1
|
Sanchez-Castrillon S, Benítez LN, Vazquez-Arenas J, Ferraro F, Palma-Goyes RE. Reaction Mechanism of Oxytetracycline Degradation by Electrogenerated Reactive Chlorine: The Influence of Current Density and pH. ACS OMEGA 2024; 9:46302-46311. [PMID: 39583723 PMCID: PMC11579939 DOI: 10.1021/acsomega.4c07234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/03/2024] [Accepted: 10/23/2024] [Indexed: 11/26/2024]
Abstract
A binary dimensionally stable anode Ti/TiO2-RuO2 electrode was used to abate the antibiotic oxytetracycline (OTC) (C22H24N2O9) in chloride water. The anode was prepared using the Pechini method and subsequently characterized by X-ray diffraction, scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDS), and cyclic voltammetry (CV). The optimum values of the operational parameters affecting removal efficiency were determined using a 2 × 3 factorial design by screening j (6.0, 10, and 20 A m-2) and pH (3, 6.5, and 10). The textural analysis revealed the formation of active oxides (RuO2 and TiO2 coating rutile-type P42/mnm, space group 136), with a cracked surface and good dispersion of metal components. A contour graph verified that the most suitable condition for contaminant degradation was 20 A m-2 at a circumneutral pH of 6.5, resulting in approximately 97% degradation after 20 min of electrolysis according to pseudo-first-order reaction kinetics and the loss of the antibiotic activity of OTC. In addition, the results of oxidant formation and CV indicate that the best electrochemical activation of the anode to form Cl2-active mainly depended on pH. Liquid chromatography-mass spectrometry (LC-MS) and density functional theory were employed to propose a reaction pathway for OTC degradation. Three byproducts with m/z 426, 256, and 226 were identified corresponding to the removal of amide and amine groups, which are susceptible sites to electrophilic attack by active chlorine species. The findings from this work stand out for prospective applications of anodic electrochemical oxidation to efficiently eliminate antibiotics with similar chemical structures in wastewater containing chlorides.
Collapse
Affiliation(s)
| | - Luis Norberto Benítez
- Departamento
de Química, Universidad del Valle, Calle 13 # 100-00, Santiago de Cali CP 760032, Colombia
| | - Jorge Vazquez-Arenas
- Centro
Mexicano para la Producción más Limpia, Instituto Politécnico Nacional, Av. Acueducto s/n, Col. La Laguna Ticomán, Ciudad de México 07340, Mexico
| | - Franklin Ferraro
- Departamento
de Ciencias Básicas, Universidad
Católica Luis Amigó, Transversal, 51A, #67B 90, Medellín 050034, Colombia
| | - Ricardo E. Palma-Goyes
- Departamento
de Química, Universidad del Valle, Calle 13 # 100-00, Santiago de Cali CP 760032, Colombia
| |
Collapse
|
2
|
Zhang F, Li T, Zhang Z, Qin X, Xu C. Enhanced in situ H 2O 2 electrosynthesis and leachate concentrate degradation through side-aeration and modified cathode in an electro-Fenton system. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 186:35-45. [PMID: 38852375 DOI: 10.1016/j.wasman.2024.05.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/09/2024] [Accepted: 05/29/2024] [Indexed: 06/11/2024]
Abstract
The active graphite felt (GF) catalytic layer was effectively synthesized through a wet ultrasonic impregnation-calcination method, modified with CB and PTFE, and implemented in a pioneering side-aeration electrochemical in-situ H2O2 reactor. The optimal mass ratio (CB: PTFE 1:4) for the modified cathode catalytic layer was determined using a single-factor method. Operating under optimum conditions of initial pH 5, 0.5 L/min air flow, and a current density of 9 mA/cm2, the system achieved a remarkable maximum H2O2 accumulation of 560 mg/L, with the H2O2 production capacity consistently exceeding 95 % over 6 usage cycles. The refined mesoporous structure and improved three-phase interface notably amplified oxygen transfer, utilization, and H2O2 yield. Side aeration led to an oxygen concentration near the cathode reaching 20 mg/L, representing a five-fold increase compared to the 3.95 mg/L achieved with conventional bottom aeration. In the final application, the reaction system exhibited efficacy in the degradation of landfill leachate concentrate. After a 60-minute reaction, complete removal of chroma was attained, and the TOC degradation rate surpassed 60 %, marking a sixfold improvement over the conventional system. These results underscore the substantial potential of the system in H2O2 synthesis and environmental remediation.
Collapse
Affiliation(s)
- Fanbin Zhang
- Faculty of Environment and Life, Beijing University of Technology, No.100 Pingleyuan, Chaoyang District, Beijing 100124, China.
| | - Tinghui Li
- Faculty of Environment and Life, Beijing University of Technology, No.100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Zilong Zhang
- Faculty of Environment and Life, Beijing University of Technology, No.100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Xia Qin
- Faculty of Environment and Life, Beijing University of Technology, No.100 Pingleyuan, Chaoyang District, Beijing 100124, China.
| | - Cuicui Xu
- Faculty of Environment and Life, Beijing University of Technology, No.100 Pingleyuan, Chaoyang District, Beijing 100124, China
| |
Collapse
|
3
|
Liu E, Hu T, Al-Dhabi NA, Soyol-Erdene TO, Bayanjargal O, Zuo Y, Wang J, Tang W. MOF-derived Fe/Ni@C marigold-like nanosheets as heterogeneous electro-Fenton cathode for efficient antibiotic oxytetracycline degradation. ENVIRONMENTAL RESEARCH 2024; 247:118357. [PMID: 38325782 DOI: 10.1016/j.envres.2024.118357] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/02/2023] [Accepted: 12/26/2023] [Indexed: 02/09/2024]
Abstract
The widespread occurrence of organic antibiotic pollution in the environment and the associated harmful effects necessitate effective treatment method. Heterogeneous electro-Fenton (hetero-EF) has been regarded as one of the most promising techniques towards organic pollutant removal. However, the preparation of efficient cathode still remains challenging. Herein, a novel metal-organic framework (MOF)-derived Fe/Ni@C marigold-like nanosheets were fabricated successfully for the degradation of oxytetracycline (OTC) by serving as the hetero-EF cathode. The FeNi3@C (Fe/Ni molar ratio of 1:3) based hetero-EF system exhibited 8.2 times faster OTC removal rate than that of anodic oxidation and possessed many advantages such as excellent OTC degradation efficiency (95.4% within 90 min), broad environmental adaptability (satisfactory treatment performance for multiple antibiotics under various actual water matrixes), good stability and reusability, and significant toxicity reduction. The superior hetero-EF catalytic performance was mainly attributed to: 1) porous carbon and Ni existence were both conducive to the in-situ generation of H2O2 from dissolved O2; 2) the synergistic effects of bimetals together with electron transfer from the cathode promoted the regeneration of ≡ FeII/NiII, thereby accelerating the production of reactive oxygen species; 3) the unique nanosheet structure derived from the precursor two-dimensional Fe-Ni MOFs enhanced the accessibility of active sites. This work presented a promising hetero-EF cathode for the electrocatalytic treatment of antibiotic-containing wastewaters.
