1
|
Lamprea-Pineda PA, Carmona FJ, Demeestere K, González-Cortés JJ, Van Langenhove H, Walgraeve C, Lebrero R. Effect of surfactant type and concentration on the gas-liquid mass transfer in biotrickling filters used for air pollution control. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:121968. [PMID: 39068787 DOI: 10.1016/j.jenvman.2024.121968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Volatile organic compounds (VOCs) emitted into the atmosphere negatively affect the environment and human health. Biotrickling filtration, an effective technology for treating VOC-laden waste gases, faces challenges in removing hydrophobic VOCs due to their low water solubility and therefore limited bioavailability to microorganisms. Consequently, the addition of (bio)surfactants has proven to be a promising strategy to enhance the removal of hydrophobic VOCs in biotrickling filters (BTFs). Yet, up to now, no single study has ever performed a mass transfer characterization of a BTF under (bio)surfactants addition. In this study, the effect of (bio)surfactant addition on the gas-liquid mass transfer characteristics of two BTFs was measured by using oxygen (O2) as a model gas. Through an empirical correlation, the mass transfer coefficients (kLa) of two hydrophobic VOCs, toluene and hexane, which are of industrial and environmental significance, were estimated. One BTF was filled with expanded perlite, while the other with a mixture of compost and wood chips (C + WC). Both BTFs were operated under different liquid velocities (UL: 0.95 and 1.53 m h-1). Saponin, a biological surfactant, and Tween 80, a synthetic surfactant, were added to the recirculating liquid at different critical micelle concentrations (CMCs: 0-3 CMC). The higher interfacial and surface area of the perlite BTF compared to the C + WC BTF led to higher kLaO2 values regardless of the operational condition: 308 ± 18-612 ± 19 h-1 versus 42 ± 4-177 ± 24 h-1, respectively. Saponin addition at 0.5 and 1 CMC had positive effects on the perlite BTF, with kLaO2 values two times higher compared to those at 0 CMC. Tween 80 exhibited a neutral or slightly positive effect on the mass transfer of both BTFs under all conditions. Overall, the CMC, along with the physical characteristics of the packing materials and the operational conditions evaluated explained the results obtained. This study provides fundamental data essential to improve the performance and design of BTFs for hydrophobic VOCs abatement.
Collapse
Affiliation(s)
- Paula Alejandra Lamprea-Pineda
- Research Group EnVOC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium; Institute of Sustainable Processes (ISP), University of Valladolid, C/Dr. Margelina, s/n, 47011, Valladolid, Spain
| | - Francisco Javier Carmona
- Institute of Sustainable Processes (ISP), University of Valladolid, C/Dr. Margelina, s/n, 47011, Valladolid, Spain; Surfaces and Porous Materials (SMAP), Associated Research Unit to CSIC, University of Valladolid, Paseo Belén 7, E-47011, Valladolid, Spain
| | - Kristof Demeestere
- Research Group EnVOC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Jose Joaquin González-Cortés
- Research Group EnVOC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium; Department of Chemical Engineering and Food Technology, Vine and Agri-Food Research Institute (IVAGRO), University of Cádiz, Pol. Río San Pedro s/n, Puerto Real, 11510, Cádiz, Spain
| | - Herman Van Langenhove
- Research Group EnVOC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Christophe Walgraeve
- Research Group EnVOC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| | - Raquel Lebrero
- Institute of Sustainable Processes (ISP), University of Valladolid, C/Dr. Margelina, s/n, 47011, Valladolid, Spain.
| |
Collapse
|
2
|
Li J, Zou J, Wei X. Modeling of CSTR flow field for Agaricus bisporus residue fermentation based on CFD numerical simulation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:17437-17448. [PMID: 36194331 DOI: 10.1007/s11356-022-23388-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Agaricus bisporus production gets a lot of residues, which could be fermented by a continuous stirred tank reactor (CSTR). This research was conducted to study the characteristics of the multiphase flow field in the reactor and its influence on the efficiency of biogas production in the CSTR fermentation process of Agaricus bisporus residue by using CFD numerical simulation technique. The aim is to reveal the relationship between the reactor operating conditions, flow field characteristics, and biogas production efficiency at the micro-level. We compared the results of different turbulence models by evaluating the power quotients and flow quotients with the experimental results to derive the most suitable flow field model inside the reactor for the Agaricus bisporus residues. The results showed that, under the condition that the number of grids does not affect the simulation results, and considering the model accuracy and efficiency, the numerical method can be chosen as the multiple reference frame (MRF) method of the second-order upwind discrete scheme with the realizable k - ε model. In this way, we can make use of edible mushroom residue as a substrate for resource utilization and provide basic data and theoretical basis for the design and scale-up with anaerobic fermentation to biogas reactor.
