqueous Solution. SCIENTIFIC AFRICAN 2022. [DOI: 10.1016/j.sciaf.2022.e01135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
4
|
Wang Z, Park HN, Won SW. Adsorption and Desorption Properties of Polyethylenimine/Polyvinyl Chloride Cross-Linked Fiber for the Treatment of Azo Dye Reactive Yellow 2. Molecules 2021; 26:molecules26061519. [PMID: 33802112 PMCID: PMC8000247 DOI: 10.3390/molecules26061519] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 11/25/2022] Open
Abstract
In this study, the optimal conditions for the fabrication of polyethylenimine/polyvinyl chloride cross-linked fiber (PEI/PVC-CF) were determined by comparing the adsorption capacity of synthesized PEI/PVC-CFs for Reactive Yellow 2 (RY2). The PEI/PVC-CF prepared through the optimal conditions was characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and Brunauer–Emmett–Teller (BET) analyses. Several batch adsorption and desorption experiments were carried out to evaluate the sorption performance and reusability of PEI/PVC-CF for RY2. As a result, the adsorption of RY2 by PEI/PVC-CF was most effective at pH 2.0. A pseudo-second-order model fit better with the kinetics adsorption data. The adsorption isotherm process was described well by the Langmuir model, and the maximum dye uptake was predicted to be 820.6 mg/g at pH 2.0 and 25 °C. Thermodynamic analysis showed that the adsorption process was spontaneous and endothermic. In addition, 1.0 M NaHCO3 was an efficient eluent for the regeneration of RY2-loaded PEI/PVC-CF. Finally, the repeated adsorption–desorption experiments showed that the PEI/PVC-CF remained at high adsorption and desorption efficiencies for RY2, even in 17 cycles.
Collapse
Affiliation(s)
- Zhuo Wang
- Department of Ocean System Engineering, College of Marine Science, Gyeongsang National University, Tongyeong 53064, Korea; (Z.W.); (H.N.P.)
| | - Ha Neul Park
- Department of Ocean System Engineering, College of Marine Science, Gyeongsang National University, Tongyeong 53064, Korea; (Z.W.); (H.N.P.)
| | - Sung Wook Won
- Department of Ocean System Engineering, College of Marine Science, Gyeongsang National University, Tongyeong 53064, Korea; (Z.W.); (H.N.P.)
- Department of Marine Environmental Engineering, College of Marine Science, Gyeongsang National University, Tongyeong 53064, Korea
- Correspondence: ; Tel.: +82-55-772-9136
| |
Collapse
|
5
|
Application of polyethylenimine multi-coated adsorbent for Pd(II) recovery from acidic aqueous solution: batch and fixed-bed column studies. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-020-0716-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Bediako JK, Choi JW, Song MH, Lim CR, Yun YS. Self-coagulating polyelectrolyte complexes for target-tunable adsorption and separation of metal ions. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123352. [PMID: 32659579 DOI: 10.1016/j.jhazmat.2020.123352] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/10/2020] [Accepted: 06/27/2020] [Indexed: 06/11/2023]
Abstract
Metal-containing wastes in aquatic environments lead to public health hazards and valuable resource lose. Metal-bearing wastewater must be treated to remove heavy metals or recover precious metals. To achieve these, target-tunable adsorbents that bind cationic and anionic metal species were developed through facile polyelectrolyte complexation using polyethylenimine (PEI) and polyacrylic acid (PAA). Utilizing the properties of the two polyelectrolytes and pKa variabilities, stable tunable adsorbents were fabricated in water without additional solvents. The homogenous complex adsorbents were strategically synthesized via dissolution in 0.1 M NaOH and drop-wise addition of 1 M HCl, followed by crosslinking with glutaraldehyde. Consequently, the adsorbents in alternating weight ratios of 4:1 and 1:4 (PEI:PAA) exhibited good tunability and adsorption properties. The maximum single metal adsorption capacities were 1609.7 ± 49.6 and 558.6 ± 9.67 mg/g for gold and cadmium, respectively. The pseudo-second-order model fitted the kinetics data more appropriately and was recognized as the rate controlling step. In a binary mixture, gold selectivity was observed to be influenced by adsorption-reduction mechanism, which was elucidated by XRD and XPS. Moreover, the adsorbents demonstrated NO3- sequestration properties, a feat deemed important for environmental remediation of nitrate ions. Finally, sequential separation was achieved with ethylenediaminetetraacetic acid (EDTA) and acidified thiourea.
