1
|
Sizmur T, Frost H, Felipe-Sotelo M, Bond T, Mallory ML, O’Driscoll NJ. Methylmercury sorption to polyethylene terephthalate (PET) fibers and relevance to environmental exposure. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025; 44:335-343. [PMID: 39919244 PMCID: PMC11816310 DOI: 10.1093/etojnl/vgae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 02/09/2025]
Abstract
Considerable amounts of polyethylene terephthalate (PET) microplastic fibers are released into the environment by the laundering of polyester clothing. Microplastic fibers can be ingested by organisms in the environment. Therefore, it has been suggested that microplastic fibers act as vectors for adsorbed contaminants, which are subsequently desorbed in the gut of the organism. We undertook sorption isotherm experiments at pH 6, 7, and 8 to quantify the sorption of methylmercury (MeHg) to PET fibers. Sorption isotherms were fit to Langmuir, Freundlich, and Brunauer-Emmett-Teller models. Sorption decreased with increasing pH, which can be explained by physisorption on the negatively charged PET surfaces and the greater presence of neutral or negatively charged MeHg species at higher pH. We used the parameters obtained by the model fits to predict the likely concentration of MeHg on PET microplastic fibers in aquatic ecosystems with environmentally realistic MeHg concentrations. We calculated MeHg concentrations on PET microplastic fibers to be four orders of magnitude lower than previously observed concentrations of MeHg in seston (suspended particles comprising algae and bacteria) at the base of the aquatic food web. The results indicate that the presence of PET microplastic fibers in the environment do not elevate the MeHg exposure to organisms that ingest fibers in the environment.
Collapse
Affiliation(s)
- Tom Sizmur
- Department of Geography and Environmental Science, University of Reading, Reading, United Kingdom
- Earth and Environmental Science Department, Acadia University, Wolfville, NS, Canada
| | - Harrison Frost
- School of Civil Engineering & Surveying, University of Portsmouth, Portsmouth, United Kingdom
- Department of Chemistry, University of Surrey, Guildford, United Kingdom
| | | | - Tom Bond
- School of Sustainability, Civil and Environmental Engineering, University of Surrey, Guildford, United Kingdom
| | - Mark L Mallory
- Biology Department, Acadia University, Wolfville, NS, Canada
| | - Nelson J O’Driscoll
- Earth and Environmental Science Department, Acadia University, Wolfville, NS, Canada
| |
Collapse
|
2
|
Wang Y, Chen L, Chen Y, Xue Y, Liu G, Zheng X, Zhou L, Zhong H. Effects of varying amounts of different biochars on mercury methylation in paddy soils and methylmercury accumulation in rice (Oryza sativa L.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162459. [PMID: 36871735 DOI: 10.1016/j.scitotenv.2023.162459] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
There is growing evidence for the potential of biochars (BCs) in remediating mercury-contaminated paddy soils, but the high doses commonly used in laboratory studies discourage BC application in practice. To address these difficulties, we compared the effects of varying amounts of BCs from different sources on the formation of methylmercury (MeHg) in soil and its accumulation in rice through microcosm and pot experiments. The addition of a wide range of added doses (0.3, 0.6, 1, 2, 4 and 5 %, w/w) of BCs derived from different biomass feedstocks (i.e., corn stalk, wheat straw, bamboo, oak and poplar) significantly decreased the fraction of ammonium thiosulfate ((NH4)2S2O3)-extractable MeHg in the soil, although the MeHg contents varied with BC types and doses during soil incubation. However, the extractable MeHg in the soil did not continuously decrease with increasing BC doses, especially at doses of >1 %, resulting in limited further reductions. Moreover, a relatively low application rate (0.3-0.6 %, w/w) of BCs (i.e., corn stalk, wheat straw and bamboo-derived BC), especially of bamboo-derived BCs, significantly decreased the MeHg levels (42-76 %) in rice grains (brown rice). Meanwhile, the extractable soil MeHg decreased (57-85 %), although the MeHg in the soil varied under BC amendment during rice cultivation. These results provide further evidence that applying BC produced from different raw carbon materials (e.g., lignocellulosic biomass) could effectively reduce MeHg accumulation in rice grains, possibly due to MeHg bioavailability reduction in the soil. Our results suggest the possibility of mitigating MeHg accumulation in rice with a low dose of BCs, with great potential for use in remediating moderately contaminated paddy soils.