Collapse
Affiliation(s)
- Enyu Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
| | - Tong Hu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Tseren-Ochir Soyol-Erdene
- Department of Environmental and Forest Engineering, School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar, 14201, Mongolia
| | - Ochirkhuyag Bayanjargal
- Department of Chemical and Biological Engineering, School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar, 14201, Mongolia
| | - Yuqi Zuo
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
| | - Jiajia Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China.
| | - Wangwang Tang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China.
| |
Collapse
|
4
|
Galodiya MN, Chakma S. Immobilization of enzymes on functionalized cellulose nanofibrils for bioremediation of antibiotics: Degradation mechanism, kinetics, and thermodynamic study. CHEMOSPHERE 2024; 349:140803. [PMID: 38040249 DOI: 10.1016/j.chemosphere.2023.140803] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/03/2023]
Abstract
The deteriorating environmental conditions due to increasing emerging recalcitrant pollutants raised a severe concern for its remediation. In this study, we have reported antibiotic degradation using free and immobilized HRP. The functionalized cellulose support was utilized for efficient immobilization of HRP. Approximately 13.32 ± 0.52 mg/g enzyme loading was achieved with >99% immobilization efficiency. The higher percentage of immobilization is attributed to the higher surface area and carboxylic groups on the support. The kinetic parameter of immobilized enzymes was Km = 2.99 mM/L for CNF-CA@HRP, which is 3.5-fold more than the Michaelis constant (Km = 0.84794 mM/L) for free HRP. The Vmax of CNF-CA@HRP bioconjugate was 2.36072 mM/min and 0.558254 mM/min for free HRP. The highest degradation of 50, 54.3, and 97% were achieved with enzymatic, sonolysis, and sono-enzymatic with CNF-CA@HRP bioconjugate, respectively. The reaction kinetics analysis revealed that applying ultrasound with an enzymatic process could enhance the reaction rate by 2.7-8.4 times compared to the conventional enzymatic process. Also, ultrasound changes the reaction from diffusion mode to the kinetic regime with a more oriented and fruitful collision between the molecules. The thermodynamic analysis suggested that the system was endothermic and spontaneous. While LC-MS analysis and OTC's degradation mechanism suggest, it mainly involves hydroxylation, secondary alcohol oxidation, dehydration, and decarbonylation. Additionally, the toxicity test confirmed that the sono-enzymatic process helps toward achieving complete mineralization. Further, the reusability of bioconjugate shows that immobilized enzymes are more efficient than the free enzyme.
Collapse
Affiliation(s)
- Manju Nagar Galodiya
- Department of Chemical Engineering, Indian Institute of Science Education and Research Bhopal, Bhopal, 462 066, Madhya Pradesh, India
| | - Sankar Chakma
- Department of Chemical Engineering, Indian Institute of Science Education and Research Bhopal, Bhopal, 462 066, Madhya Pradesh, India.
| |
Collapse
|
5
|
Zhao Y, Kong L, Li S, Zhao Z, Wang N, Pang Y. Research progress on composite material of bismuth vanadate catalyzing the decomposition of Quinolone antibiotics. Sci Rep 2024; 14:1591. [PMID: 38238361 PMCID: PMC10796960 DOI: 10.1038/s41598-024-51485-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 01/05/2024] [Indexed: 01/22/2024] Open
Abstract
Since quinolone is a kind of synthetic broad-spectrum antibacterial drugs, with the widespread use of this class of antibiotics, the risk and harm to human health have been attendant to the sewage containing quinolones which are discharged into the environment. Photocatalysis is considered as a promising technology for antibiotic degradation for its strong redox properties and reaction rate. As a metal oxidizing substance, Bismuth vanadate (BiVO4) is such a popular and hot material for the degradation of organic pollutants recently due to its good photocatalytic activity and chemical stability. Numerous studies have confirmed that BiVO4 composites can overcome the shortcomings of pure BiVO4 and cleave the main structure of quinolone under photocatalytic conditions. This paper mainly outlines the research progress on the preparation of BiVO4 composites and the degradation of quinolone antibiotics from the perspective of improving the catalysis and degrading the efficiency mechanism of BiVO4 composites.
Collapse
Affiliation(s)
- Yuan Zhao
- School of Stomatology, Lanzhou University, 199 Donggang West Road, Lanzhou, Gansu, People's Republic of China
| | - Lingyuan Kong
- School of Stomatology, Lanzhou University, 199 Donggang West Road, Lanzhou, Gansu, People's Republic of China
| | - Shangdong Li
- School of Clinical Medicine Gansu University Of Chinese Medicine, 35 Dingxi East Road, Lanzhou, Gansu, People's Republic of China
| | - Zhirui Zhao
- School of Stomatology, Lanzhou University, 199 Donggang West Road, Lanzhou, Gansu, People's Republic of China
| | - Na Wang
- School of Clinical Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou, Gansu, People's Republic of China
| | - Yunqing Pang
- School of Stomatology, Lanzhou University, 199 Donggang West Road, Lanzhou, Gansu, People's Republic of China.
| |
Collapse
|
6
|
Keyikoğlu R, Khataee A, Yoon Y. Enhanced generation of reactive radicals and electrocatalytic oxidation of levofloxacin using a trimetallic CuFeV layered double hydroxide-containing electrode. CHEMOSPHERE 2023; 340:139817. [PMID: 37586485 DOI: 10.1016/j.chemosphere.2023.139817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/03/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
In Electro-Fenton (EF) processes, the use of iron as a catalyst under acidic conditions results in increased costs and potential secondary pollution. To address these issues, we developed a CuFeV layered double hydroxide (LDH) coating on graphite felt (GF) (CuFeV LDH@GF) that offers an effective performance across a broad pH range without causing metal pollution. The CuFeV LDH@GF cathode exhibited a good oxygen reduction performance, high stability, and an efficient removal of levofloxacin (LEV) over a wide pH range (pH = 3-10). The simultaneous presence of Cu2+/Cu3+, Fe2+/Fe3+, and V4+/V5+ redox pairs played a crucial role in facilitating interfacial electron transfer, thereby enhancing the production and subsequent activation of H2O2 within the system. The apparent rate constant (kapp) of LEV removal under neutral conditions with the CuFeV LDH@GF electrode was more than twice that of the raw GF electrode. This improvement can be attributed to the CuFeV LDH coating, which increased the generation of hydroxyl radicals (•OH) from 0.64 to 1.27 mM. Importantly, the CuFeV LDH@GF electrode maintained its efficiency and stability even after 10 reuse cycles. Additionally, GC-MS analyses revealed the degradation of intermediate compounds, which included cyclic and aliphatic compounds. This study provides significant insights into the synergistic effects of trimetallic LDHs, contributing to the development of high-performance cathodes.
