1
|
Kim HJ, Nam JY, Kim HW, Jwa E. Evaluation of a mixture of livestock wastewater and food waste as a substrate in a continuous-flow microbial electrolysis cell. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176884. [PMID: 39414052 DOI: 10.1016/j.scitotenv.2024.176884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/18/2024]
Abstract
While the efficiency of microbial electrolysis cell (MEC) systems has improved remarkably, their application in continuous reactors and wastewater treatment remains poorly understood. This study evaluated the performance of a continuous-flow MEC using livestock wastewater and food waste as substrates. The MEC system achieved a hydrogen production rate of 5.2 L/L/day using acetate as a substrate, and a rate of 2.9-4.6 L/L/day when real wastewater mixtures were used. In terms of chemical oxygen demand (COD) removal, the system demonstrated high efficiency, with values ranging from 42.3 % to 62.2 % depending on the wastewater composition. Volatile fatty acid (VFA) removal reached up to 72.8 %. The current density averaged 9.9 A/m2 with acetate and decreased to 7.0 and 6.1 A/m2 in phases using wastewater, reflecting the adaptation of the microbial community to the more complex substrates. The microbial community was dominated by Firmicutes, Bacteroidetes, Proteobacteria, and Synergistetes, with Proteobacteria showing a particularly high abundance near the anion exchange membrane (AEM) on the anode. The MEC process demonstrates substantial promise as a sustainable technology for both biohydrogen production and wastewater treatment. With further optimization and scaling, MECs could play a crucial role in the circular economy by converting waste into clean energy while simultaneously treating wastewater, offering a pathway toward more sustainable industrial and environmental practices.
Collapse
Affiliation(s)
- Hee-Jun Kim
- Department of Integrated Water Management, Jeonbuk State Office, 225 Hyoja-ro, Wansan-gu, Jeonju-si 54968, Republic of Korea
| | - Joo-Youn Nam
- Convergence Research Center of Sector Coupling & Integration, Korea Institute of Energy Research, 200 Haemajihaean-ro, Gujwa-eup, Jeju 63357, Republic of Korea; School of Civil and Environmental Engineering, Hankyong National University, 327 Jungang-ro, Anseong 17579, Republic of Korea; Institute of Environment, Hankyong National University, 327 Jungang-ro, Anseong 17579, Republic of Korea.
| | - Hyun-Woo Kim
- Department of Environmental Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Republic of Korea
| | - Eunjin Jwa
- Convergence Research Center of Sector Coupling & Integration, Korea Institute of Energy Research, 200 Haemajihaean-ro, Gujwa-eup, Jeju 63357, Republic of Korea.
| |
Collapse
|
2
|
Ye Y, Peng C, Zhu D, Yang R, Deng L, Wang T, Tang Y, Lu L. Identification of sulfamethazine degraders in swine farm-impacted river and farmland: A comparative study of aerobic and anaerobic environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169299. [PMID: 38104834 DOI: 10.1016/j.scitotenv.2023.169299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/20/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
Sulfonamides (SAs) are extensively used antibiotics in the prevention and treatment of animal diseases, leading to significant SAs pollution in surrounding environments. Microbial degradation has been proposed as a crucial mechanism for removing SAs, but the taxonomic identification of microbial functional guilds responsible for SAs degradation in nature remain largely unexplored. Here, we employed 13C-sulfamethazine (SMZ)-based DNA-stable isotope probing (SIP) and metagenomic sequencing to investigate SMZ degraders in three distinct swine farm wastewater-receiving environments within an agricultural ecosystem. These environments include the aerobic riparian wetland soil, agricultural soil, and anaerobic river sediment. SMZ mineralization activities exhibited significant variation, with the highest rate observed in aerobic riparian wetland soil. SMZ had a substantial impact on the microbial community compositions across all samples. DNA-SIP analysis demonstrated that Thiobacillus, Auicella, Sphingomonas, and Rhodobacter were dominant active SMZ degraders in the wetland soil, whereas Ellin6067, Ilumatobacter, Dongia, and Steroidobacter predominated in the agricultural soil. The genus MND1 and family Vicinamibacteraceae were identified as SMZ degrader in both soils. In contrast, anaerobic SMZ degradation in the river sediment was mainly performed by genera Microvirga, Flavobacterium, Dechlorobacter, Atopostipes, and families Nocardioidaceae, Micrococcaceae, Anaerolineaceae. Metagenomic analysis of 13C-DNA identified key SAs degradation genes (sadA and sadC), and various of dioxygenases, and aromatic hydrocarbon degradation-related functional genes, indicating their involvement in degradation of SMZ and its intermediate products. These findings highlight the variations of indigenous SAs oxidizers in complex natural habitats and emphasize the consideration of applying these naturally active degraders in future antibiotic bioremediation.
