1
|
Chegukrishnamurthi M, Nagarajan S, Ravi S, Mudliar SN, Ranade VV. Hydrodynamic cavitation mediated Spirulina valorisation with insights into phycocyanin extraction and biogas production. Commun Biol 2025; 8:326. [PMID: 40016389 PMCID: PMC11868541 DOI: 10.1038/s42003-025-07702-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 02/07/2025] [Indexed: 03/01/2025] Open
Abstract
Commercial phycocyanin extraction is energy-intensive and lacks scalability. Alternatively, this study reports the systematic investigation of hydrodynamic cavitation for intensified phycocyanin extraction from Spirulina. Additionally, biomethane potential of the residual biomass, obtained after phycocyanin extraction was also investigated. The biomethane generation rate decreased with an increasing number of passes while the biomethane potential remained unaffected. To reliably compare phycocyanin extraction across systems, dimensionless normalised yields were defined. A normalised phycocyanin yield of 4.3 (52 mg phycocyanin g-1) at an inlet pressure of 150 kPa and 90 passes was identified (optimum cavitation). Lowest specific energy input (0.06kWh kg-1) was calculated for processing 100 g L-1 Spirulina, which is one to two orders of magnitude lower than current state-of-the-art. Furthermore, a net energy gain of 600-2497kWh kg-1 obtained from biomethane generation showcased a viable Spirulina biorefinery, intensified via hydrodynamic cavitation. This work provides a route for phycocyanin extraction with significantly reduced energy input and potential for wider bioproduct extraction and biorefining from a range of biomasses via hydrodynamic cavitation.
Collapse
Affiliation(s)
- Madhubalaji Chegukrishnamurthi
- Plant Cell Biotechnology Department, CSIR- Central Food Technological Research Institute, Mysuru, 570020, Karnataka, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- School of Chemistry & Chemical Engineering, Queen's University Belfast, Belfast, BT9 5AG, UK
| | - Sanjay Nagarajan
- School of Chemistry & Chemical Engineering, Queen's University Belfast, Belfast, BT9 5AG, UK.
- Department of Chemical Engineering, University of Bath, Bath, BA2 7AY, UK.
- Research Centre for Sustainable Energy Systems, University of Bath, Bath, BA2 7AY, UK.
| | - Sarada Ravi
- Plant Cell Biotechnology Department, CSIR- Central Food Technological Research Institute, Mysuru, 570020, Karnataka, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sandeep Narayana Mudliar
- Plant Cell Biotechnology Department, CSIR- Central Food Technological Research Institute, Mysuru, 570020, Karnataka, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vivek V Ranade
- School of Chemistry & Chemical Engineering, Queen's University Belfast, Belfast, BT9 5AG, UK.
- Bernal Institute, University of Limerick, Limerick, V94T9PX, Republic of Ireland.
| |
Collapse
|
2
|
Tadyszak K, Rabyk M, Pánek J, Hrubý M. Computational fluid dynamic modeling of pressure and velocity in a water aspirator. Heliyon 2025; 11:e42289. [PMID: 39975821 PMCID: PMC11835565 DOI: 10.1016/j.heliyon.2025.e42289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 01/21/2025] [Accepted: 01/24/2025] [Indexed: 02/21/2025] Open
Abstract
This study presents the experimental and theoretical modeling results of pressure changes caused by fluid flow in a water aspirator (water pump) whose working principle is based on the Venturi effect. Experimentally measured pressure drop in a glass-made device is modeled in COMSOL Multiphysics by previously reproducing the device geometry. Computations were performed using a Fluid Flow Module with turbulence model RANS k-ε. Pressure and liquid velocity magnitude maps were drowned, and selected vertical and perpendicular cross-sections of velocity and pressure fields were shown and discussed, indicating model limitations.
Collapse
Affiliation(s)
- Krzysztof Tadyszak
- Institute of Macromolecular Chemistry CAS, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Mariia Rabyk
- Institute of Macromolecular Chemistry CAS, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Jiří Pánek
- Institute of Macromolecular Chemistry CAS, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Martin Hrubý
- Institute of Macromolecular Chemistry CAS, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| |
Collapse
|
3
|
Koundle P, Nirmalkar N, Boczkaj G. High performance ozone nanobubbles based advanced oxidation processes (AOPs) for degradation of organic pollutants under high pollutant loading. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 374:124107. [PMID: 39813805 DOI: 10.1016/j.jenvman.2025.124107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/29/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025]
Abstract
Advanced Oxidation Processes (AOPs) have proven to be an effective solution for chemical wastewater treatment, particularly for degradation of organic pollutants, especially dyes. Ozonation is recognized as one of the most prevalent AOPs. Nevertheless, some cases show a lowered efficiency of O3 utilization which is attributed to its inadequate distribution in the treated water causing low residence time, low mass transfer coefficient as well as shorter half-life. This study demonstrates the application of ozone nanobubbles to enhance the degradation of organics under high pollution load conditions. We propose an integrated method that utilizes bulk nanobubbles to enhance the reactivity of ozone for the degradation of organics. We examined the degradation of organic pollutants under parameters such as varying pH levels, ozone concentrations and presence of salts and surfactants. The degradation of the organic pollutant by ozone nanobubbles (0.177 L mg-1min-1) demonstrated a threefold increase in reaction rate constants compared to microbubbles (0.025 L mg-1min-1). The plausible reason for these findings is (i) higher mass transfer coefficient (ii) higher ozone solubility (iii) NBs may act as a surface for chemical reaction (iv) NBs may increase the half-life of ozone. The presence of reactive oxygen species was verified using scavenging tests. This part of the studies revealed contribution of reactive oxygen species (ROSs) such as hydroxyl radical (•OH), superoxide radical anion (O2•-) and singlet oxygen (1O2) in the degradation process. The conditions that provide total degradation of 100% in 300 s for both organic pollutants (Green rit and methylene blue dye) are: 5 LPM (Litre per minute) ozone flow rate, acidic pH, monovalent salts (NaCl, 2 mM) and lower concentration of surfactants (CTAB and SDS, 0.3 CMC). A degradation mechanism has been outlined based on intermediates identified by LC-MS. This work presents a new method that combines AOPs with nanobubbles, which should lead to increased environmental sustainability and efficiency.
Collapse
Affiliation(s)
- Priya Koundle
- Department of Chemical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, India
| | - Neelkanth Nirmalkar
- Department of Chemical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, India.
| | - Grzegorz Boczkaj
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza 11/12 Str., 80-233, Gdansk, Poland; School of Civil, Environmental, and Architectural Engineering, College of Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
4
|
Xue L, Hao Z, Ren W, Wang Y, Liu G, Liu J, Wang H, Bie H. Investigation on the cavitation characteristic of a novel cylindrical rotational hydrodynamic cavitation reactor. ULTRASONICS SONOCHEMISTRY 2024; 109:106999. [PMID: 39033717 PMCID: PMC11295464 DOI: 10.1016/j.ultsonch.2024.106999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Hydrodynamic cavitation reactors are of great promise for the applications of chemical process intensification and water treatment. In this work, a novel cylindrical rotational hydrodynamic cavitation reactor (CRHCR) with rectangular grooves and oblique tooth protrusions on the rotor surface was studied. The three-dimensional characterization of cavitation within the CRHCR was observed from the front and left views by the high-speed camera experiments. Interestingly, a new phenomenon of simultaneous formation of the attached cavitation and shear cavitation was found in the CRHCR. The synergistic effect of attached cavitation and shear cavitation contributes to the enhancement of the cavitation performance of CRHCR. In addition, the evolution of attached cavitation is explored. It is found that attached cavitation forms a trapezoidal-shaped cavitation cloud in the groove, which undergoes three various stages: incipient, development, and collapse. Finally, the pulsation frequency and cavitation intensity of shear cavitation in the chamber were investigated. The results show that the cavitation pulsation frequency is the same at the same rotational speed in the chamber near diverse oblique teeth. As the rotational speed increases, the cavitation pulsation frequency increases linearly. These findings in this paper are of great benefit to understanding the mechanism of the cavitation effect of CRHCR.
