1
|
Abo-Shaeshaa MM, Rashwan IM, El-Enany MA, Armanuos AM. Effectiveness of double-cut-off walls on seawater intrusion and nitrate concentration in unconfined coastal aquifers. JOURNAL OF CONTAMINANT HYDROLOGY 2025; 269:104495. [PMID: 39971416 DOI: 10.1016/j.jconhyd.2024.104495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/10/2024] [Accepted: 12/30/2024] [Indexed: 02/21/2025]
Abstract
An effective coastal engineering technique for preventing seawater intrusion is constructing a cut-off wall. Nevertheless, the cut-off walls impact on nitrate concentration in downstream aquifers has not been assessed in the previous research that focused on studying a single subsurface physical barrier. In this work, a numerical model was used to examine the effect and mechanisms of the double-cut-off walls on saltwater wedge length and nitrate concentrations transported downstream of them. SEAWAT code has been implemented to simulate seawater intrusion and nitrate transport in unconfined coastal aquifers. Two cases of homogeneous aquifer (Case-H) and heterogeneous aquifer (Case-LH) were studied. The results showed significantly receded in the saltwater wedge and the spread of nitrate contamination increased due to the heterogeneous conditions. A significant effect on nitrate accumulation and an increase in the pollution area between the double-cut-off walls was observed when the second cut-off wall depth was embedded by more than 50 % of the aquifer thickness due to the weak inflow below the cut-off wall. There was no need to raise the second cut-off depth because there was a significant retraction in the saltwater interface after the first cut-off wall was embedded to a depth of more than 70 % of the aquifer thickness. Raising the second cut-off wall depth to more than 30 % of the aquifer thickness when the first cut-off wall depth ratio was less than 50 % significantly impacted the retreating of the saltwater wedge for the short distance between the double-cut-off walls. When the second cut-off wall depth ratio was less than 50 %, raising the first cut-off wall depth significantly lowered the total concentrations of the nitrate that arrived at the double-cut-off walls downstream. In addition, the total concentrations of the nitrate that traveled toward the sea were reduced to 17 % of the original nitrate concentration by raising the depth of both cut-off walls to 70 % of the aquifer thickness and the distance between them to more than 25 m. Although it was shown that the double-cut-off walls substantially reduced saltwater intrusion and nitrate concentrations, they also created a large dispersion area of nitrate pollution, especially in the heterogeneous aquifer. The retreat of the saltwater interface wedge was significantly impacted by the first cut-off wall depth in the heterogeneous aquifer. This study offers useful information for preventing saltwater intrusion and reducing nitrate concentration downstream of the double-cut-off walls, especially, the double-cut-off walls represent a new study for controlling saltwater intrusion and nitrate pollution in a coastal aquifer. The outcomes of this study can be used for the groundwater resources proper management in coastal aquifers.
Collapse
Affiliation(s)
- Mohamed M Abo-Shaeshaa
- Civil Engineering Department, Faculty of Engineering, Kafr elshiekh University, Egypt; Irrigation and Hydraulics Engineering Department, Faculty of Engineering, Tanta University, Egypt.
| | - Ibrahim M Rashwan
- Irrigation and Hydraulics Engineering Department, Faculty of Engineering, Tanta University, Egypt.
| | - Mustafa A El-Enany
- Civil Engineering Department, Faculty of Engineering, Kafr elshiekh University, Egypt.
| | - Asaad M Armanuos
- Irrigation and Hydraulics Engineering Department, Faculty of Engineering, Tanta University, Egypt.
| |
Collapse
|
2
|
Shen Y, Zhao G, Wan D, Liu M, Peng T, Zhang W, Wang P, He Q. Dual-layer elemental sulfur-packed denitrification reactor to control sulfate generation and sulfide discharge by two-point inlet and internal recirculation. BIORESOURCE TECHNOLOGY 2025; 418:131965. [PMID: 39662846 DOI: 10.1016/j.biortech.2024.131965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/04/2024] [Accepted: 12/07/2024] [Indexed: 12/13/2024]
Abstract
In this study, an elemental sulfur (S0) autotrophic denitrification reactor (SADR) and a wood chunk and S0 mixotrophic denitrification reactor (WSMDR) were constructed with dual-layers to effectively remove nitrate from water using two-inlets and internal recirculation. The denitrification rates were 66-114 and 70-104 g-N/(m3·d) for the SADR and WSMDR, respectively. Sulfate production was 5.5-5.9 and 3.2-4.5 mg SO42-/mg reduced N in the SADR and WSMDR, respectively, being lower than theoretical value. In addition, there was no sulfide emission from either reactor. Chlorobium, Chlorobaculum, Ignavibacterium, Sulfuritalea, and Thiobacillus were involved in nitrate reduction in both reactors. Chlorobiaceae had the highest abundance and played an essential role in maintaining the integrity of the co-occurrence pattern. The abundance of functional genes positively correlated with the denitrification performance. This study demonstrates that the operation of two-inlets and internal recirculation can effectively reduce byproduct generation, thereby promoting the practical application of the SADR and WSMDR.
Collapse
Affiliation(s)
- Yunpeng Shen
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Guanghua Zhao
- College of Environmental Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Dongjin Wan
- College of Environmental Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Mingyang Liu
- College of Environmental Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Tong Peng
- Beijing Nature Science and Technology Development Co. LTD, No. 2 Ronghua Nan Road, Beijing Economic-Technological Development Area, China
| | - Weichao Zhang
- College of Environmental Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Panting Wang
- College of Environmental Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Qiaochong He
- College of Environmental Engineering, Henan University of Technology, Zhengzhou 450001, China.