Collapse
Affiliation(s)
- Yuqiu Ye
- College of Life Sciences, China West Normal University, Nanchong 637002, China
| | - Chao Peng
- College of Life Sciences, China West Normal University, Nanchong 637002, China; Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637009, China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Ruiyu Yang
- College of Life Sciences, China West Normal University, Nanchong 637002, China
| | - Linjie Deng
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China
| | - Tao Wang
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China
| | - Yun Tang
- College of Life Sciences, China West Normal University, Nanchong 637002, China
| | - Lu Lu
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China; Key Laboratory of Nanchong City of Ecological Environment Protection and Pollution Prevention in Jialing River Basin, China West Normal University, Nanchong 637009, China.
| |
Collapse
|
3
|
Martins GS, Rodrigues T, Lamarca RS, Ayala-Durán SC, da Silva BF, de Lima Gomes PCF. Continuous removal of caffeine in a horizontal-flow anaerobic immobilized biomass bioreactor: identification of transformation products. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:107759-107771. [PMID: 37740804 DOI: 10.1007/s11356-023-29875-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/10/2023] [Indexed: 09/25/2023]
Abstract
Anaerobic bioreactors are an efficient technology for the biodegradation of emerging contaminants in environmental matrices. In this work, a horizontal-flow anaerobic immobilized biomass (HAIB) bioreactor was used to remove caffeine (CAF), which is frequently found in various aqueous matrices. The acrylic bench top bioreactor, with dimensions of 100 × 5.00 cm, was operated with a hydraulic retention time (HRT) of 12 h, during 45 weeks, under mesophilic conditions. The operation was performed in 4 phases: without CAF addition (phase I); CAF spiked at 300 μg L-1 (phase II); CAF at 600 μg L-1 (phase III); and CAF at 900 μg L-1 (phase IV). Samples of bioreactor influent and effluent were analyzed by liquid chromatography/tandem mass spectrometry (LC-MS/MS). The bioreactor removed organic matter (OM) and CAF with efficiencies of 88 and 93%, respectively. The first-order apparent removal constant (Kapp) values for OM and CAF were 0.419 and 0.304 h-1, respectively. Five transformation products (TPs) were identified, with m/z 243, 227, 211, and 181 (two products). The HAIB bioreactor is a suitable system for the removal of CAF present in wastewater, even at a concentration level of µg L-1.
Collapse
Affiliation(s)
- Giovana Silva Martins
- Sao Paulo State University Julio de Mesquita Filho, Institute of Chemistry, Araraquara, Sao Paulo, Brazil
| | - Thaís Rodrigues
- Sao Paulo State University Julio de Mesquita Filho, Institute of Chemistry, Araraquara, Sao Paulo, Brazil
- Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, National Institute for Alternative Technologies of Detection, São Paulo State University (UNESP), Rua Prof. Francisco Degni 55, Araraquara, SP, 14800-060, Brazil
| | - Rafaela Silva Lamarca
- Sao Paulo State University Julio de Mesquita Filho, Institute of Chemistry, Araraquara, Sao Paulo, Brazil
- Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, National Institute for Alternative Technologies of Detection, São Paulo State University (UNESP), Rua Prof. Francisco Degni 55, Araraquara, SP, 14800-060, Brazil
| | - Saidy Cristina Ayala-Durán
- Sao Paulo State University Julio de Mesquita Filho, Institute of Chemistry, Araraquara, Sao Paulo, Brazil
- Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, National Institute for Alternative Technologies of Detection, São Paulo State University (UNESP), Rua Prof. Francisco Degni 55, Araraquara, SP, 14800-060, Brazil
| | | | - Paulo Clairmont Feitosa de Lima Gomes
- Sao Paulo State University Julio de Mesquita Filho, Institute of Chemistry, Araraquara, Sao Paulo, Brazil.
- Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, National Institute for Alternative Technologies of Detection, São Paulo State University (UNESP), Rua Prof. Francisco Degni 55, Araraquara, SP, 14800-060, Brazil.
| |
Collapse
|
4
|
Mulla SI, Bagewadi ZK, Faniband B, Bilal M, Chae JC, Bankole PO, Saratale GD, Bhargava RN, Gurumurthy DM. Various strategies applied for the removal of emerging micropollutant sulfamethazine: a systematic review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:71599-71613. [PMID: 33948844 DOI: 10.1007/s11356-021-14259-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
Pharmaceutical active drug(s) especially sulfamethazine (SMZ) is considered as one of the major emerging microcontaminants due its long-term existence in the environmental system and that can influence on the developmental of antibacterial resistance genes. Because of this region it has a great concern in the aquatic system. Moreover, the vast utilization of SMZ, excretion of undigested portion by animals and also through dumping or mishandling, SMZ is frequently detected in various samples (including water) of different places and its surroundings. Additionally, reports shown it has toxic effect against microalgae and mice. Thus, that can lead to several investigators, focusing on removal of SMZ alone or in combination of other drugs in wastewater treatment plants (WWTPs) either by abiotic and/or biotic treatment methods. The present review provides an overview of the toxic effect of SMZ and SMZ degradation/removal in abiotic and biotic processes. Finally, reveals the need of further implication of integrated treatments (including engineered biological mediators) to understand ideal biological approaches for the mineralization of SMZ.
Collapse
Affiliation(s)
- Sikandar I Mulla
- Department of Biochemistry, School of Applied Sciences, REVA University, Bangalore, 560064, India.
- Division of Biotechnology, Jeonbuk National University, Iksan, 54596, Republic of Korea.
| | - Zabin K Bagewadi
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka, 580031, India
| | - Basheerabegum Faniband
- Department of Physics, School of Applied Sciences, REVA University, Bangalore, 560064, India
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Jong-Chan Chae
- Division of Biotechnology, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Paul Olusegun Bankole
- Department of Pure and Applied Botany, College of Biosciences, Federal University of Agriculture Abeokuta, Ogun State, Abeokuta, 234039, Nigeria
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | - Ram Naresh Bhargava
- Department of Environmental Microbiology (DEM), School for Environmental Sciences (SES), Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Uttar Pradesh, , Lucknow 226 025, India
| | | |
Collapse
|
5
|
Sella CF, Carneiro RB, Sabatini CA, Sakamoto IK, Zaiat M. Can different inoculum sources influence the biodegradation of sulfamethoxazole antibiotic during anaerobic digestion? BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2021. [DOI: 10.1007/s43153-021-00178-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Macêdo WV, Duarte Oliveira GH, Zaiat M. Tetrabromobisphenol A (TBBPA) anaerobic biodegradation occurs during acidogenesis. CHEMOSPHERE 2021; 282:130995. [PMID: 34116313 DOI: 10.1016/j.chemosphere.2021.130995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/19/2021] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
Abstract
This is the first study to bring evidence on the anaerobic biodegradation of TBBPA occurring during acidogenesis in domestic sewage at environmentally relevant concentrations by complex microbial communities. This was accomplished by continuously operating two anaerobic structured bed reactors (ASTBR) for over 100 days under acidogenic (Acidogenic Reactor, AR) and multistep methanogenic (Methanogenic Reactor, MR) conditions. In the AR, the temporal carbohydrates consumption and the acetic acid production were strongly correlated with TBBPA removal by the Pearson's test. The spatial concentration of TBBPA and carbohydrates along the MR and the kinetic degradation profiles corroborate the AR results. It is hypothesized that TBBPA biodegradation in the studied conditions occurs during acidogenesis via the cometabolism supported by non-specific enzymes and the metabolism (dehalorespiration) established by electrons donors such as H2, which are both produced during the macrocomponents breakdown in the early stages of the anaerobic digestion. The TBBPA mass balance showed that approximately 86.8 ± 0.05% and 97 ± 0.01% of the removed TBBPA was biodegraded in the AR and MR, respectively. Furthermore, TBBPA biodegradation went further than reductive debromination as total phenols were detected in the reactors' effluent.