Collapse
Affiliation(s)
- Licheng Xue
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, Shandong, China
| | - Zongrui Hao
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Qingdao 266100, China
| | - Wanlong Ren
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Qingdao 266100, China
| | - Yue Wang
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Qingdao 266100, China
| | - Gang Liu
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Qingdao 266100, China
| | - Jinhan Liu
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, Shandong, China
| | - Haizeng Wang
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, Shandong, China.
| | - Haiyan Bie
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, Shandong, China.
| |
Collapse
|
5
|
Liu S, Yuan X, Shao Z, Xiang K, Huang W, Tian H, Hong F, Huang Y. Investigation of singlet oxygen and superoxide radical produced from vortex-based hydrodynamic cavitation: Mechanism and its relation to cavitation intensity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172761. [PMID: 38670357 DOI: 10.1016/j.scitotenv.2024.172761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Presently, the hydroxyl radical oxidation mechanism is widely acknowledged for the degradation of organic pollutants based on hydrodynamic cavitation technology. The presence and production mechanism of other potential reactive oxygen species (ROS) in the cavitation systems are still unclear. In this paper, singlet oxygen (1O2) and superoxide radical (·O2-) were selected as the target ROS, and their generation rules and mechanism in vortex-based hydrodynamic cavitation (VBHC) were analyzed. Computational fluid dynamics (CFD) were used to simulate and analyze the intensity characteristics of VBHC, and the relationship between the generation of ROS and cavitation intensity was thoroughly revealed. The results show that the operating conditions of the device have a significant and complicated influence on the generation of 1O2 and ·O2-. When the inlet pressure reaches to 4.5 bar, it is more favorable for the generation of 1O2 and ·O2- comparing with those lower pressure. However, higher temperature (45 °C) and aeration rate (15 (L/min)/L) do not always have positive effect on the 1O2 and ·O2- productions, and their optimal parameters need to be analyzed in combination with the inlet pressure. Through quenching experiments, it is found that 1O2 is completely transformed from ·O2-, and ·O2- comes from the transformation of hydroxyl radicals and dissolved oxygen. Higher cavitation intensity is captured and shown more disperse in the vortex cavitation region, which is consistent with the larger production and stronger diffusion of 1O2 and ·O2-. This paper shed light to the generation mechanism of 1O2 and ·O2- in VBHC reactors and the relationship with cavitation intensity. The conclusion provides new ideas for the research of effective ROS in hydrodynamic cavitation process.
Collapse
Affiliation(s)
- Shuchang Liu
- College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang 443002, China; Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, China
| | - Xi Yuan
- College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang 443002, China; Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, China
| | - Zhewen Shao
- College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang 443002, China; Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, China
| | - Kexin Xiang
- College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang 443002, China; Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, China
| | - Wenfang Huang
- College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang 443002, China
| | - Hailin Tian
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, China
| | - Feng Hong
- College of Mechanical and Power Engineering, China Three Gorges University, Yichang 443002, China; Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, China.
| | - Yingping Huang
- College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang 443002, China; Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, China.
| |
Collapse
|
6
|
Jung MU, Kim YC, Bournival G, Ata S. Industrial application of microbubble generation methods for recovering fine particles through froth flotation: A review of the state-of-the-art and perspectives. Adv Colloid Interface Sci 2023; 322:103047. [PMID: 37976913 DOI: 10.1016/j.cis.2023.103047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
The depletion of high-grade and coarse-grain ores has led to an increasing demand for the development of efficient separation technologies for low-grade and fine-grain ores. However, conventional froth flotation techniques are not adequate to efficiently recover fine and ultrafine particles (typically <10-15 μm) due to the low collision probability between these particles and the relatively large bubbles used in the process. The introduction of microbubbles has shown promise in enhancing particle recovery, making it a subject of significant interest. Thus, this review focuses on microbubble generation methods that have the potential to be scaled up for industrial applications, with a specific emphasis on their suitability for froth flotation. The methods are categorized based on their scalability: high-hydrodynamic cavitation, porous media/medium-dissolved air, electrolysis/low-microfluidics, and acoustic methods. The bubble generation mechanisms, characteristics, advantages and limitations of each method and its applications in froth flotation are discussed to provide suggestions for improvement. There is still no appropriate technology that can optimize bubble size distribution, production rate and cost together for industrial froth flotation application. Therefore, novel approaches of combining multiple methods are also explored to achieve the potential synergic effects. By addressing the limitations of current microbubble generation methods and proposing potential enhancements, this review aims to contribute to the development of efficient and cost-effective microbubble generation technologies for fine and ultrafine particles in the froth flotation industry.
Collapse
Affiliation(s)
- Min Uk Jung
- School of Minerals and Energy Resources Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Yeo Cheon Kim
- School of Minerals and Energy Resources Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Ghislain Bournival
- School of Minerals and Energy Resources Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Seher Ata
- School of Minerals and Energy Resources Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
7
|
Patil Y, Sonawane SH, Shyam P, Sun X, Manickam S. Hybrid hydrodynamic cavitation (HC) technique for the treatment and disinfection of lake water. ULTRASONICS SONOCHEMISTRY 2023; 97:106454. [PMID: 37271031 DOI: 10.1016/j.ultsonch.2023.106454] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/06/2023]
Abstract
Water reclamation from lakes needs to be accomplished efficiently and affordably to ensure the availability of clean, disinfected water for society. Previous treatment techniques, such as coagulation, adsorption, photolysis, ultraviolet light, and ozonation, are not economically feasible on a large scale. This study investigated the effectiveness of standalone HC and hybrid HC + H2O2 treatment techniques for treating lake water. The effect of pH (3 to 9), inlet pressure (4 to 6 bar), and H2O2 loading (1 to 5 g/L) were examined. At pH = 3, inlet pressure of 5 bar and H2O2 loadings of 3 g/L, maximum COD and BOD removal were achieved·H2O2 was observed to significantly improve the performance of the HC when used as a chemical oxidant. In an optimal operating condition, a COD removal of 54.5 % and a BOD removal of 51.5 % using HC alone for 1 h is observed. HC combined with H2O2 removed 64 % of both COD and BOD. The hybrid HC + H2O2 treatment technique resulted in a nearly 100% removal of pathogens. The results of this study indicate that the HC-based technique is an effective method for removing contaminants and disinfection of the lake water.
Collapse
Affiliation(s)
- Yogesh Patil
- Department of Chemical Engineering, National Institute of Technology Warangal, Telangana 506004, India
| | - Shirish H Sonawane
- Department of Chemical Engineering, National Institute of Technology Warangal, Telangana 506004, India.
| | - Perugu Shyam
- Department of Biotechnology, National Institute of Technology Warangal, Telangana 506004, India
| | - Xun Sun
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China.
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE1410, Brunei Darussalam
| |
Collapse
|
8
|
Dehghani MH, Karri RR, Koduru JR, Manickam S, Tyagi I, Mubarak NM, Suhas. Recent trends in the applications of sonochemical reactors as an advanced oxidation process for the remediation of microbial hazards associated with water and wastewater: A critical review. ULTRASONICS SONOCHEMISTRY 2023; 94:106302. [PMID: 36736130 PMCID: PMC10040970 DOI: 10.1016/j.ultsonch.2023.106302] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/30/2022] [Accepted: 01/15/2023] [Indexed: 11/27/2023]
Abstract
Water is one of the major sources that spread human diseases through contamination with bacteria and other pathogenic microorganisms. This review focuses on microbial hazards as they are often present in water and wastewater and cause various human diseases. Among the currently used disinfection methods, sonochemical reactors (SCRs) that produce free radicals combined with advanced oxidation processes (AOPs) have received significant attention from the scientific community. Also, this review discussed various types of cavitation reactors, such as acoustic cavitation reactors (ACRs) utilizing ultrasonic energy (UE), which had been widely employed, involving AOPs for treating contaminated waters. Besides ACRs, hydrodynamic cavitation reactors (HCRs) also effectively destroy and deactivate microorganisms to varying degrees. Cavitation is the fundamental phenomenon responsible for initiating many sonochemical reactions in liquids. Bacterial degradation occurs mainly due to the thinning of microbial membranes, local warming, and the generation of free radicals due to cavitation. Over the years, although extensive investigations have focused on the antimicrobial effects of UE (ultrasonic energy), the primary mechanism underlying the cavitation effects in the disinfection process, inactivation of microbes, and chemical reactions involved are still poorly understood. Therefore, studies under different conditions often lead to inconsistent results. This review investigates and compares other mechanisms and performances from greener and environmentally friendly sonochemical techniques to the remediation of microbial hazards associated with water and wastewater. Finally, the energy aspects, challenges, and recommendations for future perspectives have been provided.