Collapse
Affiliation(s)
- Jiayu Li
- College of Mechanical and Electronic Engineering, Fujian Agriculture and Forestry University, Fuzhou, 350100, Fujian, China
| | - Jinping Zou
- College of Mechanical and Electronic Engineering, Fujian Agriculture and Forestry University, Fuzhou, 350100, Fujian, China
| | - Xuan Wei
- College of Mechanical and Electronic Engineering, Fujian Agriculture and Forestry University, Fuzhou, 350100, Fujian, China.
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| |
Collapse
|
3
|
Barros PL, Ein-Mozaffari F, Lohi A. Power Consumption Characterization of Energy-Efficient Aerated Coaxial Mixers Containing Yield-Stress Biopolymer Solutions. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Paloma L. Barros
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Farhad Ein-Mozaffari
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Ali Lohi
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| |
Collapse
|
4
|
Rodríguez Y, García S, Pérez R, Lebrero R, Muñoz R. Optimization of nitrogen feeding strategies for improving polyhydroxybutyrate production from biogas by Methylocystis parvus str. OBBP in a stirred tank reactor. CHEMOSPHERE 2022; 299:134443. [PMID: 35364084 DOI: 10.1016/j.chemosphere.2022.134443] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 03/07/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
The design of efficient cultivation strategies to produce bioplastics from biogas is crucial for the implementation of this biorefinery process. In this work, biogas-based polyhydroxybutyrate (PHB) production and CH4 biodegradation performance was investigated for the first time in a stirred tank bioreactor inoculated with Methylocystis parvus str. OBBP. Decreasing nitrogen loading rates in continuous mode and alternating feast:famine regimes of 24 h-cycles, and alternating feast:famine regimes of 24 h:24 h and 24 h:48 h were tested. Continuous N feeding did not support an effective PHB production despite the occurrence of nitrogen limiting conditions. Feast-famine cycles of 24 h:24 h (with 50% stoichiometric nitrogen supply) supported the maximum PHB production (20 g-PHB m-3 d-1) without compromising the CH4-elimination capacity (25 g m-3 h-1) of the system. Feast:famine ratios ≤1:2 entailed the deterioration of process performance at stoichiometric nitrogen inputs ≤60%.
Collapse
Affiliation(s)
- Yadira Rodríguez
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011, Valladolid, Spain; Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011, Valladolid, Spain.
| | - Silvia García
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011, Valladolid, Spain; Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011, Valladolid, Spain.
| | - Rebeca Pérez
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011, Valladolid, Spain; Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011, Valladolid, Spain.
| | - Raquel Lebrero
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011, Valladolid, Spain; Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011, Valladolid, Spain.
| | - Raúl Muñoz
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011, Valladolid, Spain; Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011, Valladolid, Spain.
| |
Collapse
|
5
|
Pérez V, Moltó JL, Lebrero R, Muñoz R. Ectoine Production from Biogas in Waste Treatment Facilities: A Techno-Economic and Sensitivity Analysis. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2021; 9:17371-17380. [PMID: 34976443 PMCID: PMC8715504 DOI: 10.1021/acssuschemeng.1c06772] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/09/2021] [Indexed: 06/14/2023]
Abstract
The capacity of haloalkaliphilic methanotrophic bacteria to synthesize ectoine from CH4-biogas represents an opportunity for waste treatment plants to improve their economic revenues and align their processes to the incoming circular economy directives. A techno-economic and sensitivity analysis for the bioconversion of biogas into 10 t ectoine·y-1 was conducted in two stages: (I) bioconversion of CH4 into ectoine in a bubble column bioreactor and (II) ectoine purification via ion exchange chromatography. The techno-economic analysis showed high investment (4.2 M€) and operational costs (1.4 M€·y-1). However, the high margin between the ectoine market value (600-1000 €·kg-1) and the estimated ectoine production costs (214 €·kg-1) resulted in a high profitability for the process, with a net present value evaluated at 20 years (NPV20) of 33.6 M€. The cost sensitivity analysis conducted revealed a great influence of equipment and consumable costs on the ectoine production costs. In contrast to alternative biogas valorization into heat and electricity or into low added-value bioproducts, biogas bioconversion into ectoine exhibited high robustness toward changes in energy, water, transportation, and labor costs. The worst- and best-case scenarios evaluated showed ectoine break-even prices ranging from 158 to 275 €·kg-1, ∼3-6 times lower than the current industrial ectoine market value.
Collapse
Affiliation(s)
- Víctor Pérez
- Institute
of Sustainable Processes, University of
Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain
- Department
of Chemical Engineering and Environmental Technology, School of Industrial
Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain
| | - Jose Luis Moltó
- Activatec
Ltd, Biocity, Pennyfoot
St, NG11GFNottingham, United Kingdom
| | - Raquel Lebrero
- Institute
of Sustainable Processes, University of
Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain
- Department
of Chemical Engineering and Environmental Technology, School of Industrial
Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain
| | - Raúl Muñoz
- Institute
of Sustainable Processes, University of
Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain
- Department
of Chemical Engineering and Environmental Technology, School of Industrial
Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain
| |
Collapse
|