| |
Collapse
|
3
|
Wang Y, Bai Y, Su J, Xu L, Ren Y, Ren M, Hou C, Cao M. Enhanced denitrification and p-nitrophenol removal performance via hydrophilic sponge carriers fixed with dual-bacterial: Optimization, performance, and enhancement mechanism. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134922. [PMID: 38885589 DOI: 10.1016/j.jhazmat.2024.134922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/18/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
Effective treatment of industrial wastewater containing complex pollutants, such as nitrate (NO3--N) and organic pollutants, remains a significant challenge to date. Here, a strain Nocardioides sp. ZS2 with denitrification and degradation of p-nitrophenol (PNP) was isolated and its culture conditions were optimized by kinetic analysis. Hydrophilic sponge carriers were prepared using polyvinyl alcohol (PVA), carboxymethyl cellulose (CMC), and chitosan (CS) to construct bioreactors. Furthermore, to further enhance the PNP degradation and denitrification performance of bioreactors, Pseudomonas stutzeri GF2 with denitrification capability was introduced. The results revealed that the removal efficiencies of PNP and NO3--N reached 97.9 % and 91.9 %, respectively, when hydraulic retention time (HRT) of 6 h, C/N of 2.0, and pH of 6.5. The bioreactor exhibited stable denitrification performance even with fluctuations in the influent PNP concentration. The potential functional prediction results revealed that the abundance of amino acids, fatty acids, and carbohydrates increased as the influent C/N decreased, reflecting a tendency of the microbial community to adjust carbon source utilization to maintain cell growth, metabolic balance, and resist adverse C/N environments. This research provides new insights into the effective removal of organic pollutants and NO3--N in wastewater treatment.
Collapse
Affiliation(s)
- Yue Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yihan Bai
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yi Ren
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Miqi Ren
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Chenxi Hou
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Meng Cao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
4
|
Gervasio MP, Soana E, Gavioli A, Vincenzi F, Castaldelli G. Contrasting effects of climate change on denitrification and nitrogen load reduction in the Po River (Northern Italy). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:48189-48204. [PMID: 39023725 PMCID: PMC11512913 DOI: 10.1007/s11356-024-34171-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/25/2024] [Indexed: 07/20/2024]
Abstract
An increase in water temperature is one of the main factors that can potentially modify biogeochemical dynamics in lowland rivers, such as the removal and recycling of nitrogen (N). This effect of climate change on N processing deserves attention, as it may have unexpected impacts on eutrophication in the coastal zones. Intact sediment cores were collected seasonally at the closing section of the Po River, the largest Italian river and one of the main N inputs to the Mediterranean Sea. Benthic oxygen fluxes, denitrification, and dissimilatory nitrate reduction to ammonium (DNRA) rates were measured using laboratory dark incubations. Different temperature treatments were set up for each season based on historical data and future predictions. Higher water temperatures enhanced sediment oxygen demand and the extent of hypoxic conditions in the benthic compartment, favoring anaerobic metabolism. Indeed, warming water temperature stimulated nitrate (NO3-) reduction processes, although NO3- and organic matter availability were found to be the main controlling factors shaping the rates between seasons. Denitrification was the main process responsible for NO3- removal, mainly supported by NO3- diffusion from the water column into the sediments, and much more important than N recycling via DNRA. The predicted increase in the water temperature of the Po River due to climate change may exert an unexpected negative feedback on eutrophication by strongly controlling denitrification and contributing to partial buffering of N export in the lagoons and coastal areas, especially in spring.
Collapse
Affiliation(s)
- Maria Pia Gervasio
- Department of Environmental and Prevention Sciences, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy.
| | - Elisa Soana
- Department of Environmental and Prevention Sciences, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy
| | - Anna Gavioli
- Department of Environmental and Prevention Sciences, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy
| | - Fabio Vincenzi
- Department of Environmental and Prevention Sciences, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy
| | - Giuseppe Castaldelli
- Department of Environmental and Prevention Sciences, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy
| |
Collapse
|
5
|
Fu Y, Yue Q, Luo S, Tian X. Application of a hybrid-fruit-peel (HFP) coagulant in low carbon source wastewater treatment as an external carbon source. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:333-346. [PMID: 39219133 PMCID: wst_2023_418 DOI: 10.2166/wst.2023.418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The application of a hybrid-fruit-peel (HFP) coagulant used as an external carbon source (ECS) in both simulated water and real sewage having a low carbon source treated with sequencing batch reactor (SBR) was studied, compared with that of sodium acetate (NaAc). The impact of HFP on sludge properties (such as extracellular polymer substance (EPS), dehydrogenase activity (DHA), charged property, size, microscopic images and bacteria phase) was characterized. The results showed that as an ECS, HFP basically gave similar nitrogen removal to NaAc and also gave a similar developing trend of both dissolved oxygen (DO) and pH. HFP promoted more proliferation of microorganisms and posed higher levels of protein (PN) and polysaccharide (PS) than NaAc, but gave slightly lower DHA than NaAc. After HFP was added as an ECS, the types and quantities of microorganisms increased significantly, the effluent qualities were improved and the sludge size and extensibility became larger, which was conducive to direct contact and remove pollutants. HFP played a similar role to NaAc as ECS and can be used as a quality and slow-releasing ECS for low carbon source wastewaters.