Collapse
Affiliation(s)
- Yongjie Wang
- Key Laboratory of Geographic Information Science, Ministry of Education, East China Normal University, Shanghai 200241, PR China; School of Geographic Sciences, East China Normal University, Shanghai 200241, PR China
| | - Li Chen
- School of Geographic Sciences, East China Normal University, Shanghai 200241, PR China
| | - Yuanyuan Chen
- School of Geographic Sciences, East China Normal University, Shanghai 200241, PR China
| | - Yongjun Xue
- School of Life Sciences, East China Normal University, Shanghai 200241, PR China
| | - Guangxia Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Xiangmin Zheng
- School of Geographic Sciences, East China Normal University, Shanghai 200241, PR China
| | - Limin Zhou
- Key Laboratory of Geographic Information Science, Ministry of Education, East China Normal University, Shanghai 200241, PR China; School of Geographic Sciences, East China Normal University, Shanghai 200241, PR China; Institute of Eco-Chongming, East China Normal University, Shanghai 200241, PR China.
| | - Huan Zhong
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| |
Collapse
|
3
|
Washburn SJ, Damond J, Sanders JP, Gilmour CC, Ghosh U. Uptake Mechanisms of a Novel, Activated Carbon-Based Equilibrium Passive Sampler for Estimating Porewater Methylmercury. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2052-2064. [PMID: 35698924 PMCID: PMC9420783 DOI: 10.1002/etc.5406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/25/2021] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
We describe the validation of a novel polymeric equilibrium passive sampler comprised of agarose gel with embedded activated carbon particles (ag+AC), to estimate aqueous monomethylmercury (MeHg) concentrations. Sampler behavior was tested using a combination of idealized media and realistic sediment microcosms. Isotherm bottle experiments with ag+AC polymers were conducted to constrain partitioning to these materials by various environmentally relevant species of MeHg bound to dissolved organic matter (MeHgDOM) across a range of sizes and character. Log of partitioning coefficients for passive samplers (Kps ) ranged from 1.98 ± 0.09 for MeHg bound to Suwannee River humic acid to 3.15 ± 0.05 for MeHg complexed with Upper Mississippi River natural organic matter. Reversible equilibrium exchange of environmentally relevant MeHg species was demonstrated through a series of dual isotope-labeled exchange experiments. Isotopically labeled MeHgDOM species approached equilibrium in the samplers over 14 days, while mass balance was maintained, providing strong evidence that the ag+AC polymer material is capable of equilibrium measurements of environmentally relevant MeHg species within a reasonable deployment time frame. Samplers deployed across the sediment-water interface of sediment microcosms estimated both overlying water and porewater MeHg concentrations within a factor of 2 to 4 of measured values, based on the average measured Kps values for species of MeHg bound to natural organic matter in the isotherm experiments. Taken together, our results indicate that ag+AC polymers, used as equilibrium samplers, can provide accurate MeHg estimations across many site chemistries, with a simple back-calculation based on a standardized Kps. Environ Toxicol Chem 2022;41:2052-2064. © 2022 SETAC.