Collapse
Affiliation(s)
- Ramazan Keyikoğlu
- Department of Environmental Engineering, Faculty of Engineering, Gebze Technical University, 41400, Gebze, Turkey; Department of Environmental Engineering, Helmholtz Centre for Environmental Research - UFZ, 04318 Leipzig, Germany
| | - Alireza Khataee
- Department of Environmental Engineering, Faculty of Engineering, Gebze Technical University, 41400, Gebze, Turkey; Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Yeojoon Yoon
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, Republic of Korea
| |
Collapse
|
7
|
Guo H, Zhao C, Xu H, Hao H, Yang Z, Li N, Xu W. Enhanced H 2O 2 formation and norfloxacin removal by electro-Fenton process using a surface-reconstructed graphite felt cathode: New insight into synergistic mechanism of defective active sites. ENVIRONMENTAL RESEARCH 2023; 220:115221. [PMID: 36610538 DOI: 10.1016/j.envres.2023.115221] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/01/2023] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
The efficient catalytic activity and strong durability possibility of carbon-based three-dimensional fiber materials remains an important challenge in Electro-Fenton advanced oxidation technology. Graphite felt (GF) is a promising electrode material for 2-electron oxygen reduction reaction but with higher catalytic inertia. Anodizing modification of GF has been proved to enhance it electro-catalytic property, but the disadvantages of excessive or insufficient oxidation of GF need further improved. Herein, the surface reconstituted graphite felt by anodizing and HNO3 ultrasonic integrated treatment was used as cathode to degrade norfloxacin (NOR) and the substantial role of different modification processes was essentially investigated. Compared with the single modification process, the synergistic interaction between these two methods can generate more defective active sites (DASs) on GF surface and greatly improved 2-electron ORR activity. The H2O2 can be further co-activated by Fe2+ and DASs into •OH(ads and free) and •O2- to efficiently degrade NOR. The treated GF with 20 min anodizing and 1 h HNO3 ultrasound had the highest electrocatalytic activity in a wide electric potential (-0.4 V to -0.8 V) and pH range (3-9) in system and the efficient removal rate of NOR was basically maintained after 5 cycles. Under optimal reaction conditions, 50 mg L-1 NOR achieved 93% degradation and almost 63% of NOR was completely mineralized within 120 min. The possible NOR degradation pathways and ecotoxicity of intermediates were analyzed by LC-MS and T.E.S.T. theoretical calculation. This paper provided the underlying insights into designing a high-efficiency carbon-based cathode materials for commercial antibiotic wastewater treatment.
Collapse
Affiliation(s)
- Hongkai Guo
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu, China
| | - Chengwen Zhao
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu, China
| | - Hu Xu
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu, China
| | - Honglin Hao
- Gansu HaoShi Carbon Fiber Co., LTD, Baiyin, 730900, Gansu, China
| | - Ziyuan Yang
- Gansu HaoShi Carbon Fiber Co., LTD, Baiyin, 730900, Gansu, China
| | - Na Li
- Gansu HaoShi Carbon Fiber Co., LTD, Baiyin, 730900, Gansu, China
| | - Weijun Xu
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu, China.
| |
Collapse
|
8
|
Yuan Q, Qu S, Li R, Huo ZY, Gao Y, Luo Y. Degradation of antibiotics by electrochemical advanced oxidation processes (EAOPs): Performance, mechanisms, and perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159092. [PMID: 36174705 DOI: 10.1016/j.scitotenv.2022.159092] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Global consumption and discharge of antibiotics have led to the rapid development and spread of bacterial antibiotic resistance. Among treatment strategies, electrochemical advanced oxidation processes (EAOPs) are gaining popularity for treating water/wastewater containing antibiotics due to their high efficiency and easiness of operation. In this review, we summarize various forms of EAOPs that contribute to antibiotic degradation, including common electrochemical oxidation (EO), electrolyte enhanced EO, electro-Fenton (EF) processes, EF-like process, and EAOPs coupling with other processes. Then we assess the performance of various EAOPs in antibiotic degradation and discuss the influence of key factors, including electrode, initial concentration and type of antibiotic, operation conditions, electrolyte, and water quality. We also review mechanisms and degradation pathways of various antibiotics degradation by EAOPs, and address the species and toxicity of intermediates produced during antibiotics treatment. Finally, we highlight challenges and critical research needs to facilitate the application of EAOPs in antibiotic treatment.
Collapse
Affiliation(s)
- Qingbin Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China; School of the Environment, Nanjing Tech University, Nanjing 211816, PR China.
| | - Siyao Qu
- School of the Environment, Nanjing Tech University, Nanjing 211816, PR China
| | - Rong Li
- School of the Environment, Nanjing Tech University, Nanjing 211816, PR China
| | - Zheng-Yang Huo
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, PR China.
| | - Yan Gao
- School of the Environment, Nanjing Tech University, Nanjing 211816, PR China.
| | - Yi Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| |
Collapse
|
9
|
Lai C, Ma D, Yi H, Zhang M, Xu F, Huo X, Ye H, Li L, Yang L, Tang L, Yan M. Functional partition of Fe and Ti co-doped g-C3N4 for photo-Fenton degradation of oxytetracycline: Performance, mechanism, and DFT study. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Santos MC, Antonin VS, Souza FM, Aveiro LR, Pinheiro VS, Gentil TC, Lima TS, Moura JPC, Silva CR, Lucchetti LEB, Codognoto L, Robles I, Lanza MRV. Decontamination of wastewater containing contaminants of emerging concern by electrooxidation and Fenton-based processes - A review on the relevance of materials and methods. CHEMOSPHERE 2022; 307:135763. [PMID: 35952792 DOI: 10.1016/j.chemosphere.2022.135763] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
In recent years, there has been an increasingly growing interest regarding the use of electrochemical advanced oxidation processes (EAOPs) which are considered highly promising alternative treatment techniques for addressing environmental issues related to pollutants of emerging concern. In EAOPs, electrogenerated oxidizing agents, such as hydroxyl radical (HO•), can react non-selectively with a wide range of organic compounds, degrading and mineralizing their structures to unharmful molecules like CO2, H2O, and inorganic ions. To this date, a broad spectrum of advanced electrocatalysts have been developed and applied for the treatment of compounds of interest in different matrices, specifically aiming at enhancing the degradation performance. New combined methods have also been employed as alternative treatment techniques targeted at circumventing the major obstacles encountered in Fenton-based processes, such as high costs and energy consumption, which still contribute significantly toward inhibiting the large-scale application of these processes. First, some fundamental aspects of EAOPs will be presented. Further, we will provide an overview of electrode materials which have been recently developed and reported in the literature, highlighting different anode and cathode structures employed in EAOPs, their main advantages and disadvantages, as well as their contribution to the performance of the treatment processes. The influence of operating parameters, such as initial concentrations, pH effect, temperature, supporting electrolyte, and radiation source, on the treatment processes were also studied. Finally, hybrid techniques which have been reported in the literature and critically assess the most recent techniques used for evaluating the degradation efficiency of the treatment processes.