Collapse
Affiliation(s)
- Williane Vieira Macêdo
- Laboratory of Biological Processes, Center for Research, Development and Innovation in Environmental Engineering, São Carlos School of Engineering, University of São Paulo (USP), 1100, João Dagnone Ave., Santa Angelina, Zip Code, 13563-120, São Carlos, SP, Brazil.
| | - Guilherme Henrique Duarte Oliveira
- Laboratory of Biological Processes, Center for Research, Development and Innovation in Environmental Engineering, São Carlos School of Engineering, University of São Paulo (USP), 1100, João Dagnone Ave., Santa Angelina, Zip Code, 13563-120, São Carlos, SP, Brazil.
| | - Marcelo Zaiat
- Laboratory of Biological Processes, Center for Research, Development and Innovation in Environmental Engineering, São Carlos School of Engineering, University of São Paulo (USP), 1100, João Dagnone Ave., Santa Angelina, Zip Code, 13563-120, São Carlos, SP, Brazil.
| |
Collapse
|
7
|
Wang S, Yuan R, Chen H, Wang F, Zhou B. Anaerobic biodegradation of four sulfanilamide antibiotics: Kinetics, pathways and microbiological studies. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125840. [PMID: 34492796 DOI: 10.1016/j.jhazmat.2021.125840] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 03/23/2021] [Accepted: 04/05/2021] [Indexed: 06/13/2023]
Abstract
Large amounts of sulfanilamide antibiotics (SAs) have been excreted into the manure. In this study, the anaerobic biodegradation of four kinds of SAs including sulfaquinoxaline (SQX), sulfamethoxazole (SMX), sulfamethoxine (SMD) and sulfathiazole (STZ) was investigated. The degradation rates of SQX and STZ decreased with the increase of the concentrations of other organics, but those of SMX and SMD were less affected. The average degradation rates of SAs were in the order of SMX >SMD ≈QX >STZ, with the best degradation rate constants of 0.30125, 0.14752, 0.16696, and 0.06577 /d, respectively. STZ had the greatest effect on the population richness of microbes, whereas SQX had the largest impact on the population diversity. The degradation rates of SAs were positively correlated with the abundances of Proteobacteria and Bacteroidetes, and negatively correlated with the abundance of Firmicutes. The common degradation pathways of SAs were S-N cleavage and substitution. The specific functional groups of SQX, SMX and SMD, including quinoxaline, isoxazole and pyrimidine rings, could be opened, but the thiazole ring of STZ was difficult to be decomposed. After the rings of the specific functional groups were opened, they would be further substituted or decomposed to be products with small molecules.
Collapse
Affiliation(s)
- Shaona Wang
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; CECEP&CIECC Huarui Technology Co., Ltd, Beijing 100034, China
| | - Rongfang Yuan
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Huilun Chen
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Fei Wang
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Beihai Zhou
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
8
|
Fonseca RF, de Oliveira GHD, Zaiat M. Modeling anaerobic digestion metabolic pathways for antibiotic-contaminated wastewater treatment. Biodegradation 2020; 31:341-368. [PMID: 33040265 DOI: 10.1007/s10532-020-09914-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 09/18/2020] [Indexed: 11/26/2022]
Abstract
Anaerobic digestion has been used to treat antibiotic-contaminated wastewaters. However, it is not always effective, since biodegradation is the main removal mechanism and depends on the compound chemical characteristics and on how microbial metabolic pathways are affected by the reactor operational conditions and hydrodynamic characteristics. The aim of this study was to develop a mathematical model to describe 16 metabolic pathways of an anaerobic process treating sulfamethazine-contaminated wastewater. Contois kinetics and a useful reaction volume term were used to represent the biomass concentration impact on bed porosity in a N continuously stirred tank modeling approach. Two sulfamethazine removal hypotheses were evaluated: an apparent enzymatic reaction and a cometabolic degradation. Additionally, long-term modeling was developed to describe how the operational conditions affected the performance of the process. The best degradation correlations were associated with the consumption of carbohydrates, proteins and it was inversely related to acetic acid production during acidogenesis.