Collapse
Affiliation(s)
- Spencer J. Washburn
- Smithsonian Environmental Research Center, 647 Contees
Wharf Road, Edgewater, Maryland 21037, United States
| | - Jada Damond
- Department of Chemical, Biochemical, and Environmental
Engineering University of Maryland Baltimore County, 5200 Westland Blvd., Baltimore,
Maryland 21250, United States
| | - James P. Sanders
- US Environmental Protection Agency, Office of Pollution
Prevention and Toxics, Washington, DC 20460, United States
| | - Cynthia C. Gilmour
- Smithsonian Environmental Research Center, 647 Contees
Wharf Road, Edgewater, Maryland 21037, United States
| | - Upal Ghosh
- Department of Chemical, Biochemical, and Environmental
Engineering University of Maryland Baltimore County, 5200 Westland Blvd., Baltimore,
Maryland 21250, United States
| |
Collapse
|
4
|
Pouil S, Stevenson LM, Goñez-Rodríguez L, Mathews TJ. Stannous chloride as a tool for mercury stripping in contaminated streams: Experimental assessment of toxicity in an invertebrate model species. CHEMOSPHERE 2022; 296:133762. [PMID: 35093417 DOI: 10.1016/j.chemosphere.2022.133762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/05/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
The chronic toxicity of an innovative Hg water treatment system using tin (Sn) (II) chloride (SnCl2) followed by air stripping was assessed through measurements of survival, growth, and reproduction rate in the freshwater cladoceran Ceriodaphnia dubia, a model species for toxicity testing. We first calculated the concentrations of Hg causing 25% reduction in survival and reproduction (Lethal or Inhibition Concentrations, or LC25 and IC25, for survival and reproduction, respectively) through exposure to aqueous Hg at concentrations ranging from 0 to 25,000 ng L-1. Then, we treated media (DMW and natural stream water) contaminated with Hg at LC25 and IC25 concentrations with SnCl2 at a Sn:Hg stoichiometric ratio of 8:1 and air stripping and exposed C. dubia to this Sn-amended media. Our results showed that Hg significantly affected survival, reproduction rates and impaired growth. SnCl2-treatment removed 100% of the Hg from the media at all concentrations tested with no deleterious effects on survival, growth and reproduction. Our results confirmed the efficacy of SnCl2 in removing aqueous Hg from stream water and showed that the added Sn did not impact C. dubia at the concentrations tested, supporting the suitability of SnCl2-based treatments in appropriate Hg-contaminated environments.
Collapse
Affiliation(s)
- Simon Pouil
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Louise M Stevenson
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Leroy Goñez-Rodríguez
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Teresa J Mathews
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA.
| |
Collapse
|
5
|
Nair SS, DeRolph C, Peterson MJ, McManamay RA, Mathews T. Integrated watershed process model for evaluating mercury sources, transport, and future remediation scenarios in an industrially contaminated site. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127049. [PMID: 34517300 DOI: 10.1016/j.jhazmat.2021.127049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
We used the Soil Water Assessment Tool (SWAT) as a framework to develop an empirical Hg flux model for Upper East Fork Poplar Creek (UEFPC), a Hg-contaminated watershed in Oak Ridge, Tennessee. By integrating long-term Hg monitoring data with simulated flow and suspended solid loads in a site-specific empirical Hg transport model, we (1) quantified the spatial, temporal, and flow regime controls on daily Hg flux (adjusted R2 = 0.82) and (2) made predictions about Hg flux under future climate, land use, and management scenarios. We found that 62.79% of the average daily Hg flux in the watershed is currently driven by base flow, whereas variability in Hg flux is driven by storm and extreme flow. We estimate an average annual Hg flux of 28.82 g day-1 leaving the watershed under baseline precipitation, with an estimated 43.73% reduction in daily Hg flux under drought conditions and a 296% increase in daily Hg flux in extreme precipitation scenarios. We estimated that a new mercury treatment facility would result in a 24.7% reduction in Hg flux under baseline conditions and a 33.4% reduction under extreme precipitation scenarios. The study demonstrated the merit of this approach, which can be replicated for sites where information on flow, suspended solids, and Hg concentrations is available.