Collapse
Affiliation(s)
- Mauro C Santos
- Laboratory of Eletrochemistry and Nanostructured Materials (LEMN) Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), CEP: 09210-170, Rua Santa Adélia 166, Bairro Bangu, Santo André, SP, Brazil.
| | - Vanessa S Antonin
- Laboratory of Eletrochemistry and Nanostructured Materials (LEMN) Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), CEP: 09210-170, Rua Santa Adélia 166, Bairro Bangu, Santo André, SP, Brazil
| | - Felipe M Souza
- Laboratory of Eletrochemistry and Nanostructured Materials (LEMN) Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), CEP: 09210-170, Rua Santa Adélia 166, Bairro Bangu, Santo André, SP, Brazil; Departamento de Química, Instituto Federal de Educação, Ciência e Tecnologia Goiano, BR-153, Km 633, Zona Rural, CEP: 75650-000, Morrinhos, GO, Brazil
| | - Luci R Aveiro
- São Paulo Federal Institute of Education, Science and Technology, Rua Pedro Vicente, 625, Canindé São Paulo, CEP: 01109-010, SP, Brazil
| | - Victor S Pinheiro
- Laboratory of Eletrochemistry and Nanostructured Materials (LEMN) Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), CEP: 09210-170, Rua Santa Adélia 166, Bairro Bangu, Santo André, SP, Brazil
| | - Tuani C Gentil
- Laboratory of Eletrochemistry and Nanostructured Materials (LEMN) Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), CEP: 09210-170, Rua Santa Adélia 166, Bairro Bangu, Santo André, SP, Brazil
| | - Thays S Lima
- Department of Chemistry, Institute of Chemical and Pharmaceutical Environmental Sciences, Federal University of São Paulo (UNIFESP), Rua Prof. Artur Riedel, n 275 - Jd. Eldorado, CEP: 09972-270, Diadema, SP, Brazil
| | - João P C Moura
- Laboratory of Eletrochemistry and Nanostructured Materials (LEMN) Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), CEP: 09210-170, Rua Santa Adélia 166, Bairro Bangu, Santo André, SP, Brazil
| | - Carolina R Silva
- Laboratory of Eletrochemistry and Nanostructured Materials (LEMN) Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), CEP: 09210-170, Rua Santa Adélia 166, Bairro Bangu, Santo André, SP, Brazil
| | - Lanna E B Lucchetti
- Laboratory of Eletrochemistry and Nanostructured Materials (LEMN) Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), CEP: 09210-170, Rua Santa Adélia 166, Bairro Bangu, Santo André, SP, Brazil
| | - Lucia Codognoto
- Department of Chemistry, Institute of Chemical and Pharmaceutical Environmental Sciences, Federal University of São Paulo (UNIFESP), Rua Prof. Artur Riedel, n 275 - Jd. Eldorado, CEP: 09972-270, Diadema, SP, Brazil
| | - Irma Robles
- Center for Research and Technological Development in Electrochemistry, S.C., Parque Tecnológico Querétaro, 76703, Sanfandila, Pedro Escobedo, Querétaro, Mexico
| | - Marcos R V Lanza
- São Carlos Institute of Chemistry (IQSC), University of São Paulo (USP), Avenida Trabalhador São-carlense 400, São Carlos, SP, 13566-590, Brazil
| |
Collapse
|
11
|
Constructing benzene ring modified graphitic carbon nitride with narrowed bandgap and enhanced molecular oxygen activation for efficient photocatalytic degradation of oxytetracycline. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Cheng CW, Lee SY, Chen TY, Yang MJ, Yuann JMP, Chiu CM, Huang ST, Liang JY. A study of the effect of reactive oxygen species induced by violet and blue light from oxytetracycline on the deactivation of Escherichia coli. Photodiagnosis Photodyn Ther 2022; 39:102917. [PMID: 35597444 DOI: 10.1016/j.pdpdt.2022.102917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/07/2022] [Accepted: 05/17/2022] [Indexed: 10/18/2022]
Abstract
Oxytetracycline (OTC), a tetracycline antibiotic, is a broad-spectrum antibacterial agent. In this investigation, liquid chromatography-mass spectrometry (LC-MS) is utilized to determine the effects of blue light (λ = 448 nm) illumination (BLIA) and violet light (λ = 403 nm) illumination (VLIA) on conformational changes in OTC at pH 7.8. The photochemical effect of OTC that is exposed to BLIA and VLIA on the deactivation of Escherichia coli (E. coli) is studied. The deactivation of E. coli has an insignificant effect on treatment with OTC alone. OTC is relatively unstable under BLIA and VLIA illumination in an alkaline solution, and OTC has been shown to inactivate E. coli by generating reactive oxygen species (ROS). Less anionic superoxide radicals (O2•-) are generated from OTC that is treated with BLIA than that from VLIA treatment, so OTC is more efficient in inactivating E. coli under VLIA. Inactivation of reduction rates of 0.51 and 3.65 logs in E. coli are achieved using 0.1 mM OTC under BLIA for 120 min and VLIA for 30 min, respectively, under the same illumination intensity (20 W/m2). Two photolytic products of OTC (PPOs) are produced when OTC is exposed to BLIA and VLIA, with molecular ions at m/z 447 and 431, molecular formulae C21H22N2O9 and C21H22N2O8, and masses of 446.44 and 430.44 g/mol, respectively. The results show that when exposed to VLIA, OTC exhibits enhanced inactivation of E. coli, suggesting that the photochemical treatment of OTC is a potential supplement in a hygienic process.
Collapse
Affiliation(s)
- Chien-Wei Cheng
- Department of Biotechnology, Ming Chuan University, Gui-Shan 33343, Taiwan.
| | - Shwu-Yuan Lee
- Department of Tourism and Leisure, Hsing Wu University, New Taipei City 24452, Taiwan.
| | - Tang-Yu Chen
- Department of Biotechnology, Ming Chuan University, Gui-Shan 33343, Taiwan.
| | - Meei-Ju Yang
- Tea Research and Extension Station, Yangmei 326011, Taiwan.
| | - Jeu-Ming P Yuann
- Department of Biotechnology, Ming Chuan University, Gui-Shan 33343, Taiwan
| | - Chi-Ming Chiu
- Department of Biotechnology, Ming Chuan University, Gui-Shan 33343, Taiwan.
| | - Shiuh-Tsuen Huang
- Department of Science Education and Application, National Taichung University of Education, Taichung 40306, Taiwan; Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung 40200, Taiwan.
| | - Ji-Yuan Liang
- Department of Biotechnology, Ming Chuan University, Gui-Shan 33343, Taiwan.
| |
Collapse
|
13
|
Jiang Y, Ran J, Mao K, Yang X, Zhong L, Yang C, Feng X, Zhang H. Recent progress in Fenton/Fenton-like reactions for the removal of antibiotics in aqueous environments. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113464. [PMID: 35395600 DOI: 10.1016/j.ecoenv.2022.113464] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
The frequent use of antibiotics allows them to enter aqueous environments via wastewater, and many types of antibiotics accumulate in the environment due to difficult degradation, causing a threat to environmental health. It is crucial to adopt effective technical means to remove antibiotics in aqueous environments. The Fenton reaction, as an effective organic pollution treatment technology, is particularly suitable for the treatment of antibiotics, and at present, it is one of the most promising advanced oxidation technologies. Specifically, rapid Fenton oxidation, which features high removal efficiency, thorough reactions, negligible secondary pollution, etc., has led to many studies on using the Fenton reaction to degrade antibiotics. This paper summarizes recent progress on the removal of antibiotics in aqueous environments by Fenton and Fenton-like reactions. First, the applications of various Fenton and Fenton-like oxidation technologies to the removal of antibiotics are summarized; then, the advantages and disadvantages of these technologies are further summarized. Compared with Fenton oxidation, Fenton-like oxidations exhibit milder reaction conditions, wider application ranges, great reduction in economic costs, and great improved cycle times, in addition to simple and easy recycling of the catalyst. Finally, based on the above analysis, we discuss the potential for the removal of antibiotics under different application scenarios. This review will enable the selection of a suitable Fenton system to treat antibiotics according to practical conditions and will also aid the development of more advanced Fenton technologies for removing antibiotics and other organic pollutants.