Collapse
Affiliation(s)
- Rafael Frederico Fonseca
- Biological Processes Laboratory, Center for Research, Development and Innovation in Environmental Engineering, São Carlos School of Engineering (EESC), University of São Paulo (USP), Engenharia Ambiental - Bloco 4-F, Av. João Dagnone, 1100 - Santa Angelina, São Carlos, SP, 13.563-120, Brazil.
| | - Guilherme Henrique Duarte de Oliveira
- Biological Processes Laboratory, Center for Research, Development and Innovation in Environmental Engineering, São Carlos School of Engineering (EESC), University of São Paulo (USP), Engenharia Ambiental - Bloco 4-F, Av. João Dagnone, 1100 - Santa Angelina, São Carlos, SP, 13.563-120, Brazil
| | - Marcelo Zaiat
- Biological Processes Laboratory, Center for Research, Development and Innovation in Environmental Engineering, São Carlos School of Engineering (EESC), University of São Paulo (USP), Engenharia Ambiental - Bloco 4-F, Av. João Dagnone, 1100 - Santa Angelina, São Carlos, SP, 13.563-120, Brazil
| |
Collapse
|
9
|
Occurrence and Removal of Veterinary Antibiotics in Livestock Wastewater Treatment Plants, South Korea. Processes (Basel) 2020. [DOI: 10.3390/pr8060720] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this study, livestock wastewater treatment plants in South Korea were monitored to determine the characteristics of influent and effluent wastewater, containing four types of veterinary antibiotics (sulfamethazine, sulfathiazole, chlortetracycline, oxytetracycline), and the removal efficiencies of different treatment processes. Chlortetracycline had the highest average influent concentration (483.7 μg/L), followed by sulfamethazine (251.2 μg/L), sulfathiazole (230.8 μg/L) and oxytetracycline (25.7 μg/L), at five livestock wastewater treatment plants. Sulfathiazole had the highest average effluent concentration (28.2 μg/L), followed by sulfamethazine (20.8 μg/L) and chlortetracycline (11.5 μg/L), while no oxytetracycline was detected. For veterinary antibiotics in the wastewater, a removal efficiency of at least 90% was observed with five types of treatment processes, including a bio-ceramic sequencing batch reactor, liquid-phase flotation, membrane bioreactor, bioreactor plus ultrafiltration (BIOSUF) and bio best bacillus systems. Moreover, this study evaluated the removal efficiency via laboratory-scale experiments on the conventional contaminants, such as organic matter, nitrogen, phosphorus and veterinary antibiotics. This was done using the hydraulic retention time (HRT), under three temporal conditions (14 h, 18 h, 27 h), using the anaerobic–anoxic–oxic (A2O) process, in an attempt to assess the combined livestock wastewater treatment process where the livestock wastewater is treated until certain levels of water quality are achieved, and then the effluent is discharged to nearby sewage treatment plants for further treatment. The removal efficiencies of veterinary antibiotics, especially oxytetracycline and chlortetracycline, were 86.5–88.8% and 87.9–90.8%, respectively, exhibiting no significant differences under various HRT conditions. The removal efficiency of sulfamethazine was at least 20% higher at HRT = 27 h than at HRT = 14 h, indicating that sulfamethazine was efficiently removed in the A2O process with increased HRT. This study is expected to promote a comprehensive understanding of the behavior and removal of veterinary antibiotics in the livestock wastewater treatment plants of South Korea.