Collapse
Affiliation(s)
| | - Christopher DeRolph
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Mark J Peterson
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Ryan A McManamay
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA
| | - Teresa Mathews
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| |
Collapse
|
6
|
Thiol-Functionalization Carbonaceous Adsorbents for the Removal of Methyl-Mercury from Water in the ppb Levels. WATER 2021. [DOI: 10.3390/w14010049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mercury is a highly toxic pollutant of major public health concern, and human exposure is mainly related to the aqueous phase, where its dominant form is methyl-mercury (MeHg). In the current work, two carbon-based adsorbents, i.e., a commercial activated carbon and a sunflower seeds’ biochar, were modified by the introduction of thiol-active groups onto their surfaces for the MeHg removal from natural-like water in ppb concentration levels. The examined thiol-functionalization was a two-step process, since the raw materials were initially treated with nitric acid (6 N), which is a reagent that favors the formation of surface carboxyl groups, and subsequently by the thiol surface bonding groups through an esterification reaction in methanol matrix. The adsorbents’ capacity was evaluated toward the Hgtotal legislative regulation limit (1 μg/L) in drinking water (denoted as Q1). The respective isothermal adsorption results revealed an increased affinity between MeHg and thiol-functionalized materials, where the commercial carbon showed slightly higher capacity (0.116 μg Hg/mg) compared with the biochar (0.108 μg Hg/mg). This variation can be attributed to the respective higher surface area, resulting, also, to higher thiol groups loading. Regarding the proposed mechanism, it was proved that the S-Hg bond was formed, based on the characterization of the best performed saturated adsorbent.
Collapse
|
7
|
Eckley CS, Gilmour CC, Janssen S, Luxton TP, Randall PM, Whalin L, Austin C. The assessment and remediation of mercury contaminated sites: A review of current approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 707:136031. [PMID: 31869604 PMCID: PMC6980986 DOI: 10.1016/j.scitotenv.2019.136031] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/07/2019] [Accepted: 12/07/2019] [Indexed: 04/13/2023]
Abstract
Remediation of mercury (Hg) contaminated sites has long relied on traditional approaches, such as removal and containment/capping. Here we review contemporary practices in the assessment and remediation of industrial-scale Hg contaminated sites and discuss recent advances. Significant improvements have been made in site assessment, including the use of XRF to rapidly identify the spatial extent of contamination, Hg stable isotope fractionation to identify sources and transformation processes, and solid-phase characterization (XAFS) to evaluate Hg forms. The understanding of Hg bioavailability for methylation has been improved by methods such as sequential chemical extractions and porewater measurements, including the use of diffuse gradient in thin-film (DGT) samplers. These approaches have shown varying success in identifying bioavailable Hg fractions and further study and field applications are needed. The downstream accumulation of methylmercury (MeHg) in biota is a concern at many contaminated sites. Identifying the variables limiting/controlling MeHg production-such as bioavailable inorganic Hg, organic carbon, and/or terminal electron acceptors (e.g. sulfate, iron) is critical. Mercury can be released from contaminated sites to the air and water, both of which are influenced by meteorological and hydrological conditions. Mercury mobilized from contaminated sites is predominantly bound to particles, highly correlated with total sediment solids (TSS), and elevated during stormflow. Remediation techniques to address Hg contamination can include the removal or containment of Hg contaminated materials, the application of amendments to reduce mobility and bioavailability, landscape/waterbody manipulations to reduce MeHg production, and food web manipulations through stocking or extirpation to reduce MeHg accumulated in desired species. These approaches often rely on knowledge of the Hg forms/speciation at the site, and utilize physical, chemical, thermal and biological methods to achieve remediation goals. Overall, the complexity of Hg cycling allows many different opportunities to reduce/mitigate impacts, which creates flexibility in determining suitable and logistically feasible remedies.
Collapse
Affiliation(s)
- Chris S Eckley
- U.S. Environmental Protection Agency, Region-10, 1200 6th Ave, Seattle, WA 98101, USA.
| | - Cynthia C Gilmour
- Smithsonian Environmental Research Center, 647 Contees Wharf Rd., Edgewater, MD 21037-0028, USA.
| | - Sarah Janssen
- USGS Upper Midwest Water Science Center, 8505 Research Way, Middleton, WI 53562, USA.
| | - Todd P Luxton
- US Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, 26 West Martin Luther King Drive, Cincinnati, OH 45268, USA.
| | - Paul M Randall
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA.
| | - Lindsay Whalin
- San Francisco Bay Water Board, 1515 Clay St., Ste. 1400, Oakland, CA 94612, USA.
| | - Carrie Austin
- San Francisco Bay Water Board, 1515 Clay St., Ste. 1400, Oakland, CA 94612, USA.
| |
Collapse
|