Collapse
Affiliation(s)
- Ying Fu
- School of Civil Engineering and Architecture, University of Jinan, 336, West Rode of Nan Xinzhuang, Jinan 250022, China E-mail:
| | - Qinghe Yue
- School of Civil Engineering and Architecture, University of Jinan, 336, West Rode of Nan Xinzhuang, Jinan 250022, China; First Construction Co., LTD., China Construction Eight Engineering Division Corp., LTD, 89, South Rode of Gongye, Jinan 250014, China
| | - Shuyuan Luo
- School of Civil Engineering and Architecture, University of Jinan, 336, West Rode of Nan Xinzhuang, Jinan 250022, China
| | - Xi Tian
- Shuifa Technology Group Co., Ltd., 30, Huayang Rode, Shandong, Jinan 250199, China
| |
Collapse
|
6
|
Sun X, Tong W, Wu G, Yang G, Zhou J, Feng L. A collaborative effect of solid-phase denitrification and algae on secondary effluent purification. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119393. [PMID: 37925989 DOI: 10.1016/j.jenvman.2023.119393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 11/07/2023]
Abstract
This study explored the collaborative effect on nutrients removal performance and microbial community in solid-phase denitrification based bacteria-algae symbiosis system. Three biodegradable carriers (apple wood, poplar wood and corncob) and two algae species (Chlorella vulgaris and Chlorella pyrenoidosa) were selected in these bacteria-algae symbiosis systems. Results demonstrated that corncob as the carrier exhibited the highest average removal efficiencies of total nitrogen (83.7%-85.1%) and phosphorus removal (38.1%-49.1%) in comparison with apple wood (65.8%-71.5%, 25.5%-32.7%) and poplar wood (42.5%-49.1%, 14.2%-20.7%), which was mainly attributed to the highest organics availability of corncob. The addition of Chlorella acquired approximately 3%-5% of promotion rates for nitrated removal among three biodegradable carriers, but only corncob reactor acquired significant promotions by 3%-11% for phosphorous removal. Metagenomics sequencing analysis further indicated that Proteobacteria was the largest phylum in all wood reactors (77.1%-93.3%) and corncob reactor without Chlorella (85.8%), while Chlorobi became the most dominant phylum instead of Proteobacteria (20.5%-41.3%) in the corncob with addition of Chlorella vulgaris (54.5%) and Chlorella pyrenoidosa (76.3%). Thus, the higher organics availability stimulated the growth of algae, and promoted the performance of bacteria-algae symbiosis system based biodegradable carriers.
Collapse
Affiliation(s)
- Xiaoran Sun
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China
| | - Weibing Tong
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China
| | - Guiyang Wu
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China
| | - Guangfeng Yang
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China
| | - Jiaheng Zhou
- College of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Lijuan Feng
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China; National & Local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhoushan, 316022, People's Republic of China.
| |
Collapse
|
7
|
Pániková K, Bílková Z, Malá J. The Behavior of Terbuthylazine, Tebuconazole, and Alachlor during Denitrification Process. J Xenobiot 2023; 13:560-571. [PMID: 37873813 PMCID: PMC10594447 DOI: 10.3390/jox13040036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 10/25/2023] Open
Abstract
Pesticide compounds can influence denitrification processes in groundwater in many ways. This study observed behavior of three selected pesticides under denitrifying conditions. Alachlor, terbuthylazine, and tebuconazole, in a concentration of 0.1 mL L-1, were examined using two laboratory denitrifications assays: a "short" 7-day and a "long" 28-day test. During these tests, removal of pesticides via adsorption and biotic decomposition, as well as the efficiency of nitrate removal in the presence of the pesticides, were measured. No considerable inhibition of the denitrification process was observed for any of the pesticides. On the contrary, significant stimulation was observed after 21 days for alachlor (49%) and after seven days for terbuthylazine (40%) and tebuconazole (36%). Adsorption was in progress only during the first seven days in the case of all tested pesticides and increased only negligibly afterwards. Immediate adsorption of terbuthylazine was probably influenced by the mercuric chloride inhibitor. A biotic loss of 4% was measured only in the case of alachlor.
Collapse
Affiliation(s)
- Kristína Pániková
- Institute of Chemistry, Faculty of Civil Engineering, Brno University of Technology, 602 00 Brno, Czech Republic;
| | - Zuzana Bílková
- Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, 611 37 Brno, Czech Republic
| | - Jitka Malá
- Institute of Chemistry, Faculty of Civil Engineering, Brno University of Technology, 602 00 Brno, Czech Republic;
| |
Collapse
|
8
|
Wang J, Kong J, Gao C, Zhou L. Effect of mixed physical barrier on seawater intrusion and nitrate accumulation in coastal unconfined aquifers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:105308-105328. [PMID: 37713083 DOI: 10.1007/s11356-023-29637-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/28/2023] [Indexed: 09/16/2023]
Abstract
Physical barrier has been proven to be one of the most effective measures to prevent and control seawater intrusion (SWI) in coastal areas. Mixed physical barrier (MPB), a new type of physical barrier, has been shown to have higher efficiency in SWI control. As with conventional subsurface dam and cutoff wall, the construction of MPB may lead to the accumulation of nitrate contaminants in coastal aquifers. We investigated the SWI control capacity and nitrate accumulation in the MPB using a numerical model of variable density flow coupling with reactive transport, and performed sensitivity analysis on the subsurface dam height, cutoff wall depth and opening spacing in the MPB. The differences in SWI control and nitrate accumulation between MPB and conventional subsurface dam and cutoff wall were compared to assess the applicability of different physical barrier. The numerical results show that the construction of MPB will increase the nitrate concentration and contaminated area in the aquifer. The prevention and control efficiency of MPB against SWI is positively correlated with the depth of the cutoff wall, reaching the highest efficiency at the minimum effective dam height, and the retreat distance of the saltwater wedge is positively correlated with the opening spacing. We found a non-monotonic relationship between the change in subsurface dam height and the extent of nitrate accumulation, with total nitrate mass and contaminated area increasing and then decreasing as the height of the subsurface dam increased. The degree of nitrate accumulation increased linearly with increasing the height of the cutoff wall and the opening spacing. Under certain conditions, MPB is 46-53% and 16-57% more efficient in preventing and controlling SWI than conventional subsurface dam and cutoff wall, respectively. However, MPB caused 14-27% and 2-12% more nitrate accumulation than subsurface dam and cutoff wall, respectively. The findings of this study are of great value for the protection of coastal groundwater resources and will help decision makers to select appropriate engineering measures and designs to reduce the accumulation of nitrate pollutants while improving the efficiency of SWI control.
Collapse
Affiliation(s)
- Jun Wang
- Key Laboratory of Coastal Disaster and Protection (Hohai University), Ministry of Education, Nanjing, China
- State Key Laboratory of Hydrology, Water Resources and Hydraulic Engineering, Hohai University, Nanjing, China
| | - Jun Kong
- Key Laboratory of Coastal Disaster and Protection (Hohai University), Ministry of Education, Nanjing, China.