Collapse
Affiliation(s)
- Mohammad Hadi Dehghani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Institute for Environmental Research, Center for Solid Waste Research, Tehran University of Medical Sciences, Tehran, Iran.
| | - Rama Rao Karri
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE1410, Brunei Darussalam
| | - Janardhan Reddy Koduru
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE1410, Brunei Darussalam
| | - Inderjeet Tyagi
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, M-Block, New Alipore, Kolkata 700053, West Bengal, India
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE1410, Brunei Darussalam
| | - Suhas
- Department of Chemistry, Gurukula Kangri, Haridwar 249404, India
| |
Collapse
|
9
|
Mittal R, Ranade VV. Intensifying extraction of biomolecules from macroalgae using vortex based hydrodynamic cavitation device. ULTRASONICS SONOCHEMISTRY 2023; 94:106347. [PMID: 36870099 PMCID: PMC9996097 DOI: 10.1016/j.ultsonch.2023.106347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/11/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Macroalgae have a tremendous potential to become an important renewable resource for valuable biomolecules and chemicals. New and improved ways of cell disruption and of enhancing rate as well as yield of extraction of valuable products from macroalgae are needed to fully realise this potential. In this work, hydrodynamic cavitation (HC) was used for intensifying rate and yield of extraction of phycoerythrin, proteins and carbohydrates from marine macroalgae Palmaria palmata. We use vortex-based HC devices which do not use small restrictions like orifice-based HC devices or moving parts like rotor-stator based HC devices. A bench scale setup with a nominal slurry flow rate of 20 LPM was established. Dried and powdered macroalgae was used. Influence of key operating parameters like pressure drop and number of passes on extraction performance (the rate and yield) was measured. A simple, yet effective model was developed and used for interpreting and describing experimental data. The results indicate that there exists an optimum pressure drop across the device at which extraction performance is maximum. The extraction performance with HC was found to be significantly better than the stirred vessels. HC has resulted in 2 to 20 times improvement in the rate of extraction of phycoerythrin (R-PE), proteins and carbohydrates. Based on the results obtained in this work, pressure drop of 200 kPa and number of passes through the HC devices of about 100 were found to be most effective for HC-assisted intensified extraction from macroalgae. The presented results and model will be useful for harnessing vortex-based HC devices for intensifying the extraction of valuable products from macroalgae.
Collapse
Affiliation(s)
- Rochak Mittal
- Multiphase Flows, Reactors and Intensification Group, Bernal Institute, University of Limerick, Ireland
| | - Vivek V Ranade
- Multiphase Flows, Reactors and Intensification Group, Bernal Institute, University of Limerick, Ireland.
| |
Collapse
|
10
|
A Review on Rotary Generators of Hydrodynamic Cavitation for Wastewater Treatment and Enhancement of Anaerobic Digestion Process. Processes (Basel) 2023. [DOI: 10.3390/pr11020514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
The issue of ever-increasing amounts of waste activated sludge (WAS) produced from biological wastewater treatment plants (WWTPs) is pointed out. WAS can be effectively reduced in the anaerobic digestion (AD) process, where methanogens break down organic matter and simultaneously produce biogas in the absence of oxygen, mainly methane and CO2. Biomethane can then be effectively used in gas turbines to produce electricity and power a part of WWTPs. Hydrodynamic cavitation (HC) has been identified as a potential technique that can improve the AD process and enhance biogas yield. Rotary generators of hydrodynamic cavitation (RGHCs) that have gained considerable popularity due to their promising results and scalability are presented. Operation, their underlying mechanisms, parameters for performance evaluation, and their division based on geometry of cavitation generation units (CGUs) are presented. Their current use in the field of wastewater treatment is presented, with the focus on WAS pre/treatment. In addition, comparison of achieved results with RGHCs relevant to the enhancement of AD process is presented.
Collapse
|
11
|
Ranade VV. Modeling of Hydrodynamic Cavitation Reactors: Reflections on Present Status and Path Forward. ACS ENGINEERING AU 2022; 2:461-476. [PMID: 36573175 PMCID: PMC9782368 DOI: 10.1021/acsengineeringau.2c00025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 12/30/2022]
Abstract
Hydrodynamic cavitation (HC) is finding ever increasing applications in water, energy, chemicals, and materials sectors. HC generates intense shear, localized hot spots, and hydroxyl radicals, which are harnessed for realizing desired physicochemical transformations. Despite identification of HC as one of the most promising technology platforms, its potential is not yet adequately translated in practice. Lack of appropriate models for design, optimization, and scale-up of HC reactors is one of the primary reasons for this. In this work, the current status of modeling of HC reactors is presented. Various prevailing approaches covering empirical, phenomenological, and multiscale models are critically reviewed in light of personal experience of their application. Use of these approaches for different applications such as biomass pretreatment and wastewater treatment is briefly discussed. Some comments on extending these models for other applications like emulsions and crystallization are included. The presented models and discussion will be useful for practicing engineers and scientists interested in applying HC for a variety of applications. Some thoughts on further advances in modeling of HC reactors and outlook are shared, which may stimulate further research on improving the fidelity of computational models of HC reactors.
Collapse
Affiliation(s)
- Vivek V. Ranade
- Multiphase Reactor and Process Intensification
Group Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| |
Collapse
|
12
|
Intensified hydrodynamic cavitation using vortex flow based cavitating device for degradation of ciprofloxacin. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Nair SS, Pinedo-Cuenca R, Stubbs T, Davis SJ, Ganesan PB, Hamad F. Contemporary application of microbubble technology in water treatment. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:2138-2156. [PMID: 36378171 DOI: 10.2166/wst.2022.328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Microbubble (MB) technology constitutes a suite of promising low-cost technologies with potential applications in various sectors. Microbubbles (MBs) are tiny gas bubbles with diameters in the micrometre range of 10-100 μm. Along with their small size, they share special characteristics like slow buoyancy, large gas-liquid interfacial area and high mass-transfer efficiency. Initially, the review examines the key dissimilarities among the different types of microbubble generators (MBG) towards economic large-scale production of MBs. The applications of MBs to explore their effectiveness at different stages of wastewater treatment extending from aeration, separation/ flotation, ozonation, disinfection and other processes are investigated. A summary of the recent advances of MBs in real and synthetic wastewater treatment, existing research gaps, and limitations in upscaling of the technology, conclusion and future recommendations is detailed. A critical analysis of the energetics and treatment cost of combined approaches of MB technology with other advanced oxidation processes (AOPs) is carried out highlighting the potential applicability of hybrid technology in large-scale wastewater treatment.
