1
|
da Silva ÉFM, Garcia RRP, Rodrigues LA, Napoleão DC, Sanz O, Almeida LC. Enhancement of effluent degradation by zinc oxide, carbon nitride, and carbon xerogel trifecta on brass monoliths. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:53472-53496. [PMID: 39190249 DOI: 10.1007/s11356-024-34770-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/16/2024] [Indexed: 08/28/2024]
Abstract
In recent years, heterogeneous photocatalysis has emerged as a promising alternative for the treatment of organic pollutants. This technique offers several advantages, such as low cost and ease of operation. However, finding a semiconductor material that is both operationally viable and highly active under solar irradiation remains a challenge, often requiring materials of nanometric size. Furthermore, in many processes, photocatalysts are suspended in the solution, requiring additional steps to remove them. This can render the technique economically unviable, especially for nanosized catalysts. This work demonstrated the feasibility of using a structured photocatalyst (ZnO, g-C3N4, and carbon xerogel) optimized for this photodegradation process. The synthesized materials were characterized by nitrogen adsorption and desorption, X-ray diffraction (XRD), and diffuse reflectance spectroscopy (DRS). Adhesion testing demonstrated the efficiency of the deposition technique, with film adhesion exceeding 90%. The photocatalytic evaluation was performed using a mixture of three textile dyes in a recycle photoreactor, varying pH (4.7 and 10), recycle flow rate (2, 4, and 6 L h-1), immobilized mass (1, 2, and 3 mg cm-2), monolith height (1.5, 3.0, and 4.5 cm), and type of radiation (solar and visible artificials; and natural solar). The structured photocatalyst degraded over 99% of the dye mixture under artificial radiation. The solar energy results are highly promising, achieving a degradation efficiency of approximately 74%. Furthermore, it was possible to regenerate the structured photocatalyst up to seven consecutive times using exclusively natural solar light and maintain a degradation rate of around 70%. These results reinforce the feasibility and potential application of this system in photocatalytic reactions, highlighting its effectiveness and sustainability.
Collapse
Affiliation(s)
- Émerson Felipe Mendonça da Silva
- Department of Chemical Engineering, Technology and Geoscience Center, Federal University of Pernambuco, Recife, PE, 50740-521, Brazil
| | - Ramón Raudel Peña Garcia
- Pós Graduate Program in Materials Science and Engineering, Federal University of Piauí, Teresina, PI, 64049-550, Brazil
- Academic Unit of Cabo de Santo Agostinho, Federal Rural University of Pernambuco, Cabo de Santo Agostinho, PE, 54518-430, Brazil
| | - Liana Alvares Rodrigues
- Escola de Engenharia de Lorena EEL/USP, Estrada Municipal Do Campinho S/N, Lorena, São Paulo, CEP 12602-810, Brazil
| | - Daniella Carla Napoleão
- Department of Chemical Engineering, Technology and Geoscience Center, Federal University of Pernambuco, Recife, PE, 50740-521, Brazil
| | - Oihane Sanz
- Dept. of Applied Chemistry, Chemistry Faculty, University of the Basque Country, UPV/EHU, P. Lardizabala, 3, 20018, San Sebastian, Spain
| | - Luciano Costa Almeida
- Department of Chemical Engineering, Technology and Geoscience Center, Federal University of Pernambuco, Recife, PE, 50740-521, Brazil.
| |
Collapse
|
2
|
Kulabhusan PK, Campbell K. Physico-chemical treatments for the removal of cyanotoxins from drinking water: Current challenges and future trends. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170078. [PMID: 38242472 DOI: 10.1016/j.scitotenv.2024.170078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 01/21/2024]
Abstract
Cyanobacteria are highly prevalent blue-green algae that grow in stagnant and nutrient-rich water bodies. Environmental conditions, such as eutrophication and human activities, increased the cyanobacterial blooms in freshwater resources worldwide. The excessive bloom formation has also resulted in an alarming surge of cyanobacterial toxins. Prolonged exposure to cyanotoxins is a potential threat to natural ecosystems, animal and human health by the spoilage of the quality of bathing and drinking water. Various molecular and analytical methods have been proposed to monitor their occurrence and understand their global distribution. Moreover, different physical, chemical, and biological approaches have been employed to control cyanobacterial blooms and their toxins to mitigate their occurrence. Numerous strategies have been engaged in drinking water treatment plants (DWTPs). However, the degree of treatment varies greatly and is primarily determined by the source, water properties, and operating parameters such as temperature, pH, and cyanotoxin variants and levels. A comprehensive compilation of methods, from traditional approaches to more advanced oxidation processes (AOPs), are presented for the removal of intracellular and extracellular cyanotoxins. This review discusses the effectiveness of various physicochemical operations and their limitations in a DWTP, for the removal of various cyanotoxins. These operations span from simple to advanced treatment levels with varying degrees of effectiveness and differing costs of implementation. Furthermore, mitigation measures applied in other toxin systems have been considered as alternative strategies.