- State Key Laboratory of Hydrology, Water Resources and Hydraulic Engineering, Hohai University, Nanjing, China.
| | - Chao Gao
- Key Laboratory of Coastal Disaster and Protection (Hohai University), Ministry of Education, Nanjing, China
- State Key Laboratory of Hydrology, Water Resources and Hydraulic Engineering, Hohai University, Nanjing, China
| | - Lvbin Zhou
- Key Laboratory of Coastal Disaster and Protection (Hohai University), Ministry of Education, Nanjing, China
- State Key Laboratory of Hydrology, Water Resources and Hydraulic Engineering, Hohai University, Nanjing, China
| |
Collapse
|
9
|
Xu F, Liu M, Zhang S, Chen T, Sun J, Wu W, Zhao Z, Zhang H, Gong Y, Jiang J, Wang H, Kong Q. Treatment of atrazine-containing wastewater by algae-bacteria consortia: Signal transmission and metabolic mechanism. CHEMOSPHERE 2023:139207. [PMID: 37364639 DOI: 10.1016/j.chemosphere.2023.139207] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/02/2023] [Accepted: 06/11/2023] [Indexed: 06/28/2023]
Abstract
Atrazine is a toxic endocrine disruptor. Biological treatment methods are considered to be effective. In the present study, a modified version of the algae-bacteria consortia (ABC) was established and a control was simultaneously set up to investigate the synergistic relationship between bacteria and algae and the mechanism by which atrazine is metabolized by those microorganisms. The total nitrogen (TN) removal efficiency of the ABC reached 89.24% and the atrazine concentration was reduced to below the level recommended by the Environment Protection Agency (EPA) regulatory standards within 25 days. The protein signal released from the extracellular polymeric substances (EPS) secreted by the microorganisms triggered the resistance mechanism of the algae, and the conversion of humic acid to fulvic acid and electron transfer constituted the synergistic mechanism between the bacteria and algae. The mechanism by which atrazine is metabolized by the ABC mainly consists of hydrogen bonding, H-pi interactions, and cation exchange with atzA for hydrolysis, followed by a reaction with atzC for decomposition to non-toxic cyanuric acid. Proteobacteria was the dominant phylum for bacterial community evolution under atrazine stress, and the analysis revealed that the removal of atrazine within the ABC was mainly dependent on the proportion of Proteobacteria and the expression of degradation genes (p < 0.01). EPS played a major role in the removal of atrazine within the single bacteria group (p < 0.01).
Collapse
Affiliation(s)
- Fei Xu
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan, Shandong, 250014, PR China
| | - Mengyu Liu
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan, Shandong, 250014, PR China
| | - Siju Zhang
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan, Shandong, 250014, PR China
| | - Tao Chen
- The Natural Resources and Planning Bureau of Weishan, Jining, 273100, PR China
| | - Jingyao Sun
- The Natural Resources and Planning Bureau of Weishan, Jining, 273100, PR China
| | - Wenjie Wu
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan, Shandong, 250014, PR China
| | - Zheng Zhao
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan, Shandong, 250014, PR China
| | - Huanxin Zhang
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan, Shandong, 250014, PR China
| | - Yanyan Gong
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan, Shandong, 250014, PR China
| | - Jinpeng Jiang
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan, Shandong, 250014, PR China
| | - Hao Wang
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan, Shandong, 250014, PR China
| | - Qiang Kong
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan, Shandong, 250014, PR China; Dongying Institute, Shandong Normal University, Dongying, Shandong, 257092, PR China.
| |
Collapse
|
10
|
Yang Z, Lou Y, Pan H, Wang H, Yang Q, Zhuge Y, Hu J. Improved Denitrification Performance of Polybutylene Succinate/Corncob Composite Carbon Source by Proper Pretreatment: Performance, Functional Genes and Microbial Community Structure. Polymers (Basel) 2023; 15:polym15040801. [PMID: 36850087 PMCID: PMC9958998 DOI: 10.3390/polym15040801] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Blending biodegradable polymers with plant materials is an effective method to improve the biodegradability of solid carbon sources and save denitrification costs, but the recalcitrant lignin in plant materials hinders the microbial decomposition of available carbon sources. In the present study, corncob pretreated by different methods was used to prepare polybutylene succinate/corncob (PBS/corncob) composites for biological denitrification. The PBS/corncob composite with alkaline pretreatment achieved the optimal NO3--N removal rate (0.13 kg NO3--N m-3 day-1) with less adverse effects. The pretreatment degree, temperature, and their interaction distinctly impacted the nitrogen removal performance and dissolved organic carbon (DOC) release, while the N2O emission was mainly affected by the temperature and the interaction of temperature and pretreatment degree. Microbial community analysis showed that the bacterial community was responsible for both denitrification and lignocellulose degradation, while the fungal community was primarily in charge of lignocellulose degradation. The outcomes of this study provide an effective strategy for improving the denitrification performance of composite carbon sources.
Collapse
|
11
|
Wu H, Li A, Yang X, Wang J, Liu Y, Zhan G. The research progress, hotspots, challenges and outlooks of solid-phase denitrification process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159929. [PMID: 36356784 DOI: 10.1016/j.scitotenv.2022.159929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/30/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Nitrogen pollution is one of the main reasons for water eutrophication. The difficulty of nitrogen removal in low-carbon wastewater poses a huge potential threat to the ecological environment and human health. As a clean biological nitrogen removal process, solid-phase denitrification (SPD) was proposed for long-term operation of low-carbon wastewater. In this paper, the progress, hotspots, and challenges of the SPD process based on different solid carbon sources (SCSs) are reviewed. Compared with synthetic SCS and natural SCS, blended SCSs have more application potential and have achieved pilot-scale application. Differences in SCSs will lead to changes in the enrichment of hydrolytic microorganisms and hydrolytic genes, which indirectly affect denitrification performance. Moreover, the denitrification performance of the SPD process is also affected by the physical and chemical properties of SCSs, pH of wastewater, hydraulic retention time, filling ratio, and temperature. In addition, the strengthening of the SPD process is an inevitable trend. The strengthening measures including SCSs modification and coupled electrochemical technology are regarded as the current research hotspots. It is worth noting that the outbreak of the COVID-19 epidemic has led to the increase of disinfection by-products and antibiotics in wastewater, which makes the SPD process face challenges. Finally, this review proposes prospects to provide a theoretical basis for promoting the efficient application of the SPD process and coping with the challenge of the COVID-19 epidemic.