Collapse
Affiliation(s)
- Sarita S Nair
- School of Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough TS1 3BX, United Kingdom E-mail:
| | - Ruben Pinedo-Cuenca
- School of Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough TS1 3BX, United Kingdom E-mail:
| | - Tony Stubbs
- Veolia Water Technologies, Billingham, England, United Kingdom
| | - Seth J Davis
- Department of Biology, University of York, York YO10 5DD, United Kingdom; State Key Laboratory of Crop Stress Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Poo Balan Ganesan
- Department of Mechanical Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Faik Hamad
- School of Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough TS1 3BX, United Kingdom E-mail:
| |
Collapse
|
14
|
Studies in instant water disinfection using natural oils. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Khajeh M, Taheri E, Amin MM, Fatehizadeh A, Bedia J. Combination of hydrodynamic cavitation with oxidants for efficient treatment of synthetic and real textile wastewater. JOURNAL OF WATER PROCESS ENGINEERING 2022; 49:103143. [DOI: 10.1016/j.jwpe.2022.103143] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
|
16
|
Patil PB, Thanekar P, Bhandari VM. A Strategy for Complete Degradation of Metformin Using Vortex-Based Hydrodynamic Cavitation. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pravin B. Patil
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| | - Pooja Thanekar
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune411008, India
| | - Vinay M. Bhandari
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| |
Collapse
|
17
|
Song Y, Hou R, Zhang W, Liu J. Hydrodynamic cavitation as an efficient water treatment method for various sewage:- A review. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:302-320. [PMID: 35906909 DOI: 10.2166/wst.2022.201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
With the development of industry and the rapid growth of population, the current water treatment technologies face many challenges. Hydrodynamic cavitation as a green and efficient means of water treatment has attracted much attention. During the hydrodynamic cavitation, enormous energy could be released into the surrounding liquid which causes thermal effects (local hotspots with 4600 K), mechanical effects (pressures of 1500 bar) and chemical effects (hydroxyl radicals). These conditions can degrade bacteria and organic substance in sewage. Moreover, the combination of hydrodynamic cavitation and other water treatment methods can produce a coupling effect. In this review, we summarize the methods of hydrodynamic cavitation and the performance of water treatment for different types of sewage. The application of hydrodynamic cavitation reactors with different structures in water treatment are also evaluated and discussed. The design and optimization of high-performance hydrodynamic cavitation reactor are the most crucial issues for the application of hydrodynamic cavitation in water treatment. Finally, recommendations are provided for the future progress of hydrodynamic cavitation for water treatment.
Collapse
Affiliation(s)
- Yongxing Song
- School of Thermal Engineering, Shandong Jianzhu University, Jinan 250101, China E-mail: ; Key Laboratory of Fluid and Power Machinery, Xihua University, Ministry of Education, Chengdu 610039, China
| | - Ruijie Hou
- School of Thermal Engineering, Shandong Jianzhu University, Jinan 250101, China E-mail:
| | - Weibin Zhang
- Key Laboratory of Fluid and Power Machinery, Xihua University, Ministry of Education, Chengdu 610039, China
| | - Jingting Liu
- School of Mechanical Engineering, Shandong University, Jinan 250061, China
| |
Collapse
|
18
|
Song Y, Hou R, Liu Z, Liu J, Zhang W, Zhang L. Cavitation characteristics analysis of a novel rotor-radial groove hydrodynamic cavitation reactor. ULTRASONICS SONOCHEMISTRY 2022; 86:106028. [PMID: 35569441 PMCID: PMC9111974 DOI: 10.1016/j.ultsonch.2022.106028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/23/2022] [Accepted: 05/04/2022] [Indexed: 05/25/2023]
Abstract
Hydrodynamic cavitation was widely used in sterilization, emulsion preparation and other industrial fields. Cavitation intensity is the key performance index of hydrodynamic cavitation reactor. In this study, a novel rotor-radial groove (RRG) hydrodynamic cavitation reactor was proposed with good cavitation intensity and energy utilization. The cavitation performances of RRG hydrodynamic cavitation reactor was analyzed by utilizing computational fluid dynamics method. The cavitation intensity and the cavitation energy efficiency were used as evaluation indicators for RRG hydrodynamic cavitation reactor with different internal structures. The amount of generated cavitation for various shapes of the CGU, interaction distances and rotor speed were analyzed. The evolution cycle of cavitation morphology is periodicity (0.46 ms) in the CGU of RRG hydrodynamic cavitation reactor. The main cavitation regions of CGU were the outflow and inflow separation zones. The cavitation performance of rectangular-shaped CGU was better than the cylindrical-shaped CGU. In addition, the cavitation performance could be improved more effectively by increasing the rotor speed and decreasing the interaction distance. The research results could provide theoretical support for the research of cavitation mechanism of cavitation equipment.
Collapse
Affiliation(s)
- Yongxing Song
- School of Thermal Engineering, Shandong Jianzhu University, Jinan 250101, Shandong, China; Key Laboratory of Fluid and Power Machinery at Xihua University, Ministry of Education, Chengdu 610039, China.
| | - Ruijie Hou
- School of Thermal Engineering, Shandong Jianzhu University, Jinan 250101, Shandong, China
| | - Zhengyang Liu
- School of Thermal Engineering, Shandong Jianzhu University, Jinan 250101, Shandong, China
| | - Jingting Liu
- Key Laboratory of High-efficiency and Clean Mechanical Manufacture, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan 250061, Shandong, China
| | - Weibin Zhang
- Key Laboratory of Fluid and Power Machinery at Xihua University, Ministry of Education, Chengdu 610039, China
| | - Linhua Zhang
- School of Thermal Engineering, Shandong Jianzhu University, Jinan 250101, Shandong, China
| |
Collapse
|
19
|
Terán Hilares R, Singh I, Tejada Meza K, Colina Andrade GJ, Pacheco Tanaka DA. Alternative methods for cleaning membranes in water and wastewater treatment. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10708. [PMID: 35365970 DOI: 10.1002/wer.10708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Membrane fouling is caused by foulant deposition or adsorption through physical or chemical interactions on the membrane surface, causing the reduction of flux through the membrane. The main drawbacks of chemical agents used for cleaning are cost, damage caused on the membrane, and waste stream making the process unattractive. Alternative, methods such as ultrasound, enzymatic process, and osmotic backwashing were explored for membrane cleaning. Among all mentioned methods, micronanobubbles have been reported as a promising and emergent method for membrane surface cleaning; unfortunately, the information is limited, but preliminary studies have shown it as an efficient, cheap, and environmentally friendly technique. Other methods like electrically and vibratory-enhanced membrane cleaning also could be interesting but currently are unexplored and information is limited. PRACTITIONER POINTS: Chemical cleaning is an efficient option; however, from an environmental point of view, it is not attractive, and high concentrations could cause damage to the membrane. Micronanobubbles are an emergent and suitable technology for membrane and surface cleaning. Membrane modification and functionalization avoid membrane fast fouling, and the cleaning process is easier, but the manufacture cost could be expensive.
Collapse
Affiliation(s)
- Ruly Terán Hilares
- Departamento de Ciencias e Ingenierías Biológicas y Químicas, Universidad Católica de Santa María (UCSM), Arequipa, Peru
| | - Imman Singh
- Rauschert Industries, Inc., Atlanta, Georgia, USA
| | - Kevin Tejada Meza
- Departamento de Ciencias e Ingenierías Biológicas y Químicas, Universidad Católica de Santa María (UCSM), Arequipa, Peru
| | - Gilberto J Colina Andrade
- Departamento de Ciencias e Ingenierías Biológicas y Químicas, Universidad Católica de Santa María (UCSM), Arequipa, Peru
| | - David Alfredo Pacheco Tanaka
- Departamento de Ciencias e Ingenierías Biológicas y Químicas, Universidad Católica de Santa María (UCSM), Arequipa, Peru
| |
Collapse
|
20
|
Patil PB, Bhandari VM. Solvent-assisted cavitation for enhanced removal of organic pollutants - Degradation of 4-aminophenol. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 311:114857. [PMID: 35278922 DOI: 10.1016/j.jenvman.2022.114857] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/02/2022] [Accepted: 03/05/2022] [Indexed: 05/26/2023]
Abstract
A new approach of solvent-assisted cavitation process was proposed for degradation of organic pollutants. The process envisages the use of suitable solvent as an additive, (1-5% v/V), in the conventional cavitation process to enhance the pollutant removal efficiency. A proof of concept was provided for the removal of ammoniacal nitrogen with significantly improved efficiency using solvent-assisted hydrodynamic cavitation (HC) compared to conventional HC. The efficacy of the process was studied on a pilot plant scale (1 m3/h) and using vortex flow based vortex diode as a cavitating device. Degradation studies were carried out using a model pollutant, 4-aminophenol and four different solvents as additives, 1-octanol, cyclohexanol, 1-octane and toluene. Relatively polar solvents were found to increase the efficiency of the pollutant removal (>65%) and also increase the rates to an extent of more than 200%, compared to only HC. A very high removal of ammoniacal nitrogen, more than 90%, was obtained for solvents 1-octanol and cyclohexanol, indicating the importance of the selection of solvent. Per-pass degradation model showed 3 to 4 times increase in the per pass degradation for polar solvents compared to cavitation alone. The results confirm no role of conventional solvent extraction and no specific contamination of wastewater due to the use of solvent as an additive in the process. Further, the cost was 2-3 times lower as compared to the conventional HC. The interesting observations in the proposed process can fuel further research to provide possible improvements in existing methodologies of wastewater treatment, in general, and for removal of ammoniacal nitrogen, in particular.