Collapse
Affiliation(s)
- Prabir Kumar Kulabhusan
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, UK BT9 5DL; International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330, Braga, Portugal
| | - Katrina Campbell
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, UK BT9 5DL.
| |
Collapse
|
3
|
Pestana CJ, Hui J, Camacho-Muñoz D, Edwards C, Robertson PKJ, Irvine JTS, Lawton LA. Solar-driven semi-conductor photocatalytic water treatment (TiO 2, g-C 3N 4, and TiO 2+g-C 3N 4) of cyanotoxins: Proof-of-concept study with microcystin-LR. CHEMOSPHERE 2023; 310:136828. [PMID: 36241123 DOI: 10.1016/j.chemosphere.2022.136828] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Cyanobacteria and their toxins are a threat to drinking water safety as increasingly cyanobacterial blooms (mass occurrences) occur in lakes and reservoirs all over the world. Photocatalytic removal of cyanotoxins by solar light active catalysts is a promising way to purify water at relatively low cost compared to modifying existing infrastructure. We have established a facile and low-cost method to obtain TiO2 and g-C3N4 coated floating photocatalysts using recycled glass beads. g-C3N4 coated and TiO2+g-C3N4 co-coated beads were able to completely remove microcystin-LR in artificial fresh water under both natural and simulated solar light irradiation without agitation in less than 2 h. TiO2 coated beads achieved complete removal within 8 h of irradiation. TiO2+g-C3N4 beads were more effective than g-C3N4 beads as demonstrated by the increase reaction rate with reaction constants, 0.0485 min-1 compared to 0.0264 min-1 respectively, with TiO2 alone found to be considerably slower 0.0072 min-1. g-C3N4 based photocatalysts showed a similar degradation pathway to TiO2 based photocatalysts by attacking the C6-C7 double bond on the Adda side chain.
Collapse
Affiliation(s)
- Carlos J Pestana
- School of Pharmacy and Life Sciences, Robert Gordon University, Garthdee Road, Aberdeen, Scotland, AB10 7GJ, UK.
| | - Jianing Hui
- School of Chemistry, University of St Andrews, North Haugh, St Andrews, Scotland, KY16 9ST, UK
| | - Dolores Camacho-Muñoz
- School of Pharmacy and Life Sciences, Robert Gordon University, Garthdee Road, Aberdeen, Scotland, AB10 7GJ, UK
| | - Christine Edwards
- School of Pharmacy and Life Sciences, Robert Gordon University, Garthdee Road, Aberdeen, Scotland, AB10 7GJ, UK
| | - Peter K J Robertson
- School of Chemistry and Chemical Engineering, The Queen's University of Belfast, Stanmillis Road, Belfast, Northern Ireland, BT9 5AG, UK
| | - John T S Irvine
- School of Chemistry, University of St Andrews, North Haugh, St Andrews, Scotland, KY16 9ST, UK
| | - Linda A Lawton
- School of Pharmacy and Life Sciences, Robert Gordon University, Garthdee Road, Aberdeen, Scotland, AB10 7GJ, UK
| |
Collapse
|
4
|
Pestana CJ, Santos AA, Capelo-Neto J, Melo VMM, Reis KC, Oliveira S, Rogers R, Pacheco ABF, Hui J, Skillen NC, Barros MUG, Edwards C, Azevedo SMFO, Robertson PKJ, Irvine JTS, Lawton LA. Suppressing cyanobacterial dominance by UV-LED TiO 2-photocatalysis in a drinking water reservoir: A mesocosm study. WATER RESEARCH 2022; 226:119299. [PMID: 36323220 DOI: 10.1016/j.watres.2022.119299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Cyanobacteria and their toxic secondary metabolites present challenges for water treatment globally. In this study we have assessed TiO2 immobilized onto recycled foamed glass beads by a facile calcination method, combined in treatment units with 365 nm UV-LEDs. The treatment system was deployed in mesocosms within a eutrophic Brazilian drinking water reservoir. The treatment units were deployed for 7 days and suppressed cyanobacterial abundance by 85% while at the same time enhancing other water quality parameters; turbidity and transparency improved by 40 and 81% respectively. Genomic analysis of the microbiota in the treated mesocosms revealed that the composition of the cyanobacterial community was affected and the abundance of Bacteroidetes and Proteobacteria increased during cyanobacterial suppression. The effect of the treatment on zooplankton and other eukaryotes was also monitored. The abundance of zooplankton decreased while Chrysophyte and Alveolata loadings increased. The results of this proof-of-concept study demonstrate the potential for full-scale, in-reservoir application of advanced oxidation processes as complementary water treatment processes.
