1
|
Sharma P, Rathee S, Ahmad M, Siddiqui MH, Alamri S, Kaur S, Kohli RK, Singh HP, Batish DR. Leaf functional traits and resource use strategies facilitate the spread of invasive plant Parthenium hysterophorus across an elevational gradient in western Himalayas. BMC PLANT BIOLOGY 2024; 24:234. [PMID: 38561674 PMCID: PMC10985864 DOI: 10.1186/s12870-024-04904-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/13/2024] [Indexed: 04/04/2024]
Abstract
Parthenium hysterophorus L. (Asteraceae) is a highly prevalent invasive species in subtropical regions across the world. It has recently been seen to shift from low (subtropical) to high (sub-temperate) elevations. Nevertheless, there is a dearth of research investigating the adaptive responses and the significance of leaf functional traits in promoting the expansion to high elevations. The current study investigated the variations and trade-offs among 14 leaf traits (structural, photosynthetic, and nutrient content) of P. hysterophorus across different elevations in the western Himalayas, India. Plots measuring 20 × 40 m were established at different elevations (700 m, 1100 m, 1400 m, and 1800 m) to collect leaf trait data for P. hysterophorus. Along the elevational gradient, significant variations were noticed in leaf morphological parameters, leaf nutrient content, and leaf photosynthetic parameters. Significant increases were observed in the specific leaf area, leaf thickness, and chlorophyll a, total chlorophyll and carotenoid content, as well as leaf nitrogen and phosphorus content with elevation. On the other hand, there were reductions in the amount of chlorophyll b, photosynthetic efficiency, leaf dry matter content, leaf mass per area, and leaf water content. The trait-trait relationships between leaf water content and dry weight and between leaf area and dry weight were stronger at higher elevations. The results show that leaf trait variability and trait-trait correlations are very important for sustaining plant fitness and growth rates in low-temperature, high-irradiance, resource-limited environments at relatively high elevations. To summarise, the findings suggest that P. hysterophorus can expand its range to higher elevations by broadening its functional niche through changes in leaf traits and resource utilisation strategies.
Collapse
Affiliation(s)
- Padma Sharma
- Department of Environment Studies, Panjab University, Chandigarh, 160014, India
| | - Sonia Rathee
- Department of Botany, Panjab University, Chandigarh, 160014, India
| | - Mustaqeem Ahmad
- Department of Environment Studies, Panjab University, Chandigarh, 160014, India
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Shalinder Kaur
- Department of Botany, Panjab University, Chandigarh, 160014, India.
| | - Ravinder K Kohli
- Amity University, Sector 82A, IT City, International Airport Road, Mohali, 140 306, India
| | - Harminder Pal Singh
- Department of Environment Studies, Panjab University, Chandigarh, 160014, India
| | - Daizy R Batish
- Department of Botany, Panjab University, Chandigarh, 160014, India
| |
Collapse
|
2
|
Xu C, Silliman BR, Chen J, Li X, Thomsen MS, Zhang Q, Lee J, Lefcheck JS, Daleo P, Hughes BB, Jones HP, Wang R, Wang S, Smith CS, Xi X, Altieri AH, van de Koppel J, Palmer TM, Liu L, Wu J, Li B, He Q. Herbivory limits success of vegetation restoration globally. Science 2023; 382:589-594. [PMID: 37917679 DOI: 10.1126/science.add2814] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/21/2023] [Indexed: 11/04/2023]
Abstract
Restoring vegetation in degraded ecosystems is an increasingly common practice for promoting biodiversity and ecological function, but successful implementation is hampered by an incomplete understanding of the processes that limit restoration success. By synthesizing terrestrial and aquatic studies globally (2594 experimental tests from 610 articles), we reveal substantial herbivore control of vegetation under restoration. Herbivores at restoration sites reduced vegetation abundance more strongly (by 89%, on average) than those at relatively undegraded sites and suppressed, rather than fostered, plant diversity. These effects were particularly pronounced in regions with higher temperatures and lower precipitation. Excluding targeted herbivores temporarily or introducing their predators improved restoration by magnitudes similar to or greater than those achieved by managing plant competition or facilitation. Thus, managing herbivory is a promising strategy for enhancing vegetation restoration efforts.