Collapse
Affiliation(s)
- Pravin B Patil
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vinay M Bhandari
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
21
|
Wang B, Wang T, Su H. Hydrodynamic cavitation (HC) degradation of tetracycline hydrochloride (TC). Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120095] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
22
|
Arya SS, More PR, Terán Hilares R, Pereira B, Arantes V, Silva SS, Santos JC. Effect of thermally assisted hydrodynamic cavitation (HC) processing on physical, nutritional, microbial quality, and pectin methyl esterase (PME) inactivation kinetics in orange juice at different time and temperatures. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15794] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Shalini S. Arya
- Food Engineering and Technology Department Institute of Chemical Technology Mumbai India
- Department of Biotechnology Engineering School of LorenaUniversity of São Paulo São Paulo Brazil
| | - Pavankumar R. More
- Food Engineering and Technology Department Institute of Chemical Technology Mumbai India
| | - Ruly Terán Hilares
- Laboratório de Materiales Universidad Católica de Santa María Urb. San José s/n, Umacollo Arequipa Peru
| | - Bárbara Pereira
- Nanobiotechnology and Bioproducts Laboratory, Department of Biotechnology, Lorena School of Engineering University of São Paulo Lorena Brazil
| | - Valdeir Arantes
- Nanobiotechnology and Bioproducts Laboratory, Department of Biotechnology, Lorena School of Engineering University of São Paulo Lorena Brazil
| | - Silvio S. Silva
- Department of Biotechnology Engineering School of LorenaUniversity of São Paulo São Paulo Brazil
| | - Júlio César Santos
- Department of Biotechnology Engineering School of LorenaUniversity of São Paulo São Paulo Brazil
| |
Collapse
|
23
|
Gostiša J, Zupanc M, Dular M, Širok B, Levstek M, Bizjan B. Investigation into cavitational intensity and COD reduction performance of the pinned disc reactor with various rotor-stator arrangements. ULTRASONICS SONOCHEMISTRY 2021; 77:105669. [PMID: 34303127 PMCID: PMC8327660 DOI: 10.1016/j.ultsonch.2021.105669] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/09/2021] [Accepted: 07/11/2021] [Indexed: 06/13/2023]
Abstract
In this study, the hydrodynamic cavitation and wastewater treatment performance of a rotary generator with pin disk for hydrodynamic cavitation are investigated. Various geometrical features and arrangements of rotor and stator pins were evaluated to improve the configuration of the cavitation device. The pilot device used to perform the experiments was upgraded with a transparent cover that allows visualization of the hydrodynamic cavitation in the rotor-stator region with high-speed camera and simultaneous measurement of pressure fluctuations. Based on the hydrodynamic characteristics, three arrangements were selected and evaluated with respect to the chemical effects of cavitation on a 200-liter wastewater influent sample. The experimental results show that the rotational speed and the spacing of the rotor pins have the most significant effect on the cavitation intensity and effectiveness, while the pin diameter and the surface roughness are less significant design parameters. Cavitation intensity increases with pin velocity, but can be inhibited if the pins are arranged too close together. At best configuration, COD was reduced by 31% in 15 liquid passes, consuming 8.2 kWh/kg COD. The number of liquid passes also proved to be an important process parameter for improving the energy efficiency.
Collapse
Affiliation(s)
- Jurij Gostiša
- Faculty of Mechanical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Mojca Zupanc
- Faculty of Mechanical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Matevž Dular
- Faculty of Mechanical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Brane Širok
- Faculty of Mechanical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Marjetka Levstek
- JP CCN Domzale-Kamnik d.o.o., Domzale-Kamnik WWTP, Domzale, Slovenia
| | - Benjamin Bizjan
- Faculty of Mechanical Engineering, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
24
|
Jia L, Liu W, Cao J, Wu Z, Yang C. Foam fractionation for effective removal of Pseudomonas aeruginosa from water body: Strengthening foam drainage by artificially inducing foam evolution. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 291:112628. [PMID: 33932836 DOI: 10.1016/j.jenvman.2021.112628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/22/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Lack of microbial contamination is of great significance to drinking water safety and water reclamation. In this work, foam fractionation was employed to remove Pseudomonas aeruginosa (P. aeruginosa) from aqueous solution and dodecyl dimethyl betaine (BS12) was used as the collector. Since the attachment of strain cells on the bubble surface would impede the reflux of interstitial liquid in the plateau borders (PBs), a novel strategy in strengthening foam drainage was developed through artificially inducing foam evolution. Two gas distributors with different pore diameters had been mounted at the bottom of the column for regulating the radial distribution of bubble size in the foam phase. Experimental results indicated that gas diffuse and bubble coarsening could be significantly promoted by increasing the size difference among the adjacent bubbles. Bubble coalescence contributed to broadening the width of plateau borders, thereby avoiding the borders blockage by strain cells. During bubble coalescence, surfactant molecules would be partially shifted from the surface of small bubble towards that of large bubble due to the molecule density difference. The increase in surface excess of surfactant molecules on gas-liquid interface was conducive to improving foam stability. Under the suitable conditions of air flow rates of gas distributor with 0.125 mm of pore diameter 75 mL/min and gas distributor with 0.425 mm of pore diameter 125 mL/min, BS12 concentration 0.1 g/L, and P. aeruginosa concentration 2.0 × 104 CFU/mL, the removal percentage and enrichment ratio of P. aeruginosa were 99.6% and 10.6, respectively. This work is expected to provide some new light for strengthening foam drainage in the presence of solid particles and to facilitate the industrialization of foam fractionation in water treatment.
Collapse
Affiliation(s)
- Lei Jia
- School of Chemical Engineering and Technology, Hebei University of Technology, No. 8 Guangrong Road, Dingzi Gu, Hongqiao District, Tianjin, 300130, China
| | - Wei Liu
- School of Chemical Engineering and Technology, Hebei University of Technology, No. 8 Guangrong Road, Dingzi Gu, Hongqiao District, Tianjin, 300130, China.
| | - Jilin Cao
- State Key Laboratory of Green Chemical Engineering and Efficient Energy Saving, School of Chemical Engineering, Hebei University of Technology, Tianjin, 300130, China.
| | - Zhaoliang Wu
- School of Chemical Engineering and Technology, Hebei University of Technology, No. 8 Guangrong Road, Dingzi Gu, Hongqiao District, Tianjin, 300130, China
| | - Chunyan Yang
- School of Chemical Engineering and Technology, Hebei University of Technology, No. 8 Guangrong Road, Dingzi Gu, Hongqiao District, Tianjin, 300130, China
| |
Collapse
|
25
|
Sun X, Wang Z, Xuan X, Ji L, Li X, Tao Y, Boczkaj G, Zhao S, Yoon JY, Chen S. Disinfection characteristics of an advanced rotational hydrodynamic cavitation reactor in pilot scale. ULTRASONICS SONOCHEMISTRY 2021; 73:105543. [PMID: 33845245 PMCID: PMC8059091 DOI: 10.1016/j.ultsonch.2021.105543] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/12/2021] [Accepted: 03/23/2021] [Indexed: 05/12/2023]
Abstract
Hydrodynamic cavitation is a promising technique for water disinfection. In the present paper, the disinfection characteristics of an advanced hydrodynamic cavitation reactor (ARHCR) in pilot scale were studied. The effects of various flow rates (1.4-2.6 m3/h) and rotational speeds (2600-4200 rpm) on the removal of Escherichia coli (E. coli) were revealed and analyzed. The variation regularities of the log reduction and reaction rate constant at various cavitation numbers were established. A disinfection rate of 100% was achieved in only 4 min for 15 L of simulated effluent under 4200 rpm and 1.4 m3/h, with energy efficiency at 0.0499 kWh/L. A comprehensive comparison with previously introduced HCRs demonstrates the superior performance of the presented ARHCR system. The morphological changes in E. coli were studied by scanning electron microscopy. The results indicate that the ARHCR can lead to serious cleavage and surface damages to E. coli, which cannot be obtained by conventional HCRs. Finally, a possible damage mechanism of the ARHCR, including both the hydrodynamical and sonochemical effects, was proposed. The findings of the present study can provide strong support to the fundamental understanding and applications of ARHCRs for water disinfection.