Collapse
Affiliation(s)
- Heng Wu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China; College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Anjie Li
- College of Grassland and Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xu Yang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Jingting Wang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Yiliang Liu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Guoqiang Zhan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China.
| |
Collapse
|
12
|
Fang Y, Zheng T, Wang H, Zheng X, Walther M. Nitrate transport behavior behind subsurface dams under varying hydrological conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155903. [PMID: 35588850 DOI: 10.1016/j.scitotenv.2022.155903] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/09/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
The construction of subsurface dams for controlling seawater intrusion triggers the accumulation of nitrate upstream of a dam. This is raising the concerns about nitrate contamination in those regions of coastal aquifers that are supposed to be used as a fresh groundwater source behind a subsurface dam. Research on this subject has been mostly restricted to the use of a simplified sea boundary (e.g., static and no slope), ignoring sea level fluctuations driven by tides. In this study, the combined effect of tides and subsurface dams on nitrate pollution in upstream groundwater was examined through laboratory experiments and numerical simulations. The results revealed that the difference in the extent of nitrate contamination under various conditions (i.e., static, tidal, static with a dam, and tidal with a dam) was related to the temporal pollution behavior. In the early stage, nitrate contamination in upstream groundwater was essentially identical for different scenarios. Both tides and subsurface dams were found to increase nitrate contamination in upstream aquifers. The extent of nitrate contamination increased with higher tidal amplitudes, whereas the increment was more evident for a large tidal amplitude. The effects of tides and subsurface dams on nitrate contamination were also regulated by the locations and infiltration rates of the pollution source. Interestingly, under the joint action of tides and subsurface dams, the increment in the extent of nitrate pollution was greater than the sum of their individual effects. The increased pollutions caused by subsurface dams and tides were quantified as 9.47% and 37.22%, respectively, whereas the increased value caused by their joint action was measured as 51.10%. These findings suggest that tidal activity should not be overlooked when assessing nitrate contamination in upstream groundwater.
Collapse
Affiliation(s)
- Yunhai Fang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment Science and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Tianyuan Zheng
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment Science and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| | - Huan Wang
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
| | - Xilai Zheng
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment Science and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Marc Walther
- Technische Universität Dresden, Faculty of Environmental Sciences, Department of Forest Sciences, Chair of Forest Biometrics and Forest Systems Analysis, 01062 Dresden, Germany
| |
Collapse
|
13
|
Cui Y, Zhao B, Xie F, Zhang X, Zhou A, Wang S, Yue X. Study on the preparation and feasibility of a novel adding-type biological slow-release carbon source. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 316:115236. [PMID: 35568017 DOI: 10.1016/j.jenvman.2022.115236] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/25/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
The development of slow-release carbon sources is an effective biological treatment to remove nutrients from wastewater with low carbon-to-nitrogen ratio (C/N). Most filling-type slow-release carbon could not fulfil the needs of current wastewater treatment plants (WWTPs) process. And most adding-type slow-release carbon sources were prepared using some expensive chemical materials. In this study, combining the advantages of the aforementioned types, a novel adding-type wastepaper-flora (AT-WF) slow-release carbon source was proposed, aiming to realise wastepaper recycling in WWTPs. The screening and identification of the mixed flora, AT-WF carbon source release behaviour, and denitrification performance were investigated. The results showed that through the proposed screening method, a considerable proportion of cellulose-degradation-related genera was enriched, and the cellulose degradation ability and ratio of readily available carbon sources of flora T4, S4 and S5 were effectively strengthened. AT-WF had significant carbon release ability and stability, with an average total organic carbon (TOC) release of 8.82 ± 2.36 mg/g. Kinetic analysis showed that the entire carbon release process was more consistent with the first-order equation. Piecewise fitting with the Ritger-Peppas equation exhibited that the rapid-release (RR) stage was skeleton dissolution and the slow-release (SR) stage was Fick diffusion. Denitrification efficiency can achieve a high average removal efficiency of 94.17%, which could theoretically contribute 11.2% more to the total inorganic nitrogen (TIN) removal. Thus, this study indicated that AT-WF could be utilised as an alternative carbon source in WWTPs.
Collapse
Affiliation(s)
- Ying Cui
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China
| | - Bowei Zhao
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China
| | - Fei Xie
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China
| | - Xiao Zhang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China
| | - Aijuan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China
| | - Sufang Wang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China
| | - Xiuping Yue
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China.
| |
Collapse
|
14
|
Fu X, Hou R, Yang P, Qian S, Feng Z, Chen Z, Wang F, Yuan R, Chen H, Zhou B. Application of external carbon source in heterotrophic denitrification of domestic sewage: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:153061. [PMID: 35026271 DOI: 10.1016/j.scitotenv.2022.153061] [Citation(s) in RCA: 133] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
The carbon source is essential as an electron donor in the heterotrophic denitrification process. When there is a lack of organic carbon sources in the system, an external carbon source is needed to improve denitrification efficiency. This review compiles the effects of liquid, solid and gaseous carbon sources on denitrification. Sodium acetate has better denitrification efficiency and is usually the first choice for external carbon sources. Fermentation by-products have been demonstrated to have the same denitrification efficiency as sodium acetate. Compared with cellulose-rich materials, biodegradable polymers have better and more stable denitrification performance in solid-phase nitrification, but their price is higher than the former. Methane as a gaseous carbon source is studied mainly by aerobic methane oxidation coupled with denitrification, which is feasible using methane as a carbon source. Liquid carbon sources are better controlled and utilized than solid carbon sources and gaseous carbon sources. In addition, high carbon to nitrogen ratio and hydraulic retention time can promote denitrification, while high dissolved oxygen (DO>2.0 mg L-1) will inhibit the denitrification process. At the same time, high temperature is conducive to the decomposition of carbon sources by microorganisms. This review also considers the advantages and disadvantages of different carbon sources and cost analysis to provide a reference for looking for more economical and effective external carbon sources in the future.