Collapse
|
10
|
Cheng D, Ngo HH, Guo W, Chang SW, Nguyen DD, Liu Y, Shan X, Nghiem LD, Nguyen LN. Removal process of antibiotics during anaerobic treatment of swine wastewater. BIORESOURCE TECHNOLOGY 2020; 300:122707. [PMID: 31926473 DOI: 10.1016/j.biortech.2019.122707] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/26/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
High concentrations of antibiotics in swine wastewater pose potentially serious risks to the environment, human and animal health. Identifying the mechanism for removing antibiotics during the anaerobic treatment of swine wastewater is essential for reducing the serious damage they do to the environment. In this study, batch experiments were conducted to investigate the biosorption and biodegradation of tetracycline and sulfonamide antibiotics (TCs and SMs) in anaerobic processes. Results indicated that the removal of TCs in the anaerobic reactor contributed to biosorption, while biodegradation was responsible for the SMs' removal. The adsorption of TCs fitted well with the pseudo-second kinetic mode and the Freundlich isotherm, which suggested a heterogeneous chemisorption process. Cometabolism was the main mechanism for the biodegradation of SMs and the process fitted well with the first-order kinetic model. Microbial activity in the anaerobic sludge might be curtailed due to the presence of high concentrations of SMs.
Collapse
Affiliation(s)
- Dongle Cheng
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, Department of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China.
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, Department of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Soon Wang Chang
- Department of Environmental Energy Engineering, Kyonggi University, 442-760, Republic of Korea
| | - Dinh Duc Nguyen
- Department of Environmental Energy Engineering, Kyonggi University, 442-760, Republic of Korea; Institution of Research and Development, Duy Tan University, Da Nang, Viet Nam
| | - Yiwen Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Xue Shan
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, Department of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Long Duc Nghiem
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Luong Ngoc Nguyen
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| |
Collapse
|
11
|
Carneiro RB, Sabatini CA, Santos-Neto ÁJ, Zaiat M. Feasibility of anaerobic packed and structured-bed reactors for sulfamethoxazole and ciprofloxacin removal from domestic sewage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 678:419-429. [PMID: 31077920 DOI: 10.1016/j.scitotenv.2019.04.437] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/29/2019] [Accepted: 04/29/2019] [Indexed: 05/24/2023]
Abstract
This study assessed the applicability of fixed bed bioreactors in two configurations - anaerobic structured bed reactor (ASBR) and anaerobic packed bed reactor (APBR) - in the removal of Sulfamethoxazole (SMX) and Ciprofloxacin (CIP), two antibiotics frequently detected in sanitary sewage. The problem of these pharmaceuticals as emerging contaminants in conventional sewage treatment systems is mainly because they encourage the development and spread of resistance genes in bacteria. Both reactors had similar performances, and the antibiotics were highly removed - APBR: 85 ± 10% for SMX and 81 ± 16% for CIP; ASBR: 83 ± 12% for SMX and 81 ± 15% for CIP. The ASBR showed to be potentially more feasible in operating and economic terms compared to the APBR, as the former presents a smaller amount of support material in the bed. SMX was completely biotransformed, while the influence of the sorption mechanism was observed for CIP, as its presence was detected sorbed onto biomass throughout the reaction bed of the reactors, with a partition coefficient (log KD) of around 2.8 L·kg-1TSS. The degradation kinetics of the pharmaceuticals were fitted using a first-order kinetic model, whereby the reactors behaved as plug flow ones, indicating the possibility of optimizing the operation for a hydraulic retention time of 6 h. The removal kinetics was more favorable for CIP (higher apparent constant kinetic - kCIPapp > kSMXapp), since its biodegradation is linked to the biomass, which is more concentrated in the bed bottom layer. The experimental results showed the potential of anaerobic fixed bed reactors in removing environmentally relevant concentrations of SMX and CIP found in sewage.
Collapse
Affiliation(s)
- Rodrigo B Carneiro
- Laboratory of Biological Processes, Sao Carlos School of Engineering, University of Sao Paulo (USP), 1100, João Dagnone Ave., Santa Angelina, 13563-120, São Carlos, São Paulo, Brazil.
| | - Carolina A Sabatini
- Laboratory of Biological Processes, Sao Carlos School of Engineering, University of Sao Paulo (USP), 1100, João Dagnone Ave., Santa Angelina, 13563-120, São Carlos, São Paulo, Brazil
| | - Álvaro J Santos-Neto
- Laboratory of Chromatography, Institute of Chemistry of Sao Carlos, University of Sao Paulo (USP), 400, Trabalhador São-Carlense Ave., 13566-590, São Carlos, São Paulo, Brazil.
