1
|
Liu C, Huang Y, Wang X, Zuo W, Meng J, Bu C, Zhang J, Xie H. Experimental study on adsorption of PbCl 2 and CdCl 2 on kaolin modified by leachates from municipal solid waste incineration power plant. CHEMOSPHERE 2023; 340:139970. [PMID: 37634585 DOI: 10.1016/j.chemosphere.2023.139970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
Six kinds of waste liquids produced in the treatment process of leachate in a waste incineration plant were used to improve the adsorption effect of raw kaolin on heavy metal chloride. The capture performances of these modified kaolin on PbCl2 and CdCl2 vapor were investigated in a two-stage fixed bed combustor. The results indicated that the adsorption effects of raw kaolin on PbCl2 and CdCl2 were improved in some experimental groups, main effective component was Na+ in the leachate, but the influences did not change regularly with the increase in the concentration of Na + introduced into kaolin. The adsorbents formed by modifying 10 g kaolin with 21.25 ml leachate 2 were the best adsorbents for PbCl2 and CdCl2. The capture efficiencies of PbCl2 and CdCl2 can reach 95% and 63.88%, with the increase of 36% and 53%, respectively. Using leachate as modifying agent had the same effect as directly using Na+. Adsorptions of PbCl2 and CdCl2 were still mainly chemical adsorptions. After adsorption of PbCl2, the modified kaolin not only generated PbA12Si2O8, but also produced other chemical compounds. The adsorption of CdCl2 by modified kaolin did not generate CdAl2Si2O8, but other chemical reactions occurred to generate CdAl2O4 and Pb8Cd (Si2O7)3.
Collapse
Affiliation(s)
- Changqi Liu
- Engineering Laboratory for Energy System Process Conversion & Emission Control Technology of Jiangsu Province, School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing, 210023, China; Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Yaji Huang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China.
| | - Xinye Wang
- Engineering Laboratory for Energy System Process Conversion & Emission Control Technology of Jiangsu Province, School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Wu Zuo
- Jiangsu Environmental Engineering Technology Co., Ltd., Nanjing, 210019, China
| | - Junguang Meng
- Engineering Laboratory for Energy System Process Conversion & Emission Control Technology of Jiangsu Province, School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Changsheng Bu
- Engineering Laboratory for Energy System Process Conversion & Emission Control Technology of Jiangsu Province, School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Jubing Zhang
- Engineering Laboratory for Energy System Process Conversion & Emission Control Technology of Jiangsu Province, School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Hao Xie
- Engineering Laboratory for Energy System Process Conversion & Emission Control Technology of Jiangsu Province, School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
2
|
Chorographic assessment on the overburden of single-use plastics bio-medical wastes risks and management during COVID-19 pandemic in India. TOTAL ENVIRONMENT RESEARCH THEMES 2023; 7:100062. [PMCID: PMC10275774 DOI: 10.1016/j.totert.2023.100062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/25/2023] [Accepted: 06/16/2023] [Indexed: 09/03/2023]
Abstract
Amid the rapid influx of SARS‑CoV‑2 patients in various hospitals across India, the disposal of COVID-19 bio-medical wastes become a major challenging crisis in these days. As a consequence, the unexpected surge of utilizing Single-Use Plastics (SUP) from Personal Protection Equipments (PPEs) in particular protective gloves, nose masks, body aprons. is common in day to day and estimated as minimum of 730 g of waste can be generated per day/person in India. The research objectives on a national scale focuses that the document being active belongings, communications and preparations associated with hospital desecrates care and the existing facts on the physical condition and ecological risk on health care biomedical throw away which dropped during the SARS‑CoV‑2 virus disease pandemic. Based on number of confirmed COVID-19 cases 5,78,578 and 3,92,1149 health care workers as of 1st July 2020 (includes active, recovered and deaths) in India is assessed using GIS that an average 3150 tons per day of SUP waste generated only due to COVID-19 even though the hospitals make all safety measures to put away the clinical wastes. The States like Maharashtra (484.12tons/day), Tamil Nadu (337.76 tons/day), Andhra Pradesh (229.23 tons/day), Rajasthan (183.87 tons/day), Gujarat (181.41 tons/day), Karnataka, Kerala and Uttar Pradesh are over loaded with 212.73, 244.36 and 176.86 tons/day respectively greater than their normal per day bio-medical waste generated. This study finds the space in handling of Bio-Medical Waste Management of the pandemic COIVD-19 outbreaks and its’ remedial actions to improve the necessity in the future emergency in the developing countries like India.