Collapse
Affiliation(s)
- Xinrong Fu
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Rongrong Hou
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Peng Yang
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Shengtao Qian
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhuqing Feng
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhongbing Chen
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha, Suchdol 165 00, Czech Republic
| | - Fei Wang
- School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Haidian District, 100875, Beijing, China
| | - Rongfang Yuan
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China.
| | - Huilun Chen
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China.
| | - Beihai Zhou
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
15
|
Zhang S, Ali A, Su J, Huang T, Li M. Performance and enhancement mechanism of redox mediator for nitrate removal in immobilized bioreactor with preponderant microbes. WATER RESEARCH 2022; 209:117899. [PMID: 34861436 DOI: 10.1016/j.watres.2021.117899] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/22/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
The acceleration of nitrate removal in wastewater treatment by redox mediator (RM) is greatly weakened due to wash-out loss and mass transfer resistance (low hydrophilia) of RM during operation. In this study, an RM reactor with the fixed 1-Amino-4-hydroxyanthraquinone (AHAQ) and three core strains was established and achieved high nitrate removal efficiency (NRE) under low carbon to nitrogen ratio (C/N) and short hydraulic retention time (HRT) conditions, with the maximum efficiency of 99.41% (14.00 mg L-1 h-1) and average improvement by 11.97% (1.41 mg L-1 h-1). This acceleration led to more proportion of carbon consumption by denitrifying bacteria and improved their competitiveness against others in carbon deficiency, although resulting in nitrite accumulation (NIA) in lower C/N. The RM reactor induced the decorrelation tendencies between NRE and active extracellular organics and more sensitive denitrification toward C/N, which favored the stability of effluent organics and biological activities. The increase of oxidative phosphorylation and ubiquinone and other terpenoid-quinone biosynthesis pathway suggested electron transport activity was potentially enhanced by AHAQ. Although the lower C/N deteriorated the reactor NRE, the abundances of amino acids-, fatty acids- and carbohydrate-related metabolisms (45% of the total up-regulating pathways) were enhanced to utilize carbon source effectively. Meanwhile, the enhanced phosphotransferase system facilitated the balance between carbon and nitrogen metabolism. These indicated the changes in biological strategy to grow better and resist the adverse condition. This study highlighted the superior NRE by AHAQ in an immobilized reactor with core strains and more importantly, extended the RM application in wastewater treatment.
Collapse
Affiliation(s)
- Shuai Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Tinglin Huang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Min Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
16
|
Zhao F, Xin J, Yuan M, Wang L, Wang X. A critical review of existing mechanisms and strategies to enhance N 2 selectivity in groundwater nitrate reduction. WATER RESEARCH 2022; 209:117889. [PMID: 34936974 DOI: 10.1016/j.watres.2021.117889] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/02/2021] [Accepted: 11/19/2021] [Indexed: 06/14/2023]
Abstract
The pollution of nitrate (NO3-) in groundwater has become an environmental problem of general concern and requires immediate remediation because of adverse human and ecological impacts. NO3- removal from groundwater is conducted mainly by chemical, biological, and coupled methods, with the removal efficiency of NO3- considered the sole performance indicator. However, in addition to the harmless form of N2, the reduced NO3- could be transformed into other intermediates, such as nitrite (NO2-), nitrous oxide (N2O), and ammonia (NH4+), which may have direct or indirect negative impacts on the environment. Therefore, increasing N2 selectivity is a significant challenge in reducing NO3- in groundwater, which seriously impedes the large-scale implementation of available remediation technologies. In this work, we comprehensively overview the most recent advances in N2 selectivity regarding the understanding of emerging groundwater NO3- removal technologies. Mechanisms of by-product production and strategies to enhance the selective reduction of NO3- to N2 are discussed in detail. Furthermore, we proposed topics for further research and hope that the total environmental impacts of remediation schemes should be evaluated comprehensively by quantifying all potential intermediate products, and promising strategies should be further developed to enhance N2 selectivity, to improve the feasibility of related technologies in actual remediation.
Collapse
Affiliation(s)
- Fang Zhao
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Jia Xin
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Mengjiao Yuan
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Litao Wang
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Xiaohui Wang
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
17
|
Pang Y, Wang J. Various electron donors for biological nitrate removal: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148699. [PMID: 34214813 DOI: 10.1016/j.scitotenv.2021.148699] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
Nitrate (NO3-) pollution in water and wastewater has become a serious global issue. Biological denitrification, which reduces NO3- to N2 (nitrogen gas) by denitrifying microorganisms, is an efficient and economical process for the removal of NO3- from water and wastewater. During the denitrification process, electron donor is required to provide electrons for reduction of NO3-. A variety of electron donors, including organic and inorganic compounds, can be used for denitrification. This paper reviews the state of the art of various electron donors used for biological denitrification. Depending on the types of electron donors, denitrification can be classified into heterotrophic and autotrophic denitrification. Heterotrophic denitrification utilizes organic compounds as electron donors, including low-molecular-weight organics (e.g. acetate, methanol, glucose, benzene, methane, etc.) and high-molecular-weight organics (e.g. cellulose, polylactic acid, polycaprolactone, etc.); while autotrophic denitrification utilizes inorganic compounds as electron donors, including hydrogen (H2), reduced sulfur compounds (e.g. sulfide, element sulfur and thiosulfate), ferrous iron (Fe2+), iron sulfides (e.g. FeS, Fe1-xS and FeS2), arsenite (As(Ш)) and manganese (Mn(II)). The biological denitrification processes and the representative denitrifying microorganisms are summarized based on different electron donors, and their denitrification performance, operating costs and environmental impacts are compared and discussed. The pilot- or full-scale applications were summarized. The concluding remarks and future prospects were provided. The biodegradable polymers mediated heterotrophic denitrification, as well as H2 and sulfur mediated autotrophic denitrification are promising denitrification processes for NO3- removal from various types of water and wastewater.