Collapse
Affiliation(s)
- Yu Jiang
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Jiabing Ran
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Xuefeng Yang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Li Zhong
- Guizhou Institute of Prataculture, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, 550006, China
| | - Changying Yang
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China.
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| |
Collapse
|
14
|
Xiao Z, Cui T, Wang Z, Dang Y, Zheng M, Lin Y, Song Z, Wang Y, Liu C, Xu B, Ikhlaq A, Kumirska J, Siedlecka EM, Qi F. Energy-efficient removal of carbamazepine in solution by electrocoagulation-electrofenton using a novel P-rGO cathode. J Environ Sci (China) 2022; 115:88-102. [PMID: 34969480 DOI: 10.1016/j.jes.2021.07.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/18/2021] [Accepted: 07/18/2021] [Indexed: 06/14/2023]
Abstract
In this study, carbamazepine (CBZ) decay in solution has been studied by coupling electrocoagulation with electro-Fenton (EC-EF) with a novel P-rGO/carbon felt (CF) cathode, aiming to accelerate the in-situ generation of •OH, instead of adding Fe2+ and H2O2. Firstly, the fabricated P-rGO and its derived cathode were characterized by XRD, SEM, AFM, XPS and electrochemical test (EIS, CV and LSV). Secondly, it was confirmed that the performance in removal efficiency and electric energy consumption (EEC) by EC-EF (kobs=0.124 min-1, EEC=43.98 kWh/kg CBZ) was better than EF (kobs=0.069 min-1, EEC=61.04 kWh/kg CBZ). Then, P-rGO/CF (kobs=0.248 min-1, EEC=29.47 kWh/kg CBZ, CE=61.04%) showed the best performance in EC-EF, among all studied heteroatom-doped graphene/CF. This superior performance may be associated with its largest layer spacing and richest C=C, which can promote the electron transfer rate and conductivity of the cathode. Thus, more H2O2 and •OH could be produced to degrade CBZ, and almost 100% CBZ was removed with kobs being 0.337 min-1 and the EEC was only 24.18 kWh/kg CBZ, under the optimal conditions (P-rGO loading was 6.0 mg/cm2, the current density was 10.0 mA/cm2, the gap between electrode was 2.0 cm). Additionally, no matter the influent is acidic, neutral or alkaline, no additional pH adjustment is required for the effluent of EC-EF. At last, an inconsecutive empirical kinetic model was firstly established to predict the effect of operating parameters on CBZ removal.
Collapse
Affiliation(s)
- Zhihui Xiao
- Beijing Key Lab for Source Control Technology of Water Pollution, School of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Tingyu Cui
- Beijing Key Lab for Source Control Technology of Water Pollution, School of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Zhenbei Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, School of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yan Dang
- Beijing Key Lab for Source Control Technology of Water Pollution, School of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Meijie Zheng
- Beijing Key Lab for Source Control Technology of Water Pollution, School of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yixinfei Lin
- Beijing Key Lab for Source Control Technology of Water Pollution, School of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Zilong Song
- Beijing Key Lab for Source Control Technology of Water Pollution, School of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yiping Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, School of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Chao Liu
- Jiangsu Key Lab of Industrial Pollution Control and Resource Reuse, School of Environmental Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Bingbing Xu
- State Key Lab of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Amir Ikhlaq
- Institute of Environment Engineering and Research, University of Engineering and Technology, GT Road, 54890, Lahore, Punjab, Pakistan
| | - Jolanta Kumirska
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Ewa Maria Siedlecka
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Fei Qi
- Beijing Key Lab for Source Control Technology of Water Pollution, School of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
15
|
Brillas E. Progress of homogeneous and heterogeneous electro-Fenton treatments of antibiotics in synthetic and real wastewaters. A critical review on the period 2017-2021. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:153102. [PMID: 35041950 DOI: 10.1016/j.scitotenv.2022.153102] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Antibiotics are widely supplied over all the world to animals and humans to fight and heal bacteriological diseases. The uptake of antibiotics has largely increased the average-life expectancy of living beings. However, these recalcitrant products have been detected at low concentrations in natural waters, with potential health risks due to alterations in food chains and an increase in the resistance to bacterial infection, control of infectious diseases, and damage of the beneficial bacteria. The high stability of antibiotics at mild conditions prevents their effective removal in conventional wastewater treatment plants. A powerful advanced oxidation processes such as the electro-Fenton (EF) process is being developed as a guarantee for their destruction by •OH generated as strong oxidant. This review presents a critical, exhaustive, and detailed analysis on the application of EF to remediate synthetic and real wastewaters contaminated with common antibiotics, covering the period 2017-2021. Homogeneous EF and heterogeneous EF involving iron solid catalysts or iron functionalized cathodes, as well as their hybrid and sequential treatments, are exhaustively examined. Their fundamentals and characteristics are detailed, and the main results obtained for the removal of the most used antibiotic families are carefully described and discussed. The role of generated oxidizing agents is explained, and the by-products generated, and reaction sequences proposed are detailed.
Collapse
Affiliation(s)
- Enric Brillas
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Secció de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
| |
Collapse
|
16
|
Applications of Heterogeneous Photocatalysis to the Degradation of Oxytetracycline in Water: A Review. Molecules 2022; 27:molecules27092743. [PMID: 35566092 PMCID: PMC9105636 DOI: 10.3390/molecules27092743] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 11/30/2022] Open
Abstract
Photocatalytic processes are being studied extensively as potential advanced wastewater treatments for the removal of pharmaceuticals, pesticides and other recalcitrant micropollutants from the effluents of conventional wastewater treatment plants (WWTPs). Oxytetracycline (OTC) is a widespread antibiotic which is frequently detected in surface water bodies as a recalcitrant and persistent micropollutant. This review provides an update on advances in heterogeneous photocatalysis for the degradation of OTC in water under UV light, sunlight and visible-light irradiation. Photocatalysts based on pure semiconducting oxides are rarely used, due to the problem of rapid recombination of electron–hole pairs. To overcome this issue, a good strategy could be the coupling of two different semiconducting compounds with different conduction and valence bands. Several methods are described to enhance the performances of catalysts, such as doping of the oxide with metal and/or non-metal elements, surface functionalization, composites and nano-heterojunction. Furthermore, a discussion on non-oxidic photocatalysts is briefly provided, focusing on the application of graphene-based nanocomposites for the effective treatment of OTC.