Collapse
|
3
|
Jaiswal S, Singh DK, Shukla P. Degradation effectiveness of hexachlorohexane (ϒ-HCH) by bacterial isolate Bacillus cereus SJPS-2, its gene annotation for bioremediation and comparison with Pseudomonas putida KT2440. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120867. [PMID: 36528203 DOI: 10.1016/j.envpol.2022.120867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 11/19/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
The contamination of Hexachlorohexane (Lindane) in soil and water has toxic effects due to its persistent nature. In our study, an indigenous HCH (gamma isomer) degrading bacterium viz Bacillus cereus SJPS-2 was isolated from Yamuna river water using enrichment culture method. The growth curve indicated that Bacillus cereus SJPS-2 was able to degrade ϒ-HCH effectively with 80.98% degradation. Further, process was improved by using immobilization using alginate beads which showed enhanced degradation (89.34%). Interestingly, in presence of fructose, the ϒ-HCH degradation was up to 79.24% with exponential growth curve whereas the degradation was only 5.61% in presence of glucose revealing diauxic growth curve. Furthermore, The FTIR results confirmed the potential lindane degradation capability of Bacillus cereus SJPS-2 and the bonds were recorded at wavelengths viz. 2900-2500 cm-1, 3300-2800 cm-1 and 785-540 cm-1. Similarity, the GC studies also reconfirmed the degradation potential with retention time (RT) of ethyl acetate and lindane was 2.12 and 11.0 respectively. Further, we studied the metabolic pathway involved for lindane utilization in Bacillus cereus using KEGG-KASS and functional gene annotation through Rapid Annotation using Subsystems Technology (RAST) resulted in the annotation of the lin genes (lin A, lin B, lin C, lin X, lin D, lin E) and respective encoding enzymes. The comparative ϒ-HCH degradation potential of B. cereus and P. putida KT2440 was also evaluated. The island viewer showed the different colors on circular genome indicate the coordinates of genomic islands resulted with some common genomic islands (GEIs) between both bacteria indicating the possibility of horizontal gene transfer at contaminated site or natural environment. These genomic islands (GEIs) contribute in the rearrangement genetic material or to evolve bacteria in stress conditions, as a result the metabolic pathways evolve by formation of catabolic genes. This study establishes the potential of Bacillus cereus SJPS-2 for effectual ϒ-HCH degradation.
Collapse
Affiliation(s)
- Shweta Jaiswal
- Department of Microbiology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Dileep Kumar Singh
- Soil Microbial Ecology and Environmental Toxicology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Pratyoosh Shukla
- Department of Microbiology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India; Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
4
|
Khan MS, Mubeen I, Caimeng Y, Zhu G, Khalid A, Yan M. Waste to energy incineration technology: Recent development under climate change scenarios. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2022; 40:1708-1729. [PMID: 35719093 DOI: 10.1177/0734242x221105411] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
With the huge generation of municipal solid waste (MSW), proper management and disposal of MSW is a worldwide challenge for sustainable development of cities and high quality of citizens life. Although different disposal ways are available, incineration is a leading harmless approach to effectively recover energy among the applied technologies. The purpose of the present review paper is to detail the discussion of evolution of waste to energy incineration and specifically to highlight the currently used and advanced incineration technologies, including combined incineration with other energy, for instance, hydrogen production, coal and solar energy. In addition, the environmental performance is discussed, including the zero waste emission, leachate and fly ash treatment, climate change contribution and public behaviour. Finally, challenges, opportunities and business model are addressed. Trends and perspectives on policies and techno-economic aspects are also discussed in this review. Different simulation tools, which can be used for the thermodynamic assessment of incineration plants, are debated; life-cycle inventory emissions and most critical environmental impacts of such plants are evaluated by life-cycle analysis. This review shows that waste incineration with energy yield is advantageous to handle waste problems and it affects climate change positively.