Collapse
Affiliation(s)
- Xun Sun
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China.
| | - Zhengquan Wang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China.
| | - Xiaoxu Xuan
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China.
| | - Li Ji
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China.
| | - Xuewen Li
- School of Public Health, Shandong University, Jinan 250061, China.
| | - Yang Tao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Grzegorz Boczkaj
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk 80-233, Poland.
| | - Shan Zhao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| | - Joon Yong Yoon
- Department of Mechanical Engineering, Hanyang University, Ansan 15588, Republic of Korea.
| | - Songying Chen
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China.
| |
Collapse
|
26
|
Ranade NV, Nagarajan S, Sarvothaman V, Ranade VV. ANN based modelling of hydrodynamic cavitation processes: Biomass pre-treatment and wastewater treatment. ULTRASONICS SONOCHEMISTRY 2021; 72:105428. [PMID: 33383539 PMCID: PMC7803855 DOI: 10.1016/j.ultsonch.2020.105428] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/30/2020] [Accepted: 12/11/2020] [Indexed: 05/06/2023]
Abstract
We have developed artificial neural network (ANN) based models for simulating two application examples of hydrodynamic cavitation (HC) namely, biomass pre-treatment to enhance biogas and degradation of organic pollutants in water. The first case reports data on influence of number of passes through HC reactor on bio-methane generation from bagasse. The second case reports data on influence of HC reactor scale on degradation of dichloroaniline (DCA). Similar to most of the HC based applications, the availability of experimental data for these two applications is rather limited. In this work a systematic methodology for developing ANN model is presented. The models were shown to describe the experimental data very well. The ANN models were then evaluated for their ability to interpolate and extrapolate. Despite the limited data, the ANN models were able to simulate and interpolate the data for two very different and complex HC applications very well. The extrapolated results of biomethane generation in terms of number of passes were consistent with the intuitive understanding. The extrapolated results in terms of elapsed time were however not consistent with the intuitive understanding. The ANN model was able to generate intuitively consistent extrapolated results for degradation of DCA in terms of number of passes as well as scale of HC reactor. The results will be useful for developing quantitative models of complex HC applications.
Collapse
Affiliation(s)
- Nanda V Ranade
- Hollyheath, 14 Derryvolgie Avenue, Belfast BT9 6FB Multiphase Reactors & Intensification Group (mRING), Ireland
| | - Sanjay Nagarajan
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast BT9 5AG, Northern Ireland, UK
| | - Varaha Sarvothaman
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast BT9 5AG, Northern Ireland, UK
| | - Vivek V Ranade
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast BT9 5AG, Northern Ireland, UK; Bernal Institute, University of Limerick, Limerick, Ireland.
| |
Collapse
|
27
|
Gostiša J, Širok B, Repinc SK, Levstek M, Stražar M, Bizjan B, Zupanc M. Performance evaluation of a novel pilot-scale pinned disc rotating generator of hydrodynamic cavitation. ULTRASONICS SONOCHEMISTRY 2021; 72:105431. [PMID: 33383544 PMCID: PMC7803817 DOI: 10.1016/j.ultsonch.2020.105431] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/03/2020] [Accepted: 12/12/2020] [Indexed: 05/14/2023]
Abstract
This study investigates hydrodynamic performance of a novel pinned disc rotating generator of hydrodynamic cavitation in comparison with a serrated disc variant on a pilot-scale. Experimental results show that at a given rotational speed and liquid flow rate, the pinned disc generates more intense cavitation (i.e. lower cavitation number, higher volume fraction of vapor and higher amplitude of pressure fluctuations) than the serrated disc, while also consuming less energy per liquid pass (i.e., higher flow rate and pumping pressure difference of water at similar power consumption). Additionally, mechanical and chemical wastewater treatment performance of the novel cavitator was evaluated on an 800 L influent sample from a wastewater treatment plant. Mechanical effects resulted in a reduction of average particle size from 148 to 38 µm and increase of specific surface area, while the oxidation potential was confirmed by reduction of COD, TOC, and BOD up to 27, 23 and 30% in 60 cavitation passes, respectively. At optimal operating conditions and 30 cavitation passes, pinned disc cavitator had a 310% higher COD removal capacity while consuming 65% less energy per kg of COD removed than the serrated disc cavitator. Furthermore, the specific COD-reduction energy consumption of the pinned disc cavitator on the pilot scale is comparable to the best cases of lab-scale orifice and venturi devices operating at much lower wastewater processing capacity.
Collapse
Affiliation(s)
- Jurij Gostiša
- Faculty of Mechanical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Brane Širok
- Faculty of Mechanical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Sabina Kolbl Repinc
- Faculty of Civil and Geodetic Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Marjetka Levstek
- JP CCN Domzale-Kamnik d.o.o., Domzale-Kamnik WWTP, Domzale, Slovenia
| | - Marjetka Stražar
- JP CCN Domzale-Kamnik d.o.o., Domzale-Kamnik WWTP, Domzale, Slovenia
| | - Benjamin Bizjan
- Faculty of Mechanical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Mojca Zupanc
- Faculty of Mechanical Engineering, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
28
|
Patil PB, Bhandari VM, Ranade VV. Improving efficiency for removal of ammoniacal nitrogen from wastewaters using hydrodynamic cavitation. ULTRASONICS SONOCHEMISTRY 2021; 70:105306. [PMID: 32795930 PMCID: PMC7786615 DOI: 10.1016/j.ultsonch.2020.105306] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 07/24/2020] [Accepted: 08/06/2020] [Indexed: 05/24/2023]
Abstract
The present study reports significant improvements in the removal of ammoniacal nitrogen from wastewater which is an important problem for many industries such as dyes and pigment, distilleries and fisheries. Pilot plant studies (capacity, 1 m3/h) on synthetic wastewater using 4-amino phenol as model nitrogen containing organic compound and two real industrial effluents of high ammoniacal nitrogen content were carried out using hydrodynamic cavitation. Two reactor geometries were evaluated for increased efficiency in removal-orifice and vortex diode. Effect of initial concentration (100-500 mg/L), effect of pressure drop (0.5-5 bar) and nature of cavitating device (linear and vortex flow for cavitation) were evaluated along with effect of salt content, effect of hydrogen peroxide addition and aeration. Initial concentration was found to have significant impact on the extent of removal: ~ 5 g/m3 removal for initial concentration of 100 mg/L and up to 12 g/m3 removal at high concentration of 500 mg/L. Interestingly, significant improvement of the order of magnitude (up to 8 times) in removal of ammoniacal nitrogen could be obtained by sparging air or oxygen in hydrodynamic cavitation and a very high removal of above 80% could be achieved. The removal of ammoniacal nitrogen by vortex diode was also found to be effective in the industrial wastewaters and results on two different effluent samples of distillery industry indicated up to 75% removal, though with longer time of treatment compared to that of synthetic wastewater. The developed methodology of hydrodynamic cavitation technology with aeration and vortex diode as a cavitating device was found to be highly effective for improving the efficiency of the conventional cavitation methods and hence can be highly useful in industrial wastewater treatment, specifically for the removal of ammoniacal nitrogen.