| | - Marcelo Zaiat
- Laboratory of Biological Processes, Sao Carlos School of Engineering, University of Sao Paulo (USP), 1100, João Dagnone Ave., Santa Angelina, 13563-120, São Carlos, São Paulo, Brazil.
| |
Collapse
|
12
|
Oliveira CA, Penteado ED, Tomita IN, Santos-Neto ÁJ, Zaiat M, Silva BFD, Lima Gomes PCF. Removal kinetics of sulfamethazine and its transformation products formed during treatment using a horizontal flow-anaerobic immobilized biomass bioreactor. JOURNAL OF HAZARDOUS MATERIALS 2019; 365:34-43. [PMID: 30408685 DOI: 10.1016/j.jhazmat.2018.10.077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 05/17/2023]
Abstract
Sulfamethazine (SMZ) is an antibiotic from sulfonamides class widely used in veterinary medicine and reported in wastewater and sewage. Thus, it is essential to study technologies to reduce SMZ present in the aquatic environment. Anaerobic bioreactors are a low-cost technology applied for wastewater treatment. The objective of this paper is to study kinetics parameters related to SMZ removal using a horizontal flow-anaerobic immobilized biomass reactor (HAIB) and to evaluate its transformation products formed during this treatment. The bioreactor was operated at mesophilic condition with a hydraulic retention time of 12 h. The removal of SMZ was evaluated at three different concentrations: 200 ng L-1 (phase I), 400 ng l-1 (phase II) and 600 ng L-1 (phase III). The apparent first-order removal constant obtained for chemical oxygen demand was 0.885 ± 0.094 h-1 while SMZ showed a removal constant of 0.356 h-1. SMZ was removed with an efficiency of 56.0 ± 13.0 % (phase I); 62.0 ± 12.0 % (phase II) and 62.0 ± 6.00 % (phase III). Seven transformation products were detected and one of these with m/z 233 is reported for the first-time. The HAIB bioreactor has a potential to assist in wastewater treatment to remove contaminants at ng L-1 concentration level.
Collapse
Affiliation(s)
- Cristiane Arruda Oliveira
- Biological Processes Laboratory, Center for Research, Development and Innovation in Environmental Engineering, São Carlos School of Engineering (EESC), University of São Paulo (USP), Environmental Engineering - Bloco 4-F, Av. João Dagnone, 1100 - Santa Angelina, 13.563-120, São Carlos, SP, Brazil
| | - Eduardo D Penteado
- Biological Processes Laboratory, Center for Research, Development and Innovation in Environmental Engineering, São Carlos School of Engineering (EESC), University of São Paulo (USP), Environmental Engineering - Bloco 4-F, Av. João Dagnone, 1100 - Santa Angelina, 13.563-120, São Carlos, SP, Brazil; Federal University of São Paulo, Campus Baixada Santista, Marine Department, Rua Doutor Carvalho de Mendonça, 144, Encruzilhada, Santos, 11070-100, Brazil
| | - Inês N Tomita
- São Carlos Institute of Chemistry, University of São Paulo, Postal Code 780, 13560-970, São Carlos, SP, Brazil
| | - Álvaro J Santos-Neto
- São Carlos Institute of Chemistry, University of São Paulo, Postal Code 780, 13560-970, São Carlos, SP, Brazil
| | - Marcelo Zaiat
- Biological Processes Laboratory, Center for Research, Development and Innovation in Environmental Engineering, São Carlos School of Engineering (EESC), University of São Paulo (USP), Environmental Engineering - Bloco 4-F, Av. João Dagnone, 1100 - Santa Angelina, 13.563-120, São Carlos, SP, Brazil
| | - Bianca Ferreira da Silva
- Institute of Chemistry, Department of Analytical Chemistry, São Paulo State University (UNESP), 14800-060, P.O. Box 355, Araraquara, SP, Brazil
| | - Paulo Clairmont F Lima Gomes
- Institute of Chemistry, Department of Analytical Chemistry, São Paulo State University (UNESP), 14800-060, P.O. Box 355, Araraquara, SP, Brazil.