Collapse
Affiliation(s)
- Muhammad Sajid Khan
- Institute of Energy and Power Engineering, College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, China
- Department of Mechanical Engineering, Mirpur University of Science & Technology (MUST), Mirpur, Azad Jammu and Kashmir, Pakistan
| | - Ishrat Mubeen
- Institute of Energy and Power Engineering, College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Yu Caimeng
- Zhejiang Zheneng Xingyuan Energy Saving Technology Co. Ltd, Hangzhou, China
| | - Gaojun Zhu
- Institute of Energy and Power Engineering, College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Azeem Khalid
- Department of Environmental Sciences, PMAS Arid Agriculture University, Rawalpindi, Pakistan
| | - Mi Yan
- Institute of Energy and Power Engineering, College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
5
|
Neves AC, Maia CC, de Castro E Silva ME, Vimieiro GV, Gomes Mol MP. Analysis of healthcare waste management in hospitals of Belo Horizonte, Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:90601-90614. [PMID: 35871194 PMCID: PMC9308478 DOI: 10.1007/s11356-022-22113-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Healthcare waste (HCW) management is a challenge for establishments that generate this type of waste, especially hospitals, as they are one of the largest generators. A determining factor in waste management is the amount of waste generation, which must be used for management planning. This study aims to compile and evaluate information on the management of HCW generated in Belo Horizonte's (located in Brazil) hospitals declared in their respective Healthcare Waste Management Plans (HCWMP) sent for approval by the municipality's Superintendency of Urban Cleaning. Therefore, a comparative analysis of the hospitals' generations in relation to their characteristics (nature, specialty, and size) was carried out, using the Kruskal-Wallis statistical test with post hoc in Nemenyi. For the study hospitals, a generation rate of 7.18 (6.17-8.23) kg·bed-1·day-1 was estimated, a generation rate close to that of developed countries. When comparing the generation according to the specialty of the hospitals, it was identified that the maternity hospitals (9.00 (7.05-10.90)) kg·bed-1·day-1 had a significantly higher generation rate than the low-complexity hospitals (4.75 (3.28-6.18)) kg·bed-1·day-1. It was also possible to demonstrate that the specialty and size of hospitals influence the structure available for waste storage. Finally, it can be observed that there are few treatment alternatives, with incineration and autoclaving being the technologies most commonly used by hospitals. It is expected that the results presented can serve as a reference for waste managers, in a context where there is little shared information on the subject.
Collapse
Affiliation(s)
- Arthur Couto Neves
- Departamento de Ciência e Tecnologia Ambiental (DCTA), Centro Federal de Educação Tecnológica de Minas Gerais (CEFET-MG), Belo Horizonte, Brazil.
- Diretoria de Pesquisa E Desenvolvimento, Fundação Ezequiel Dias (FUNED), Belo Horizonte, Brazil.
| | - Camila Costa Maia
- Superintendência de Limpeza Urbana (SLU) de Belo Horizonte, Belo Horizonte, Brazil
| | | | - Gisele Vidal Vimieiro
- Departamento de Ciência e Tecnologia Ambiental (DCTA), Centro Federal de Educação Tecnológica de Minas Gerais (CEFET-MG), Belo Horizonte, Brazil
| | - Marcos Paulo Gomes Mol
- Diretoria de Pesquisa E Desenvolvimento, Fundação Ezequiel Dias (FUNED), Belo Horizonte, Brazil
| |
Collapse
|
6
|
Kumar Awasthi M, Yan B, Sar T, Gómez-García R, Ren L, Sharma P, Binod P, Sindhu R, Kumar V, Kumar D, Mohamed BA, Zhang Z, Taherzadeh MJ. Organic waste recycling for carbon smart circular bioeconomy and sustainable development: A review. BIORESOURCE TECHNOLOGY 2022; 360:127620. [PMID: 35840028 DOI: 10.1016/j.biortech.2022.127620] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
The development of sustainable and low carbon impact processes for a suitable management of waste and by-products coming from different factors of the industrial value chain like agricultural, forestry and food processing industries. Implementing this will helps to avoid the negative environmental impact and global warming. The application of the circular bioeconomy (CB) and the circular economic models have been shown to be a great opportunity for facing the waste and by-products issues by bringing sustainable processing systems which allow to the value chains be more responsible and resilient. In addition, biorefinery approach coupled to CB context could offer different solution and insights to conquer the current challenges related to decrease the fossil fuel dependency as well as increase efficiency of resource recovery and processing cost of the industrial residues. It is worth to remark the important role that the biotechnological processes such as fermentative, digestive and enzymatic conversions play for an effective waste management and carbon neutrality.