Collapse
Affiliation(s)
- Pravin B Patil
- Chemical Engineering & Process Development Division, CSIR-National Chemical Laboratory, Pune 411 008, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-National Chemical Laboratory, Pune 411 008, India
| | - Vinay M Bhandari
- Chemical Engineering & Process Development Division, CSIR-National Chemical Laboratory, Pune 411 008, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-National Chemical Laboratory, Pune 411 008, India.
| | - Vivek V Ranade
- Chemical Engineering & Process Development Division, CSIR-National Chemical Laboratory, Pune 411 008, India
| |
Collapse
|
29
|
Ranade VV, Prasad Sarvothaman V, Simpson A, Nagarajan S. Scale-up of vortex based hydrodynamic cavitation devices: A case of degradation of di-chloro aniline in water. ULTRASONICS SONOCHEMISTRY 2021; 70:105295. [PMID: 32791465 PMCID: PMC7786610 DOI: 10.1016/j.ultsonch.2020.105295] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/03/2020] [Accepted: 07/26/2020] [Indexed: 05/19/2023]
Abstract
Hydrodynamic cavitation (HC) is being increasingly used in a wide range of applications. Unlike ultrasonic cavitation, HC is scalable and has been used at large scale industrial applications. However, no information about influence of scale on performance of HC is available in the open literature. In this work, we present for the first time, experimental data on use of HC for degradation of complex organic pollutants in water on four different scales (~200 times scale-up in terms of capacity). Vortex based HC devices offer various advantages like early inception, high cavitational yield and significantly lower propensity to clogging and erosion. We have used vortex based HC devices in this work. 2,4 dichloroaniline (DCA) - an aromatic compound with multiple functional groups was considered as a model pollutant. Degradation of DCA in water was performed using vortex-based HC devices with characteristic throat dimension, dt as 3, 6, 12 and 38 mm with scale-up of almost 200 time based on the flow rates (1.3 to 247 LPM). Considering the experimental constraints on operating the largest scale HC device, the experimental data is presented here at only one value of pressure drop across HC device (280 kPa). A previously used per-pass degradation model was extended to describe the experimental data for the pollutant used in this study and a generalised form is presented. The degradation performance was found to decrease with increase in the scale and then plateaus. Appropriate correlation was developed based on the experimental data. The developed approach and presented results provide a sound basis and a data set for further development of comprehensive multi-scale modelling of HC devices.
Collapse
Affiliation(s)
- Vivek V Ranade
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast BT9 5AG, Northern Ireland, UK; Bernal Institute, University of Limerick, Limerick, Ireland.
| | - Varaha Prasad Sarvothaman
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast BT9 5AG, Northern Ireland, UK
| | - Alister Simpson
- School of Aerospace and Mechanical Engineering, Queen's University Belfast, Belfast BT9 5AG, Northern Ireland, UK
| | - Sanjay Nagarajan
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast BT9 5AG, Northern Ireland, UK
| |
Collapse
|
30
|
Mane MB, Bhandari VM, Balapure K, Ranade VV. Destroying antimicrobial resistant bacteria (AMR) and difficult, opportunistic pathogen using cavitation and natural oils/plant extract. ULTRASONICS SONOCHEMISTRY 2020; 69:105272. [PMID: 32739732 DOI: 10.1016/j.ultsonch.2020.105272] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/02/2020] [Accepted: 07/20/2020] [Indexed: 05/07/2023]
Abstract
The present study reports, for the first time, a new and techno-economic strategy for effective removal of antimicrobial resistant bacteria (AMR) and difficult, opportunistic pathogen using cavitation and natural oils/plant extract. A hybrid methodology using natural oils of known health benefits has been discussed in combination with conventional physico-chemical method of hydrodynamic cavitation that not only provides efficient and effective water disinfection, but also eliminates harmful effects of conventional methods such as formation of disinfection by-products apart from reducing cost of treatment. A proof-of concept is demonstrated by achieving exceptionally high rates for practically complete removal of antimicrobial resistant (AMR) and relatively less researched, gram-negative opportunistic pathogen, Pseudomonas aeruginosa and gram-positive methicillin resistant, Staphylococcus aureus using a natural oil-Peppermint oil and two different cavitating reactors employing vortex flow (vortex diode) and linear flow (orifice) for hydrodynamic cavitation. >99% disinfection could be obtained, typically in less than 10 min, using vortex diode with operating pressure drop of 1 bar and low dose of 0.1% peppermint oil as an additive, depicting very high rates of disinfection. The rate of disinfection can be further increased by using simple aeration which can result in significant lowering of oil dose. The conventional device, orifice requires relatively higher pressure drop of 2 bar and comparatively more time (~20 min) for disinfection. The cost of the disinfection was also found to be significantly lower compared to most conventional processes indicating techno-economic feasibility in employing the developed hybrid method of disinfection for effectively eliminating bacteria including AMR bacteria from water. The developed approach not only highlights importance of going back to nature for not just conventional water disinfection, but also for eliminating hazardous AMR bacteria and may also find utility in many other applications for the removal of antimicrobial bacteria.
Collapse
Affiliation(s)
- Maya B Mane
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-NCL Pune, India
| | - Vinay M Bhandari
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-NCL Pune, India.
| | - Kshama Balapure
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, India
| | - Vivek V Ranade
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, India
| |
Collapse
|
31
|
Sun X, Liu J, Ji L, Wang G, Zhao S, Yoon JY, Chen S. A review on hydrodynamic cavitation disinfection: The current state of knowledge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 737:139606. [PMID: 32783818 DOI: 10.1016/j.scitotenv.2020.139606] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/19/2020] [Accepted: 05/19/2020] [Indexed: 05/07/2023]
Abstract
Disinfection, which aims to eliminate pathogenic microorganisms, is an essential step of water treatment. Hydrodynamic cavitation (HC) has emerged as a promising technology for large-scale disinfection without introducing new chemicals. HC, which can effectively induce sonochemistry by mechanical means, creates extraordinary conditions of pressures of ~1000 bar, local hotspots with ~5000 K, and high oxidation (hydroxyl radicals) in room environment. These conditions can produce highly destructive effects on microorganisms in water. In addition, the enhancements of chemical reactions and mass transfers by HC produce the synergism between HC and disinfectants or other physical treatment methods. HC is generated by hydrodynamic cavitation reactors (HCRs), therefore, their performance basically determines the effectiveness, economical efficiency, and applicability of HC disinfection. Therefore, developing high-performance HCRs and revealing the corresponding disinfection mechanisms are the most crucial issues today. In this review, we summarize the fundamental principles of HC and HCRs and recent development in HC disinfection. The energy release from cavitation phenomenon and corresponding mechanisms are elaborated. The performance (effectiveness, treatment ratio, and cost) of various HCRs, effects of treatment conditions on performance, and applicability of HC disinfection are evaluated and discussed. Finally, recommendations are provided for the future progress based on the analysis of previous studies.
Collapse
Affiliation(s)
- Xun Sun
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education at Shandong University, School of Mechanical Engineering, Shandong University, 17923, Jingshi Road, Jinan, Shandong Province 250061, People's Republic of China.
| | - Jingting Liu
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education at Shandong University, School of Mechanical Engineering, Shandong University, 17923, Jingshi Road, Jinan, Shandong Province 250061, People's Republic of China.
| | - Li Ji
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education at Shandong University, School of Mechanical Engineering, Shandong University, 17923, Jingshi Road, Jinan, Shandong Province 250061, People's Republic of China.
| | - Guichao Wang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education at Shandong University, School of Mechanical Engineering, Shandong University, 17923, Jingshi Road, Jinan, Shandong Province 250061, People's Republic of China.
| | - Shan Zhao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University,72 Jimobinhai Road, Qingdao, Shandong Province 266237, People's Republic of China.
| | - Joon Yong Yoon
- Department of Mechanical Engineering, Hanyang University, 55, Hanyangdaehak-ro, Ansan, Gyeonggi-do 15588, Republic of Korea.
| | - Songying Chen
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education at Shandong University, School of Mechanical Engineering, Shandong University, 17923, Jingshi Road, Jinan, Shandong Province 250061, People's Republic of China.