Collapse
Affiliation(s)
- Changlin Xu
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, School of Life Sciences, Fudan University, Shanghai, China
| | - Brian R Silliman
- Nicholas School of the Environment, Duke University, Beaufort, NC, USA
| | - Jianshe Chen
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, School of Life Sciences, Fudan University, Shanghai, China
| | - Xincheng Li
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, School of Life Sciences, Fudan University, Shanghai, China
| | - Mads S Thomsen
- Marine Ecology Research Group and Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Department of Bioscience, Aarhus University, Roskilde, Denmark
| | - Qun Zhang
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, School of Life Sciences, Fudan University, Shanghai, China
| | - Juhyung Lee
- Marine Science Center, Northeastern University, Nahant, MA, USA
- Department of Oceanography and Marine Research Institute, Pusan National University, Busan, Republic of Korea
| | - Jonathan S Lefcheck
- Tennenbaum Marine Observatories Network and MarineGEO Program, Smithsonian Environmental Research Center, Edgewater, MD, USA
- University of Maryland Center for Environmental Science, Cambridge, MD, USA
| | - Pedro Daleo
- Instituto de Investigaciones Marinas y Costeras (IIMyC), UNMdP, CONICETC, Mar del Plata, Argentina
| | - Brent B Hughes
- Department of Biology, Sonoma State University, Rohnert Park, CA, USA
| | - Holly P Jones
- Department of Biological Sciences and Institute for the Study of the Environment, Sustainability, and Energy, Northern Illinois University, DeKalb, IL, USA
| | - Rong Wang
- School of Ecological and Environmental Sciences, Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, East China Normal University, Shanghai, China
| | - Shaopeng Wang
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Carter S Smith
- Nicholas School of the Environment, Duke University, Beaufort, NC, USA
| | - Xinqiang Xi
- Department of Ecology, School of Life Science, Nanjing University, Nanjing, Jiangsu, China
| | - Andrew H Altieri
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, USA
| | - Johan van de Koppel
- Department of Estuarine and Delta Systems, Royal Netherlands Institute for Sea Research, Yerseke, Netherlands
- Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Todd M Palmer
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Lingli Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Jihua Wu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, and College of Ecology, Lanzhou University, Lanzhou, Gansu, China
| | - Bo Li
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, China
| | - Qiang He
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Chaitanya Maturi K, Haq I, Kalamdhad AS. Performance assessment of in-vessel composter through heavy metal immobilization and humification of Parthenium hysterophorus. BIORESOURCE TECHNOLOGY 2022; 360:127626. [PMID: 35850388 DOI: 10.1016/j.biortech.2022.127626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/05/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
The bioconversion of Parthenium hysterophorus was performed through rotary drum composter and examined the mechanism of humification and heavy metals immobilization in the process. The 20th day compost contains a significant increase in humic substances of 28.7% compared to the initial day mix. The bioavailable fractions of heavy metals have reduced by 30 to 55% in the 20th day compost compared to the initial day mix. The leaching potential of cadmium has been reduced by 69% in the 20th day compost. The immobile fractions (F5) of Cd, Ni and Pb have been increased to 100, 99 and 78% in the 20th day compost. The mitotic index was increased by 1.7 and 51.6% in 25% dosed compost extract compared to the control and P. hysterophorus extract respectively. The transition of heavy metals to immobile fraction indicated the biodegradation capability of P. hysterophorus through rotary drum composting.
Collapse
Affiliation(s)
- Krishna Chaitanya Maturi
- Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Izharul Haq
- Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - Ajay S Kalamdhad
- Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|