Collapse
Affiliation(s)
- Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| | - Binghua Yan
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Taner Sar
- Swedish Centre for Resource Recovery, University of Borås, Borås 50190, Sweden
| | - Ricardo Gómez-García
- Universidade Cat́olica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laborat́orio Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Liheng Ren
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Pooja Sharma
- Environmental Research Institute, National University of Singapore, 1 Create way 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technology Enterprise (CREATE), 1 CREATE Way, Singapore 138602, Singapore
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India
| | - Raveendran Sindhu
- Department of Food Technology, TKM Institute of Technology, Kollam 691 505, Kerala, India
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, United Kingdom
| | - Deepak Kumar
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, 402Walters Hall, 1 Forestry Drive, Syracuse, NY 13210, USA
| | - Badr A Mohamed
- Department of Chemical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | | |
Collapse
|
7
|
Ovčačíková H, Velička M, Vlček J, Topinková M, Klárová M, Burda J. Corrosive Effect of Wood Ash Produced by Biomass Combustion on Refractory Materials in a Binary Al-Si System. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5796. [PMID: 36013933 PMCID: PMC9416287 DOI: 10.3390/ma15165796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
In terms of its chemical composition, biomass is a very complex type of fuel. Its combustion leads to the formation of materials such as alkaline ash and gases, and there is evidence of the corrosive effect this process has on refractory linings, thus shortening the service life of the combustion unit. This frequently encountered process is known as "alkaline oxidative bursting". Corrosion is very complex, and it has not been completely described yet. Alkaline corrosion is the most common cause of furnace-lining degradation in aggregates that burn biomass. This article deals with an experiment investigating the corrosion resistance of 2 types of refractory materials in the Al2O3-SiO2 binary system, for the following compositions: I. (53 wt.% SiO2/42 wt.% Al2O3) and II. (28 wt.% SiO2/46 wt.% Al2O3/12 wt.% SiC). These were exposed to seven types of ash obtained from one biomass combustion company in the Czech Republic. The chemical composition of the ash is a good indicator of the problematic nature of a type of biomass. The ashes were analyzed by X-ray diffraction and X-ray fluorescence. Analysis confirmed that ash composition varies. The experiment also included the calculation of the so-called "slagging/fouling index" (I/C, TA, Sr, B/A, Fu, etc.), which can be used to estimate the probability of slag formation in combustion units. The corrosive effect on refractory materials was evaluated according to the norm ČSN P CEN/TS 15418, and a static corrosion test was used to investigate sample corrosion.
Collapse
|
8
|
Gómez-García R, Campos DA, Aguilar CN, Madureira AR, Pintado M. Valorisation of food agro-industrial by-products: From the past to the present and perspectives. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 299:113571. [PMID: 34488107 DOI: 10.1016/j.jenvman.2021.113571] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 08/07/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Food agro-industrial by-products mainly include peels, seeds, stems, bagasse, kernels, and husk, derived during food processing. Due to their overproduction and the lack of sustainable management, such by-products have been conventionally rejected and wasted in landfills, being the principal strategy for their treatment, but nowadays, this strategy has been associated with several environmental, social and economic issues. Hence, we focused on the use of different consolidated biotechnological processes and methodologies as suitable strategies for food by-products management and valorisation, highlighting them as potential bioresources because they still gather high compositional and nutritional value, owing to their richness in functional and bioactive molecules with human health benefits. Food by-products could be utilised for the development of new food ingredients or products for human consumption, promoting their integral valorisation and reincorporation to the food supply chain within the circular bioeconomy concept, creating revenue streams, business and job opportunities. In this review, the main goal was to provide a general overview of the food agro-industrial by-products utilised throughout the years, improving global sustainability and human nutrition, emphasising the importance of biowaste valorisation as well as the methodologies employed for the recovery of value-added molecules.
Collapse
Affiliation(s)
- Ricardo Gómez-García
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal; BBG-DIA. Bioprocesses and Bioproducts Group. Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo, Coahuila, Mexico.
| | - Débora A Campos
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Cristóbal N Aguilar
- BBG-DIA. Bioprocesses and Bioproducts Group. Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo, Coahuila, Mexico
| | - Ana R Madureira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Manuela Pintado
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal.