| |
Collapse
|
32
|
Koval I, Starchevskyy V. Gas Nature Effect on the Destruction of Various Microorganisms Under Cavitation Action. CHEMISTRY & CHEMICAL TECHNOLOGY 2020. [DOI: 10.23939/chcht14.02.264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
33
|
Mancuso G, Langone M, Andreottola G. A critical review of the current technologies in wastewater treatment plants by using hydrodynamic cavitation process: principles and applications. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2020; 18:311-333. [PMID: 32399243 PMCID: PMC7203374 DOI: 10.1007/s40201-020-00444-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 01/14/2020] [Indexed: 05/22/2023]
Abstract
In the last decade, hydrodynamic cavitation (HC) was increasingly used in the field of wastewater treatment. Due to its oxidative capability, HC was applied to treat aqueous effluents polluted by organic, toxic and bio-refractory contaminants, whereas its mechanical and chemical effects have allowed to disintegrate cells of microorganisms in biological applications. Due to their geometries, HC can be detected in some reactors, in which a variation of hydraulic parameters in the fluid such as flow pressure and flow velocity is induced. HC process involves the formation, growth, implosion and subsequent collapse of cavities, occurring in a very short period of time and releasing large magnitudes of power. In this paper, the vast literature on HC is critically reviewed, focusing on the basic principles behind it, in terms of process definition and analysis of governing mechanisms of both HC generation and pollutants degradation. The influence of various parameters on HC effectiveness was assessed, considering fluid properties, construction features of HC devices and technological aspects of processes. The synergetic effect of HC combined with chemicals or other techniques was discussed. An overview of the main devices used for HC generation and different existing methods to evaluate the cavitation effectiveness was provided. Knowledge buildup and optimization for such complex systems from mathematical modeling was highlighted.
Collapse
Affiliation(s)
- Giuseppe Mancuso
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, viale Giuseppe Fanin 50, 40127 Bologna, Italy
| | - Michela Langone
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, via Mesiano 77, 38123 Trento, Italy
| | - Gianni Andreottola
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, via Mesiano 77, 38123 Trento, Italy
| |
Collapse
|
34
|
Thanekar P, Gogate PR. Improved processes involving hydrodynamic cavitation and oxidants for treatment of real industrial effluent. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116563] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
35
|
Influence of Fluid Properties on Intensity of Hydrodynamic Cavitation and Deactivation of Salmonella typhimurium. Processes (Basel) 2020. [DOI: 10.3390/pr8030326] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In this study, three microfluidic devices with different geometries are fabricated on silicon and are bonded to glass to withstand high-pressure fluid flows in order to observe bacteria deactivation effects of micro cavitating flows. The general geometry of the devices was a micro orifice with macroscopic wall roughness elements. The width of the microchannel and geometry of the roughness elements were varied in the devices. First, the thermophysical property effect (with deionized water and phosphate-buffered saline (PBS)) on flow behavior was revealed. The results showed a better performance of the device in terms of cavitation generation and intensity with PBS due to its higher density, higher saturation vapor pressure, and lower surface tension in comparison with water. Moreover, the second and third microfluidic devices were tested with water and Salmonella typhimurium bacteria suspension in PBS. Accordingly, the presence of the bacteria intensified cavitating flows. As a result, both devices performed better in terms of the intensity of cavitating flow with the presence of bacteria. Finally, the deactivation performance was assessed. A decrease in the bacteria colonies on the agar plate was detected upon the tenth cycle of cavitating flows, while a complete deactivation was achieved after the fifteenth cycle. Thus, the proposed devices can be considered as reliable hydrodynamic cavitation reactors for “water treatment on chip” applications.
Collapse
|
36
|
Mane MB, Bhandari VM, Balapure K, Ranade VV. A novel hybrid cavitation process for enhancing and altering rate of disinfection by use of natural oils derived from plants. ULTRASONICS SONOCHEMISTRY 2020; 61:104820. [PMID: 31675658 DOI: 10.1016/j.ultsonch.2019.104820] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/10/2019] [Accepted: 10/01/2019] [Indexed: 05/07/2023]
Abstract
The present study is an attempt to improvise the hydrodynamic cavitation methodology for effective disinfection of water and also to suggest prototype development for practical application. The enhancement in the disinfection efficiency was evaluated specifically for the effect of pressure, temperature, pH, microbial inoculum size and also on effect of different additives for the two model microbial strains, gram-negative (Escherichia coli) and gram-positive (Staphylococcus aureus). The efficacy of the hydrodynamic cavitation is evaluated for the two types of flows/cavitation devices - linear flow in the case of orifice and vortex flow for vortex diode. The vortex diode requires significantly lower pressures, 50% lower as compared to orifice for the similar extent of disinfection. While the bacterial disinfection at high temperature is known, the usefulness of hydrodynamic cavitation is especially evident at ambient conditions and the process is effective even at very high concentrations of bacteria, not reported so far. The reactor geometry also has significant effect on the disinfection. The present study, for the first time, reports possible use of different natural oils such as castor oil, cinnamon oil, eucalyptus oil and clove oil in conjunction with hydrodynamic cavitation. The nature of oil modifies the cavitation behavior and an order of magnitude enhancement in the cavitation rate was observed for the two oils, eucalyptus and clove oil for a very small concentration of 0.1%. The increased rates of disinfection, of the order of 2-4 folds, using oil can drastically reduce the time of operation and consequently reduce cost of disinfection. A possible mechanism is proposed for the effect of oil and hydrodynamic cavitation in cell destruction through the rupture of cell wall, oxidative damage and possible DNA denaturation. A cavitation model using per pass disinfection was used to correlate the data. The increased efficiency using oils and possible benefits of the developed process, where natural oils can be perceived as biocatalysts, can have significant advantages in practical applications.
Collapse
Affiliation(s)
- Maya B Mane
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-NCL Pune, India
| | - Vinay M Bhandari
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-NCL Pune, India.
| | - Kshama Balapure
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, India
| | - Vivek V Ranade
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, India
| |
Collapse
|
37
|
Controlled Hydrodynamic Cavitation: A Review of Recent Advances and Perspectives for Greener Processing. Processes (Basel) 2020. [DOI: 10.3390/pr8020220] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The 20th century has witnessed a remarkable enhancement in the demand for varieties of consumer products, ranging from food, pharmaceutical, cosmetics, to other industries. To enhance the quality of the product and to reduce the production cost, industries are gradually inclined towards greener processing technologies. Cavitation-based technologies are gaining interest among processing technologies due to their cost effectiveness in operation, minimization of toxic solvent usage, and ability to obtain superior processed products compared to conventional methods. Also, following the recent advancements, cavitation technology with large-scale processing applicability is only denoted to the hydrodynamic cavitation (HC)-based method. This review includes a general overview of hydrodynamic cavitation-based processing technologies and a detailed discussion regarding the process effectiveness. HC has demonstrated its usefulness in food processing, extraction of valuable products, biofuel synthesis, emulsification, and waste remediation, including broad-spectrum contaminants such as pharmaceuticals, bacteria, dyes, and organic pollutants of concern. Following the requirement of a specific process, HC has been implemented either alone or in combination with other process-intensifying steps, for example, catalyst, surfactant, ultraviolet (UV), hydrogen peroxide (H2O2), and ozone (O3), for better performance. The reactor set-up of HC includes orifice, slit venturi, rotor-stator, and sonolator type constrictions that initiate and control the formation of bubbles. Moreover, the future directions have also been pointed out with careful consideration of specific drawbacks.
Collapse
|
38
|
Cai Y, Wu XS, Luo Y, Su MJ, Chu GW, Sun BC, Chen JF. Plasma-Assisted Rotating Disk Reactor toward Disinfection of Aquatic Microorganisms. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b02562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Simpson A, Ranade VV. 110th Anniversary: Comparison of Cavitation Devices Based on Linear and Swirling Flows: Hydrodynamic Characteristics. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b02757] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alister Simpson
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, Belfast BT9 5AG, United Kingdom
| | - Vivek V. Ranade
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, Belfast BT9 5AG, United Kingdom
| |
Collapse
|