Collapse
|
17
|
Yu C, Hou J, Zhang B, Liu S, Pan X, Song H, Hou X, Yan Q, Zhou C, Liu G, Zhang Y, Xin Y. In-situ electrodeposition synthesis of Z-scheme rGO/g-C 3N 4/TNAs photoelectrodes and its degradation mechanism for oxytetracycline in dual-chamber photoelectrocatalytic system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 308:114615. [PMID: 35131709 DOI: 10.1016/j.jenvman.2022.114615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
The dual-chamber photoelectrocatalytic (PEC) system possess advantages in the degradation efficiency and processing cost of organic contaminants. In this study, TiO2 nanotube arrays modified by rGO and g-C3N4 (rGO/g-C3N4/TNAs) photoelectrodes were successfully prepared. The surface micromorphology, chemical structure, crystal structure, and basic element composition of rGO/g-C3N4/TNAs photoelectrodes were studied by SEM, FTIR, XRD, Raman, and XPS. UV-vis absorption, photoluminescence (PL) spectra, and photoelectrochemical (PECH) tests were used to explore the photoelectrochemical characteristics of rGO/g-C3N4/TNAs photoelectrodes. Under simulated sunlight illumination, the dual-chamber PEC system with external bias voltage was used to investigate the degradation of oxytetracycline (OTC) on rGO/g-C3N4/TNAs photoelectrodes. The results showed that rGO and g-C3N4 were successfully loaded on TNAs, and the separation efficiency of electrons and holes at rGO/g-C3N4/TNAs photoelectrodes was improved. The light absorption range of rGO/g-C3N4/TNAs photoelectrodes extends to the visible light region and has better light absorption performance. Compared with the photocatalytic process, when 1.2 V bias voltage was applied, the degradation efficiency of OTC in anode and cathode chambers in PEC were increased by 3.28% and 44.01% within 60 min, respectively. In addition, the anode and cathode chambers have different degradation effects on OTC. Both the external bias voltage and initial pH have significant effects in cathode chamber, but have little effect in photoanode chamber. The fluorescence excitation-emission matrix spectra and liquid chromatography-tandem mass spectrometry showed that there were different intermediates in the degradation process of OTC. This study indicated that for the dual-chamber PEC system, rGO/g-C3N4/TNAs photoelectrodes exhibited excellent photocatalytic performance and have potential application prospects in water environmental remediation.
Collapse
Affiliation(s)
- Chengze Yu
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Jiaqi Hou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Bin Zhang
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shiqi Liu
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiangrui Pan
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Heng Song
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiangting Hou
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qinghua Yan
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chengzhi Zhou
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Guocheng Liu
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yingjie Zhang
- School of Marine Science and Technology, Sino-Europe Membrane Technology Research Institute Harbin Institute of Technology, Weihai, 264209, China
| | - Yanjun Xin
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
18
|
Ulucan-Altuntas K, Yazici Guvenc S, Can-Güven E, Ilhan F, Varank G. Degradation of oxytetracycline in aqueous solution by heat-activated peroxydisulfate and peroxymonosulfate oxidation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:9110-9123. [PMID: 34495474 DOI: 10.1007/s11356-021-16157-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Oxytetracycline (OTC) is a broad-spectrum antibiotic that resists biodegradation and poses a risk to the ecosystem. This study investigated the degradation of OTC by heat-activated peroxydisulfate (PDS) and peroxymonosulfate (PMS) processes. Response surface methodology (RSM) was used to evaluate the effect of process parameters, namely initial pH, oxidant concentration, temperature, and reaction time on the OTC removal efficiency. According to the results of the RSM models, all four independent variables were significant for both PDS and PMS processes. The optimum process parameters for the heat-activated PDS process were pH 8.9, PDS concentration 3.9 mM, temperature 72.9°C, and reaction time 26.5 min. For the heat-activated PMS process, optimum conditions were pH 9.0, PMS concentration 4.0 mM, temperature 75.0°C, and reaction time 20.0 min. The predicted OTC removal efficiencies for the PDS and PMS processes were 89.7% and 84.0%, respectively. As a result of the validation experiments conducted at optimum conditions, the obtained OTC removal efficiencies for the PDS and PMS processes were 87.6 ± 4.2 and 80.2± 4.6, respectively. PDS process has higher kinetic constants at all pH values than the PMS process. Both processes were effective in OTC removal from aqueous solution and RSM was efficient in process optimization.
Collapse
Affiliation(s)
- Kubra Ulucan-Altuntas
- Faculty of Civil Engineering, Department of Environmental Engineering, Yildiz Technical University, Davutpasa, 34220, Istanbul, Turkey.
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, Padova, 35131, Italy.
| | - Senem Yazici Guvenc
- Faculty of Civil Engineering, Department of Environmental Engineering, Yildiz Technical University, Davutpasa, 34220, Istanbul, Turkey
| | - Emine Can-Güven
- Faculty of Civil Engineering, Department of Environmental Engineering, Yildiz Technical University, Davutpasa, 34220, Istanbul, Turkey
| | - Fatih Ilhan
- Faculty of Civil Engineering, Department of Environmental Engineering, Yildiz Technical University, Davutpasa, 34220, Istanbul, Turkey
| | - Gamze Varank
- Faculty of Civil Engineering, Department of Environmental Engineering, Yildiz Technical University, Davutpasa, 34220, Istanbul, Turkey
| |
Collapse
|
19
|
Xu H, Guo H, Chai C, Li N, Lin X, Xu W. Anodized graphite felt as an efficient cathode for in-situ hydrogen peroxide production and Electro-Fenton degradation of rhodamine B. CHEMOSPHERE 2022; 286:131936. [PMID: 34426276 DOI: 10.1016/j.chemosphere.2021.131936] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
This work investigated that the graphite felt anodized by NaOH, NH4HCO3, or H2SO4 aqueous, and then as the cathode materials for in-situ hydrogen peroxide (H2O2) production and its employed for rhodamine B (RhB) degradation via Electro-Fenton (EF) process. At -0.60 V (vs. SCE), after 120 min electrolysis, the H2O2 yield by graphite felt which anodized by 0.2 M H2SO4 achieved up 110.5 mg L-1 in 0.05 M Na2SO4 electrolyte. Compared with the raw graphite felt used for cathode, the H2O2 yield increased by 15.85 times under the same conditions. The results of Raman spectroscopy demonstrated that graphite felt anodized by H2SO4 solution can be achieved the highest defect degree. For the degradation of RhB, the cathode which anodized by H2SO4 solution has the highest removal rate. For the degradation rate of RhB, the effect of applied current density, Fe2+ ions concentration, pH value were investigated. In addition, suggested that the efficient Fe3+ reduction reaction on the cathode surface was an important reason of the high efficiency of RhB degradation. 5-times continuous runs indicated that the modified cathode has remarkable stability and reusability during the EF process.