Collapse
Affiliation(s)
- Yunmeng Pang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
18
|
Hao L, He Y, Shi C, Hao X. Biologically removing vanadium(V) from groundwater by agricultural biomass. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 296:113244. [PMID: 34265660 DOI: 10.1016/j.jenvman.2021.113244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 07/04/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Vanadium (V) in groundwater can pose a serious threat on both environment and health. Agricultural biomass contains solid carbon source (SCS) and could be attractive for biologically removing V(V). For this purpose, cypress sawdust, corn cob and wheat straw were selected as SCSs to remove vanadate (NaVO3). The experiments demonstrated a high efficiency of V(V) up to 98.6%, and the anaerobically biological reduction of V(V) to V(IV) by wheat straw was identified to be the best SCS by the spectrum analysis of XRD and FTIR. Along with increasing the fragment size of wheat straw, the V(V)-removal efficiency decreased, and the fragment size down to 1-3 mm was confirmed to have a significant bio-removal performance on V(V). Based on the analysis of 16s rRNA sequencing, the microbial abundance and diversity increased in the suspension liquid in the end, indicating that the microbial community could tolerate and/or detoxify V(V), besides degrading lignocellulosic materials.
Collapse
Affiliation(s)
- Liting Hao
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies, Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Yuanyuan He
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies, Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Chen Shi
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies, Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Xiaodi Hao
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies, Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| |
Collapse
|
19
|
Zhang F, Ma C, Huang X, Liu J, Lu L, Peng K, Li S. Research progress in solid carbon source-based denitrification technologies for different target water bodies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 782:146669. [PMID: 33839669 DOI: 10.1016/j.scitotenv.2021.146669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 02/25/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Nitrogen pollution in water bodies is a serious environmental issue which is commonly treated by various methods such as heterotrophic denitrification. In particular, solid carbon source (SCS)-based denitrification has attracted widespread research interest due to its gradual carbon release, ease of management, and long-term operation. This paper reviews the types and properties of SCSs for different target water bodies. While both natural (wheat straw, wood chips, and fruit shells) and synthetic (polybutylene succinate, polycaprolactone, polylactic acid, and polyhydroxyalkanoates) SCSs are commonly used, it is observed that the denitrification performance of the synthetic sources is generally superior. SCSs have been used in the treatment of wastewater (including aquaculture wastewater), agricultural subsurface drainage, surface water, and groundwater; however, the key research aspects related to SCSs differ markedly based on the target waterbody. These key research aspects include nitrogen pollutant removal rate and byproduct accumulation (ordinary wastewater); water quality parameters and aquatic product yield (recirculating aquaculture systems); temperature and hydraulic retention time (agricultural subsurface drainage); the influence of dissolved oxygen (surface waters); and nitrate-nitrogen load, HRT, and carbon source dosage on denitrification rate (groundwater). It is concluded that SCS-based denitrification is a promising technique for the effective elimination of nitrate-nitrogen pollution in water bodies.
Collapse
Affiliation(s)
- Feifan Zhang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, People's Republic of China
| | - Chengjin Ma
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, People's Republic of China
| | - Xiangfeng Huang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, People's Republic of China
| | - Jia Liu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, People's Republic of China
| | - Lijun Lu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, People's Republic of China
| | - Kaiming Peng
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, People's Republic of China
| | - Shiyang Li
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and chemical engineering, Shanghai University, Shanghai 200092, People's Republic of China.
| |
Collapse
|
20
|
Wang H, Chen N, Feng C, Deng Y. Insights into heterotrophic denitrification diversity in wastewater treatment systems: Progress and future prospects based on different carbon sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146521. [PMID: 34030330 DOI: 10.1016/j.scitotenv.2021.146521] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/03/2021] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
Nitrate, as the most stable form of nitrogen pollution, widely exists in aquatic environment, which has great potential threat to ecological environment and human health. Heterotrophic denitrification, as the most economical and effective method to treat nitrate wastewater, has been widely and deeply studied. From the perspective of heterotrophic denitrification, this review discusses nitrate removal in the aquatic environment, and the behaviors of different carbon source types were classified and summarized to explain the cyclical evolution of carbon and nitrogen in global biochemical processes. In addition, the denitrification process, electron transfer as well as denitrifying and hydrolyzing microorganisms among different carbon sources were analyzed and compared, and the commonness and characteristics of the denitrification process with various carbon sources were revealed. This study provides theoretical support and technical guidance for further improvement of denitrification technologies.
Collapse
Affiliation(s)
- Haishuang Wang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Nan Chen
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China.
| | - Chuanping Feng
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Yang Deng
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| |
Collapse
|
21
|
Kinetic and Isotherm Studies of Nitrate Adsorption in Salt Water Using Modified Zeolite. BULLETIN OF CHEMICAL REACTION ENGINEERING & CATALYSIS 2021. [DOI: 10.9767/bcrec.16.2.10312.286-292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Nitrate is the main form of nitrogen species in natural waters. Excessive nitrate concentration in water is highly undesirable, so that removal of the excessive nitrates in waters is very important. However, the challenge is purposed to remove the excessive nitrates in sea waters by considering anions-rich sea water. Adsorption is a favorable method for the nitrate removal process. Therefore, this research was aimed to study the kinetics and isotherm of nitrates adsorption in salt water. The adsorbent preparation was done by modifying natural zeolite with iron oxide. The adsorbent characterization was carried out by FT-IR spectroscopy and Gas Sorption Analyis methods. The results showed that the modified zeolite have Fe−O group vibrations as indicated by a peak at a wave number of 1404.18 cm−1 and an increased specific surface area. The modified zeolite is capable of adsorbing nitrate ions. The adsorption isotherms studies indicated that the modified zeolite is appropriate to the Dubinin-Radushkevich model. The average adsorption energy value (ED), obtained based on the Dubinin-Radushkevich isotherm <2 kJ/mole, showed that the nitrate adsorption on zeolite surface occurred physically. The most suitable adsorption kinetics model is the pseudo second order with the rate constant of 1.80´10−2 g/mg.min. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Collapse
|
22
|
Tao Z, Jing Z, Wang Y, Tao M, Luo H. Higher nitrogen removal achieved in constructed wetland with polyethylene fillers and NaOH-heating pre-treated corn stalks for advanced treatment of low C/N sewage. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:13829-13841. [PMID: 33200385 DOI: 10.1007/s11356-020-11652-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/12/2020] [Indexed: 06/11/2023]
Abstract
Advanced processing of low C/N sewage faces the carbon sources shortage, while quantities of agricultural biomass wastes need to be disposed. This study investigated the potential of quantitative modified biomass addition in constructed wetlands (CWs) filled with polyethylene fillers. Results showed that the lignin in NaOH-heating pretreated corn stalks (NH-CSs) was destroyed, and the wrinkles on the stalks increased and became more soft after pretreatment, which was more conducive to the utilization of carbon sources and attachment of microorganisms. Compared with glucose and sodium acetate, the denitrification with mixed carbon source (glucose and NH-CSs) had the highest effective utilization percentage (61.37%) and NH-CSs were expected to become stable and fast-release carbon sources. After adding 30 g NH-CSs to the rear unit of CW with polyethylene fillers (CW-A), TN removal efficiency was increased by 18.21%, and the average removal efficiency of COD, NH4+-N, TN, and TP reached 54.83%, 89.95%, 64.11%, and 45.04%, respectively. Compared with the traditional CW (CW-B), CW-A had a significant denitrification advantage (P < 0.05), but the removal efficiency and effluent stability of phosphorus were inferior to CW-B. These results indicate that the biomass carbon sources such as corn stalks and polyethylene fillers have a good potential to improve the denitrification in CWs.