Collapse
Affiliation(s)
- John Kwame Bediako
- Division of Semiconductor and Chemical Engineering, Jeonbuk National University (Formerly Chonbuk National University), Jeonju, Jeonbuk, 561-756, Republic of Korea; School of Engineering Sciences, University of Ghana, Legon, Ghana
| | - Jong-Won Choi
- Division of Semiconductor and Chemical Engineering, Jeonbuk National University (Formerly Chonbuk National University), Jeonju, Jeonbuk, 561-756, Republic of Korea
| | - Myung-Hee Song
- Division of Semiconductor and Chemical Engineering, Jeonbuk National University (Formerly Chonbuk National University), Jeonju, Jeonbuk, 561-756, Republic of Korea
| | - Che-Ryong Lim
- Division of Semiconductor and Chemical Engineering, Jeonbuk National University (Formerly Chonbuk National University), Jeonju, Jeonbuk, 561-756, Republic of Korea
| | - Yeoung-Sang Yun
- Division of Semiconductor and Chemical Engineering, Jeonbuk National University (Formerly Chonbuk National University), Jeonju, Jeonbuk, 561-756, Republic of Korea.
| |
Collapse
|
7
|
Mallakpour S, Naghdi M. Design and identification of poly(vinyl chloride)/layered double hydroxide@MnO2 nanocomposite films and evaluation of the methyl orange uptake: linear and non-linear isotherm and kinetic adsorption models. NEW J CHEM 2020. [DOI: 10.1039/d0nj01162b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In this work, an adsorbent based on poly(vinyl chloride) (PVC) for the removal of methyl orange (MO) dye is proposed.
Collapse
Affiliation(s)
- Shadpour Mallakpour
- Organic Polymer Chemistry Research Laboratory, Department of Chemistry
- Isfahan University of Technology
- Isfahan
- Islamic Republic of Iran
| | - Mina Naghdi
- Organic Polymer Chemistry Research Laboratory, Department of Chemistry
- Isfahan University of Technology
- Isfahan
- Islamic Republic of Iran
| |
Collapse
|
8
|
Polyethylenimine-crosslinked chitin flake as a biosorbent for removal of Acid Blue 25. KOREAN J CHEM ENG 2019. [DOI: 10.1007/s11814-019-0347-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Xue D, Li T, Chen G, Liu Y, Zhang D, Guo Q, Guo J, Yang Y, Sun J, Su B, Sun L, Shao B. Sequential Recovery of Heavy and Noble Metals by Mussel-Inspired Polydopamine-Polyethyleneimine Conjugated Polyurethane Composite Bearing Dithiocarbamate Moieties. Polymers (Basel) 2019; 11:polym11071125. [PMID: 31269681 PMCID: PMC6680459 DOI: 10.3390/polym11071125] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 01/22/2023] Open
Abstract
Dithiocarbamate-grafted polyurethane (PU) composites were synthesized by anchoring dithiocarbamate (DTC) as a chelating agent to the polyethyleneimine-polydopamine (PE-DA)-functionalized graphene-based PU matrix (PE-DA@GB@PU), as a new adsorbent material for the recovery of Cu2+, Pb2+, and Cd2+ from industrial effluents. After leaching with acidic media to recover Cu2+, Pb2+, and Cd2+, dithiocarbamate-grafted PE-DA@GB@PU (DTC-g-PE-DA@GB@PU) was decomposed and PE-DA@GP was regenerated. The latter was used to recover Pd2+, Pt4+, and Au3+ from the copper leaching residue and anode slime. The present DTC-g-PE-DA@GB@PU and PE-DA@GB@PU composites show high adsorption performance, effective separation, and quick adsorption of the target ions. The morphologies of the composites were studied by scanning electron microscopy and their structures were investigated by Fourier transform infrared (FT-IR) spectroscopy and Raman spectroscopy. The effects of pH values, contact time, and initial metal ion concentration conditions were also studied. An adsorption mechanism was proposed and discussed in terms of the FT-IR results.
Collapse
Affiliation(s)
- Dingshuai Xue
- State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China.
| | - Ting Li
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Guoju Chen
- State Key Laboratory for Comprehensive Utilization of Nickel and Cobalt Resources, Jinchang 737100, China
| | - Yanhong Liu
- State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
| | - Danping Zhang
- State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
| | - Qian Guo
- State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
| | - Jujie Guo
- State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
| | - Yueheng Yang
- State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
| | - Jiefang Sun
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Benxun Su
- State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
| | - Lei Sun
- Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Bing Shao
- School of Public Health, Capital Medical University, Beijing 100069, China
| |
Collapse
|
10
|
Dzhardimalieva GI, Uflyand IE. Design Strategies of Metal Complexes Based on Chelating Polymer Ligands and Their Application in Nanomaterials Science. J Inorg Organomet Polym Mater 2018. [DOI: 10.1007/s10904-018-0841-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|