| |
Collapse
|
9
|
Yan D, Li L, Cui C, Liu M, Li X, Yang J, Zhang L, Huang Q, Hu W. A field study of dioxins during co-processing of hazardous waste in multicomponent slurry gasifier. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 299:113584. [PMID: 34488106 DOI: 10.1016/j.jenvman.2021.113584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/13/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
A field test was conducted to study the emission and distribution characteristics of dioxins during co-processing of hazardous waste in a multicomponent slurry gasifier (MCSG). The toxicity equivalent concentrations of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) in all exhaust gas, waste water, and solid waste under both blank condition (i.e., feedstock was normal coal-water slurry) and test condition (i.e., feedstock mixed with hazardous waste and labeling reagents) were analyzed. Results showed that organic matter was fully degraded in the MCSG. The dioxin amount in the black water flash steam increased with the addition of hazardous waste and chlorine in the feedstock, and octachlorodibenzo-p-dioxins (OCDD) with the largest increase is the most easily formed monomer in dioxins. The dioxin amount in all samples was far below the standard limit in China and other countries. This indicates the low environmental risk from dioxins during the co-processing process. The dioxin distribution trend in solid, liquid, and gas phase during co-processing did not change: 86.63%-94.18%, 0.02%-0.13%, and 5.8%-13.23% of PCDDs were distributed in the exhaust gas, waste water, and solid waste, respectively, while 6.10%-22.95%, 0.59%-0.80%, and 76.45%-93.10% of PCDFs were distributed in the exhaust gas, waste water, and solid waste, respectively.
Collapse
Affiliation(s)
- Dahai Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Beijing, 100012, China
| | - Li Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Beijing, 100012, China
| | - Changhao Cui
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Beijing, 100012, China
| | - Meijia Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Beijing, 100012, China
| | - Xuebing Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Beijing, 100012, China.
| | - Jinzhong Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Beijing, 100012, China
| | - Lei Zhang
- Zhejiang Fengdeng Environmental Co., Ltd., Lanxi, 321103, China
| | - Qifei Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Beijing, 100012, China.
| | - Wenzheng Hu
- Zibo Environmental Pollution Prevention and Control Center, Zibo, 255000, China
| |
Collapse
|
10
|
Liu Y, Wang J. Treatment of fresh leachate from a municipal solid waste incineration plant by combined radiation with coagulation process. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2019.108501] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
11
|
Ansari M, Ehrampoush MH, Farzadkia M, Ahmadi E. Dynamic assessment of economic and environmental performance index and generation, composition, environmental and human health risks of hospital solid waste in developing countries; A state of the art of review. ENVIRONMENT INTERNATIONAL 2019; 132:105073. [PMID: 31421384 DOI: 10.1016/j.envint.2019.105073] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/30/2019] [Accepted: 07/30/2019] [Indexed: 05/22/2023]
Abstract
Many studies have been conducted on hospital solid waste management (HSWM) throughout the world, especially developing countries. This interdisciplinary study aims to summarize the available knowledge on the health and environmental risks of hospital solid waste (HSW) and also, develop a dynamic associational assessment among hospital solid waste generation rate (HSWGR), hospital solid waste composition (HSWC), gross domestic product (GDP) per capita, and environmental performance index (EPI) in some developing countries for the first time. The results of this study showed that researchers from India, China, Pakistan, Brazil, and Iran had found more evidence about the health, economic, and environmental issues in HSW than the other developing countries. The literature showed that the highest and lowest reported HSWGR (in national average level) belonged to Ethiopia (6.03) and India (0.24) kg bed -1 day-1, respectively. It has also been shown that all studied countries except Serbia, have higher levels of hazardous waste in their HSWC, based on the WHO's standard. Furthermore, the quantity and quality of HSW in developing countries depend on the service provided by the hospital, type of hospital, HSWM system, and the level of regional economic and culture. The association analysis showed that the EPI and GDP per capita of developing countries were significantly (p-value <0.05) associated with HSWGR, non-hazardous HSW, and hazardous HSW by the Spearman coefficients equal to 0.389, 0.118, -0.118, and 0.122, 0.216, and -0.346, respectively. However, it can be concluded that GDP per capita and EPI have a weak correlation with hazardous HSW and non-hazardous HSW. Moreover, HSW has many hazardous health and environmental risks such as dioxin and furan, that must be controlled and managed through implementing programs and policies based on sustainable development. As a final point, we believed that the present study can be considered to be a guide for future studies on HSWM in developing countries.
Collapse
Affiliation(s)
- Mohsen Ansari
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Student Research Committee, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Hassan Ehrampoush
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahdi Farzadkia
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| | - Ehsan Ahmadi
- Department of Environmental Health Engineering, School of Public Health, Kashan University of Medical Sciences, Kashan, Iran; Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|