Collapse
Affiliation(s)
- Zhengkai Tao
- College of Civil Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhaoqian Jing
- College of Civil Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Yin Wang
- College of Civil Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Mengni Tao
- College of Civil Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Hui Luo
- College of Civil Engineering, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
23
|
Qi W, Taherzadeh MJ, Ruan Y, Deng Y, Chen JS, Lu HF, Xu XY. Denitrification performance and microbial communities of solid-phase denitrifying reactors using poly (butylene succinate)/bamboo powder composite. BIORESOURCE TECHNOLOGY 2020; 305:123033. [PMID: 32105848 DOI: 10.1016/j.biortech.2020.123033] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/12/2020] [Accepted: 02/15/2020] [Indexed: 06/10/2023]
Abstract
This study explored the denitrification performance of solid-phase denitrification (SPD) systems packed with poly (butylene succinate)/bamboo powder composite to treat synthetic aquaculture wastewater under different salinity conditions (0‰ Vs. 25‰). The results showed composite could achieve the maximum denitrification rates of 0.22 kg (salinity, 0‰) and 0.34 kg NO3--N m-3 d-1 (salinity, 25‰) over 200-day operation. No significant nitrite accumulation and less dissolved organic carbon (DOC) release (<15 mg/L) were found. The morphological and spectroscopic analyses demonstrated the mixture composites degradation. Microbial community analysis showed that Acidovorax, Simplicispira, Denitromonas, SM1A02, Marinicella and Formosa were the dominant genera for denitrifying bacteria, while Aspergillus was the major genus for denitrifying fungus. The co-network analysis also indicated the interactions between bacterial and fungal community played an important role in composite degradation and denitrification. The outcomes provided a potential strategy of DOC control and cost reduction for aquaculture nitrate removal by SPD.
Collapse
Affiliation(s)
- Wanhe Qi
- Institute of Agricultural Bio-Environmental Engineering, College of Bio-Systems Engineering and Food Science, Yuhangtang Road 866, Hangzhou 310058, PR China
| | | | - Yunjie Ruan
- Institute of Agricultural Bio-Environmental Engineering, College of Bio-Systems Engineering and Food Science, Yuhangtang Road 866, Hangzhou 310058, PR China; The Rural Development Academy, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, PR China.
| | - Yale Deng
- Aquaculture and Fisheries Group, Department of Animal Sciences, Wageningen University, 6708 WD Wageningen, The Netherlands
| | - Ji-Shuang Chen
- Institute of Bioresource Engineering, Nanjing Technology University, Nanjing 210009, PR China; Bioresource Institute for Healthy Utilization (BIHU), Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Hui-Feng Lu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Xiang-Yang Xu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
24
|
Zhao Y, Song X, Cao X, Wang Y, Zhao Z, Si Z, Yuan S. Modified solid carbon sources with nitrate adsorption capability combined with nZVI improve the denitrification performance of constructed wetlands. BIORESOURCE TECHNOLOGY 2019; 294:122189. [PMID: 31569043 DOI: 10.1016/j.biortech.2019.122189] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 06/10/2023]
Abstract
In this study, various modified agricultural wastes (modified canna leaves (MCL), modified rice straw (MRS) and modified peanut shells (MPS)) as solid carbon sources (SCSs) were used to remove nitrate in constructed wetlands (CWs). Then, modified SCSs combined with nZVI (SCSN) as co-electrons further enhanced both heterotrophic denitrification (HD) and autotrophic denitrification (AD) performance of CWs. The results showed that NO3--N removal efficiencies in CWs with SCSNs (75.3-91.1%) and in CWs with SCSs (63.3-65.5%) were significantly higher than that in CK-CW (47.0%). The presence of SCSs reduced the accumulation of NO2--N in CWs. Compared to the addition of SCSs, the addition of SCSNs decreased the effluent COD concentration in CWs, avoiding secondary pollution. In addition, the solid-phase denitrifiers Silanimonas and Thauera were enriched in MPS-CW. Thermomonas, an autotrophic denitrifying bacteria (ADB), and Azospira, a nitrate-reducing Fe (II) oxidation bacteria (NRFOB), exhibited high relative abundance in MPN-CW.
Collapse
Affiliation(s)
- Yufeng Zhao
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Xinshan Song
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, PR China.
| | - Xin Cao
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Yuhui Wang
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Zhimiao Zhao
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, PR China; Engineering Research Center for Water Environment Ecology in Shanghai, Shanghai 201306, PR China
| | - Zhihao Si
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Shihong Yuan
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, PR China
| |
Collapse
|