Collapse
Affiliation(s)
- Hu Xu
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu, China
| | - Hongkai Guo
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu, China
| | - Changsheng Chai
- School of Bailie Mechanical Engineering, Lanzhou City University, Lanzhou, 730070, Gansu, China
| | - Na Li
- Gansu HaoShi Carbon Fiber Co., LTD, Baiying, 730900, Gansu, China
| | - Xueyong Lin
- Gansu HaoShi Carbon Fiber Co., LTD, Baiying, 730900, Gansu, China
| | - Weijun Xu
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu, China.
| |
Collapse
|
20
|
Liu J, Jia J, Yu H, Zhang J, Li J, Ge H, Zhao Y. Graphite felt modified by nanoporous carbon as a novel cathode material for the EF process. NEW J CHEM 2022. [DOI: 10.1039/d2nj01679f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nanoporous carbon prepared by carbonizing ZIF-8@MWCNTs can greatly improve the performance of graphite felt as an electro-Fenton cathode.
Collapse
Affiliation(s)
- Jiaman Liu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Jiping Jia
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Huaqiang Yu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Jialin Zhang
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Ji Li
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Honghua Ge
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Yuzeng Zhao
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| |
Collapse
|
21
|
Minale M, Guadie A, Li Y, Meng Y, Wang X, Zhao J. Enhanced removal of oxytetracycline antibiotics from water using manganese dioxide impregnated hydrogel composite: Adsorption behavior and oxidative degradation pathways. CHEMOSPHERE 2021; 280:130926. [PMID: 34162108 DOI: 10.1016/j.chemosphere.2021.130926] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/23/2021] [Accepted: 05/15/2021] [Indexed: 06/13/2023]
Abstract
The present work provides the first attempt of using manganese dioxide loaded poly(sodium acrylate) hydrogel (MnO2@PSA) to address potential threats posed by oxytetracycline (OTC) antibiotics in aqueous environment. The MnO2@PSA was prepared via a facile approach and demonstrated enhanced removal performance even under extremely high concentrations of OTC. The outstanding performance exhibited by MnO2@PSA was attributed to synergetic effects of adsorption oxidative degradation. The synthesized composite was characterized evaluated under varying conditions. The adsorption pH was optimized at pH 5, at which the removal efficiency OTC was reached 91.46%. According to the kinetics study, the pseudo-second-order kinetic model was the best to explain the adsorption data, implying the interaction mechanisms were dominated by chemisorption. The Langmuir isotherm model was the best to explain the isotherm data, and the corresponding maximum adsorbed amount of OTC was 1150.4 mg g-1. The MnO2@PSA was highly selective for OTC adsorption and degradation under the presence of natural organic matter and common environmental metal ions. The oxidative degradation study indicated that OTC molecules were structurally degraded into 15 intermediate products via six reaction pathways. Both the theoretical models and spectroscopic methods demonstrated the removal mechanism of OTC onto MnO2@PSA was governed by ion exchange, cation-π bonding, hydrogen-bonding, and π-π electron donor-acceptor. Overall, MnO2@PSA is an excellent and environmentally sustainable material to remove OTC from water and wastewater via the combined effects of adsorption and oxidative degradation.
Collapse
Affiliation(s)
- Mengist Minale
- Institute of Environment for Sustainable Development, College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Awoke Guadie
- Key Laboratory of Environmental Biotechnology Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; Department of Biology, College of Natural Sciences, Arba Minch University, Arba Minch 21, Ethiopia
| | - Yuan Li
- Institute of Environment for Sustainable Development, College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Yuan Meng
- Institute of Environment for Sustainable Development, College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Xuejiang Wang
- Institute of Environment for Sustainable Development, College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| | - Jianfu Zhao
- Institute of Environment for Sustainable Development, College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| |
Collapse
|
22
|
Zhao Z, Liu L, Min L, Zhang W, Wang Y. A Facile Method to Realize Oxygen Reduction at the Hydrogen Evolution Cathode of an Electrolytic Cell for Energy-Efficient Electrooxidation. MATERIALS 2021; 14:ma14112841. [PMID: 34073284 PMCID: PMC8198103 DOI: 10.3390/ma14112841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 11/16/2022]
Abstract
Electrochemical oxidation, widely used in green production and pollution abatement, is often accompanied by the hydrogen evolution reaction (HER), which results in a high consumption of electricity and is a potential explosion hazard. To solve this problem, we report here a method for converting the original HER cathode into one that enables the oxygen reduction reaction (ORR) without having to build new electrolysis cells or be concerned about electrolyte leakage from the O2 gas electrode. The viability of this method is demonstrated using the electrolytic production of ammonium persulfate (APS) as an example. The original carbon black electrode for the HER is converted to an ORR electrode by first undergoing in situ anodization and then contacting O2 or air bubbled from the bottom of the electrode. With this sole change, APS production can achieve an electric energy saving of up to 20.3%. Considering the ease and low cost of this modification, such significant electricity savings make this method very promising in the upgrade of electrochemical oxidation processes, with wide potential applications.
Collapse
|
23
|
Lai W, Chen Z, Ye S, Xu Y, Xie G, Kuang C, Li Y, Zheng L, Wei L. BiVO 4 prepared by the sol-gel doped on graphite felt cathode for ciprofloxacin degradation and mechanism in solar-photo-electro-Fenton. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124621. [PMID: 33383458 DOI: 10.1016/j.jhazmat.2020.124621] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/06/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
In this research, bismuth vanadate-doped graphite felt (GF-BiVO4) was successfully prepared by sol-gel method, in which BiVO4 owned superior electro-Fenton (EF) and solar-photo-electro-Fenton (SPEF) performance. Combined with the analysis by X-ray diffractometer (XRD), field emission transmission electron microscopy (FE-TEM), nitrogen adsorption-desorption isotherms and cyclic voltammetry (CV), the changes of electrodes were reflected in structure and physicochemical properties. The doping of monoclinic BiVO4 endued GF with a higher surface area and more electro-active sites and better electrode activity in comparison to Raw-GF. Then, the GFs were used as cathodes to detect •OH concentration with coumarin (COU) as probe molecule and to evaluate photoelectric performance with ciprofloxacin (CIP) in photocatalysis, EF and SPEF processes. The results demonstrated that the concentration of •OH followed an order of SPEF> EF> photocatalysis, which was consistent with the removal rate of CIP (99.8%, 99.4% and 21.2%, respectively) on GF-BiVO4 at 5 min. Further, five degradation pathways of CIP in SPEF system were proposed including the attack on piperazine ring, oxidation on cyclopropyl group, decarboxylation and hydroxyl radical addition, oxidation on benzene group and defluorination. The study provides insights into the enhancement of EF and SPEF performance and the degradation pathway of CIP in SPEF.