Collapse
Affiliation(s)
- Carlos J Pestana
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, UK.
| | - Allan A Santos
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - José Capelo-Neto
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Brazil
| | - Vânia M M Melo
- Department of Biology, Federal University of Ceará, Fortaleza, Brazil
| | - Kelly C Reis
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Brazil
| | - Samylla Oliveira
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Brazil
| | - Ricardo Rogers
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana B F Pacheco
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jianing Hui
- School of Chemistry, University of St. Andrews, St. Andrews, UK
| | - Nathan C Skillen
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, UK
| | - Mário U G Barros
- Ceára Water Resources Management Company (COGERH), Fortaleza, Brazil
| | - Christine Edwards
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, UK
| | - Sandra M F O Azevedo
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Peter K J Robertson
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, UK
| | - John T S Irvine
- School of Chemistry, University of St. Andrews, St. Andrews, UK
| | - Linda A Lawton
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, UK
| |
Collapse
|
5
|
Immobilization of highly active titanium dioxide and zinc oxide hollow spheres on ceramic paper and their applicability for photocatalytic water treatment. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113791] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Ding Q, Song X, Yuan M, Sun R, Zhang J, Yin L, Pu Y. Removal of microcystins from water and primary treatment technologies - A comprehensive understanding based on bibliometric and content analysis, 1991-2020. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 305:114349. [PMID: 34968943 DOI: 10.1016/j.jenvman.2021.114349] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/14/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
Microcystins are a group of heptapeptide hepatotoxins produced by a variety of algae and are frequently detected in aquatic ecosystems, posing a global threat to ecological stability and human health. However, it is difficult to eliminate them completely and innocuously from water by conventional water treatment processes. This study comprehensively evaluated a total of 821 original articles retrieved from the Web of Science (1991-2020) about the removal of microcystins using bibliometric and content analysis to provide a qualitative and quantitative research landscape and a global view of research hotspots and future research directions. Furthermore, the primary and promising treatment technologies for microcystin pollution were also summarized and discussed. The results indicated an urgent practical demand to remediate microcystin pollution according to the increasing number of publications since 2005. China had the highest number of publications, whereas the United States was the core country in the international collaboration network. The Chinese Academy of Sciences and University of Cincinnati showed their leading positions considering article amounts and academic cooperation. Dionysiou DD contributed the most articles, and Carmichael WW had the highest number of co-citations. Three treatment technologies, including biodegradation, chemical oxidation and adsorption, were the major strategies to remediate the pollution of microcystins in water. In addition, the toxicity of toxins/their metabolites, degradation kinetics, and elimination mechanism were also important research contents. Bacterial degradation, photocatalytic degradation, and multiple-technologies approach have been identified with great potential and should be given more attention in future studies. This work summarizes the current research status on microcystin management, provides a valuable reference for researchers to identify potential opportunities for collaboration in related fields, and guides future research directions to inter-disciplinary and multi-perspective approaches.
Collapse
Affiliation(s)
- Qin Ding
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Xiaolei Song
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Mengxuan Yuan
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Rongli Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Juan Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| |
Collapse
|