| |
Collapse
|
13
|
Enhanced photocatalytic degradation of sulfamethazine by Bi-doped TiO2 nano-composites supported by powdered activated carbon under visible light irradiation. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.10.040] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Oliveira BM, Zaiat M, Oliveira GHD. The contribution of selected organic substrates to the anaerobic cometabolism of sulfamethazine. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2019; 54:263-270. [PMID: 30628525 DOI: 10.1080/03601234.2018.1553909] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Biodegradation of organic micropollutants is likely to occur due to cometabolism by particular microbial groups. In an effort to identify the stages of anaerobic digestion potentially involved in the biodegradation of the veterinary antimicrobial sulfamethazine (SMZ), the influence of selected carbon sources (sucrose, glucose, fructose, ethanol, meat extract, cellulose, soluble starch, soy oil, acetic acid, propionic acid and butyric acid) on SMZ removal by anaerobic sludge was evaluated in short-term batch experiments. Adsorption to the granular sludge constituted a significant removal mechanism, accounting for 39% of SMZ removal in control experiments. The presence of glucose, fructose, sucrose and meat extract exerted an inducing effect on SMZ degradation, resulting in removal efficiencies of 54, 53, 58 and 61%, respectively, indicating the occurrence of cometabolism. Time courses of sucrose and meat extract degradation revealed markedly distinct organic acid profiles but resulted in similar SMZ removals. Temporal profiles of acetic and propionic acid degradation were not associated with SMZ removal, as changes in SMZ concentration were observed even after the organic acids had been completely removed. The experimental results suggest that SMZ cometabolism is not associated to sucrose hydrolysis, acetoclastic methanogenesis and acetogenesis from propionic acid.
Collapse
Affiliation(s)
- Bruna M Oliveira
- a Laboratory of Biological Processes, Center for Research, Development and Innovation in Environmental Engineering, São Carlos School of Engineering , University of São Paulo (USP) , São Carlos , São Paulo , Brazil
| | - Marcelo Zaiat
- a Laboratory of Biological Processes, Center for Research, Development and Innovation in Environmental Engineering, São Carlos School of Engineering , University of São Paulo (USP) , São Carlos , São Paulo , Brazil
| | - Guilherme H D Oliveira
- a Laboratory of Biological Processes, Center for Research, Development and Innovation in Environmental Engineering, São Carlos School of Engineering , University of São Paulo (USP) , São Carlos , São Paulo , Brazil
| |
Collapse
|
15
|
Chen J, Xie S. Overview of sulfonamide biodegradation and the relevant pathways and microorganisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 640-641:1465-1477. [PMID: 30021313 DOI: 10.1016/j.scitotenv.2018.06.016] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 06/02/2018] [Accepted: 06/02/2018] [Indexed: 06/08/2023]
Abstract
Sulfonamide antibiotics have aroused increasing concerns due to their ability to enhance the resistance of pathogenic bacteria and promote the spread of antibiotic resistance. Biodegradation plays an important role in sulfonamide dissipation in both natural and engineered ecosystems. In this article, we provided an overview of sulfonamide biodegradation in different systems and summarized the relevant sulfonamide-degrading species and metabolic pathways. The removal of sulfonamides depends on a variety of factors, such as the type and initial concentration of sulfonamides, the properties of water or soil, and treatment process. The removal efficiency of sulfonamides by engineered ecosystems can be improved by optimizing their operating conditions. Much higher sulfonamide removal was also observed in upgraded or advanced treatment systems than in conventional activated sludge systems. Ammonia oxidation might promote sulfonamide biodegradation. In addition, sulfonamide-degraders from different bacterial genera have been isolated and classified, but no bioaugmentation practice has been reported. Different pathways have been detected in sulfonamide biodegradation. Further efforts will be necessary to elucidate in-situ degraders and the metabolic pathways and functional genes of sulfonamide biodegradation.
Collapse
Affiliation(s)
- Jianfei Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
16
|
Fonseca RF, Oliveira GHDD, Zaiat M. Development of a mathematical model for the anaerobic digestion of antibiotic-contaminated wastewater. Chem Eng Res Des 2018. [DOI: 10.1016/j.cherd.2018.04.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|