Collapse
Affiliation(s)
- Weikang Lai
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhuoyao Chen
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Shengjun Ye
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yanbin Xu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Guangyan Xie
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Chaozhi Kuang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuxin Li
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Li Zheng
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Longmeng Wei
- Analysis and Test Center, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
24
|
Ulucan-Altuntas K, El Hadki A, Ilhan F, Zrineh A, El Hadki H, Kabbaj OK, Dahchour A, Debik E. Electrocatalytic degradation of oxytetracycline using three-dimensional electrode and optimization via fuzzy logic modeling. SEP SCI TECHNOL 2021. [DOI: 10.1080/01496395.2021.1900867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Kubra Ulucan-Altuntas
- Department of Environmental Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Ahmed El Hadki
- Laboratory of Spectroscopy, Molecular Modeling, Materials, Nanomaterials, Water, and Environment, (LS3MN2E-CERNE2D), Department of Chemistry, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Fatih Ilhan
- Department of Environmental Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Abdallah Zrineh
- Laboratory of Spectroscopy, Molecular Modeling, Materials, Nanomaterials, Water, and Environment, (LS3MN2E-CERNE2D), Department of Chemistry, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Hamza El Hadki
- Laboratory of Spectroscopy, Molecular Modeling, Materials, Nanomaterials, Water, and Environment, (LS3MN2E-CERNE2D), Department of Chemistry, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Oum Keltoum Kabbaj
- Laboratory of Spectroscopy, Molecular Modeling, Materials, Nanomaterials, Water, and Environment, (LS3MN2E-CERNE2D), Department of Chemistry, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Abdelmalek Dahchour
- Department of Fundamental and Applied Sciences, Hassan II Agronomic and Veterinary Institute, Rabat, Morocco
| | - Eyup Debik
- Department of Environmental Engineering, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
25
|
Wang J, Li C, Rauf M, Luo H, Sun X, Jiang Y. Gas diffusion electrodes for H 2O 2 production and their applications for electrochemical degradation of organic pollutants in water: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 759:143459. [PMID: 33223172 DOI: 10.1016/j.scitotenv.2020.143459] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/15/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
Nowadays, it is a great challenge to minimize the negative impact of hazardous organic compounds in the environment. Highly efficient hydrogen peroxide (H2O2) production through electrochemical methods with gas diffusion electrodes (GDEs) is greatly demand for degradation of organic pollutants that present in drinking water and industrial wastewater. The GDEs as cathodic electrocatalyst manifest more cost-effective, lower energy consumption and higher oxygen utilization efficiency for H2O2 production as compared to other carbonaceous cathodes due to its worthy chemical and physical characteristics. In recent years, the crucial research and practical application of GDE for degradation of organic pollutants have been well developed. In this review, we focus on the novel design, fundamental aspects, influence factors, and electrochemical properties of GDEs. Furthermore, we investigate the generation of H2O2 through electrocatalytic processes and degradation mechanisms of refractory organic pollutants on GDEs. We describe the advanced methodologies towards electrochemical kinetics, which include the enhancement of GDEs electrochemical catalytic activity and mass transfer process. More importantly, we also highlight the other technologies assisted electrochemical process with GDEs to enlarge the practical application for water treatment. In addition, the developmental prospective and the existing research challenges of GDE-based electrocatalytic materials for real applications in H2O2 production and wastewater treatment are forecasted. According to our best knowledge, only few review articles have discussed GDEs in detail for H2O2 production and their applications for degradation of organic pollutants in water.
Collapse
Affiliation(s)
- Jingwen Wang
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| | - Chaolin Li
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China.
| | - Muhammad Rauf
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, PR China
| | - Haijian Luo
- Education Center of Experiments and Innovations, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| | - Xue Sun
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| | - Yiqi Jiang
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| |
Collapse
|
26
|
Chen Z, Lai W, Xu Y, Xie G, Hou W, Zhanchang P, Kuang C, Li Y. Anodic oxidation of ciprofloxacin using different graphite felt anodes: Kinetics and degradation pathways. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124262. [PMID: 33213981 DOI: 10.1016/j.jhazmat.2020.124262] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/26/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
Ciprofloxacin (CIP) is ubiquitous in the environment which poses a certain threat to human and ecology. In this investigation, the physical and electrochemical properties of graphite felt (GF) anodes which affected the anodic oxidation (AO) performance, and the CIP removal effect of GF were evaluated. The GFs were used as anodes for detection of ·OH with coumarin (COU) as molecule probe and removal of CIP in a 150 mL electrolytic cell with Pt cathode (AO-GF/Pt system). The results showed that hydrophilic GF (B-GF) owned higher sp3/sp2 and more oxygen-containing and nitrogen-containing functional groups than the hydrophobic GF (A-GF). Moreover, B-GF possessed higher oxygen evolution potential (1.12 V), more active sites and stronger ·OH generation capacity. Above mentioned caused that B-GF exhibited more superior properties for CIP removal. The best efficiencies (96.95%, 99.83%) were obtained in the AO-B-GF/Pt system at 6.25 mAcm-2 after 10 min (k1, 0.356 min-1) and 60 min (k2, 0.224 min-1), respectively. Furthermore, nine degradation pathways of CIP in AO-B-GF/Pt system were summarized as the cleavage of the piperazine ring, cyclopropyl group, quinolone ring and F atom by ·OH. It provides new insights into the removal and degradation pathways of CIP with GF in AO system.
Collapse
Affiliation(s)
- Zhuoyao Chen
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Weikang Lai
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yanbin Xu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Guangyan Xie
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Waner Hou
- Analysis and Test Center, Guangdong University of Technology, Guangzhou 510006, China
| | - Pan Zhanchang
- School of Chemical Engineering & Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Chaozhi Kuang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuxin Li
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
27
|
Lu J, Ayele BA, Liu X, Chen Q. Electrochemical removal of RRX-3B in residual dyeing liquid with typical engineered carbonaceous cathodes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 280:111669. [PMID: 33234317 DOI: 10.1016/j.jenvman.2020.111669] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/05/2020] [Accepted: 11/08/2020] [Indexed: 06/11/2023]
Abstract
Electro-catalytic activities of carbonaceous cathodes including graphite plate, graphite felt, carbon felt, activated carbon felt (ACF) and carbon fiber felt (CFF) for degradation of Reactive Red X-3B (RRX-3B) in residual dyeing liquid were compared. The best electrochemical performance was obtained using dimensional stable anode (DSA) and CFF cathode due to the higher capacity for electro-generation of H2O2 by selective two-electron oxygen reduction. The CFF/DSA electrolysis system realized 78.2% COD removal and complete decolorization over a wide pH range. The efficacy of RRX-3B degradation was found to be dependent on the nature of carbonaceous materials. Electrochemical measurements showed that CFF possessed higher electrochemical surface area and hydrogen evolution reaction over-potential. Furthermore, the intrinsic graphitic N in CFF was proved to be catalytic active site by DFT calculations. Reactive Red X-3B degradation intermediates with benzene structures and carboxylic acids via hydroxylation in RRX-3B oxidation were identified by GC-MS. It was found that S/Cl/N-containing groups in RRX-3B molecule were mineralized to SO42-, NO3- and Cl- ions in the electrolysis.
Collapse
Affiliation(s)
- Jun Lu
- School of Environment Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | - Befkadu A Ayele
- School of Environment Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | - Xiaochen Liu
- School of Environment Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | - Quanyuan Chen
- School of Environment Science and Engineering, Donghua University, Shanghai, 201620, PR China; Shanghai Institution of Pollution Control and Ecological Security, Shanghai, 200092, PR China; State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, PR China.
| |
Collapse
|