1
|
Blattert C, Eyvindson K, Mönkkönen M, Raatikainen KJ, Triviño M, Duflot R. Enhancing multifunctionality in European boreal forests: The potential role of Triad landscape functional zoning. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119250. [PMID: 37864945 DOI: 10.1016/j.jenvman.2023.119250] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/21/2023] [Accepted: 10/02/2023] [Indexed: 10/23/2023]
Abstract
Land-use policies aim at enhancing the sustainable use of natural resources. The Triad approach has been suggested to balance the social, ecological, and economic demands of forested landscapes. The core idea is to enhance multifunctionality at the landscape level by allocating landscape zones with specific management priorities, i.e., production (intensive management), multiple use (extensive management), and conservation (forest reserves). We tested the efficiency of the Triad approach and identified the respective proportion of above-mentioned zones needed to enhance multifunctionality in Finnish forest landscapes. Through a simulation and optimization framework, we explored a range of scenarios of the three zones and evaluated how changing their relative proportion (each ranging from 0 to 100%) impacted landscape multifunctionality, measured by various biodiversity and ecosystem service indicators. The results show that maximizing multifunctionality required around 20% forest area managed intensively, 50% extensively, and 30% allocated to forest reserves. In our case studies, such landscape zoning represented a good compromise between the studied multifunctionality components and maintained 61% of the maximum achievable net present value (i.e., total timber economic value). Allocating specific proportion of the landscape to a management zone had distinctive effects on the optimized economic or multifunctionality values. Net present value was only moderately impacted by shifting from intensive to extensive management, while multifunctionality benefited from less intensive and more diverse management regimes. This is the first study to apply Triad in a European boreal forest landscape, highlighting the usefulness of this approach. Our results show the potential of the Triad approach in promoting forest multifunctionality, as well as a strong trade-off between net present value and multifunctionality. We conclude that simply applying the Triad approach does not implicitly contribute to an overall increase in forest multifunctionality, as careful forest management planning still requires clear landscape objectives.
Collapse
Affiliation(s)
- Clemens Blattert
- Forest Resources and Management, Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland; Department of Biological and Environmental Sciences, University of Jyvaskyla, P.O. Box 35, FI-40014, Jyvaskyla, Finland; School of Resource Wisdom, University of Jyvaskyla, P.O. Box 35, FI-40014, Jyvaskyla, Finland
| | - Kyle Eyvindson
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, NMBU, P.O. Box 5003, NO-1433, Ås, Norway; Natural Resource Institute Finland (LUKE), Latokartanonkaari 9, 00790, Helsinki, Finland.
| | - Mikko Mönkkönen
- Department of Biological and Environmental Sciences, University of Jyvaskyla, P.O. Box 35, FI-40014, Jyvaskyla, Finland; School of Resource Wisdom, University of Jyvaskyla, P.O. Box 35, FI-40014, Jyvaskyla, Finland
| | - Kaisa J Raatikainen
- Department of Biological and Environmental Sciences, University of Jyvaskyla, P.O. Box 35, FI-40014, Jyvaskyla, Finland; School of Resource Wisdom, University of Jyvaskyla, P.O. Box 35, FI-40014, Jyvaskyla, Finland; Finnish Environment Institute (SYKE), Survontie 9A, 40500, Jyväskylä, Finland
| | - María Triviño
- Department of Biological and Environmental Sciences, University of Jyvaskyla, P.O. Box 35, FI-40014, Jyvaskyla, Finland; School of Resource Wisdom, University of Jyvaskyla, P.O. Box 35, FI-40014, Jyvaskyla, Finland
| | - Rémi Duflot
- Department of Biological and Environmental Sciences, University of Jyvaskyla, P.O. Box 35, FI-40014, Jyvaskyla, Finland; School of Resource Wisdom, University of Jyvaskyla, P.O. Box 35, FI-40014, Jyvaskyla, Finland
| |
Collapse
|
2
|
Integrating Habitat Quality of the Great Spotted Woodpecker (Dendrocopos major) in Forest Spatial Harvest Scheduling Problems. FORESTS 2022. [DOI: 10.3390/f13040525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Biodiversity conservation has been broadly recognized in multi-objective forest management over the past decade. Nevertheless, habitat serves as one of the key influencing factors of biodiversity; while timber production and habitat quality are integrated into forest management operations, our knowledge about the trade-offs between the two is still limited. Thus, we formulated a habitat suitability index model for the great spotted woodpecker (Dendrocopos major) and developed a forest planning model that integrated timber revenue and habitat quality for a forest landscape in northeast China. We created three alternative management strategies, which spanned from timber benefit maximization to various management strategies restricted to differing amounts of suitable habitat. The results show that when the amount of suitable habitat comprised 39% to 65% of the landscape, this generated a 40.7% to 74.4% reduction in the total net present value, in comparison with the timber benefit maximization base scenario. The restriction of suitable habitat amount demands significantly decreased the total timber benefit in spatial planning problems. Our planning model provides an efficient approach to learning more about the trade-offs between timber production and wildlife habitat. Furthermore, the consideration of optimal habitat protection rather than increased habitat amount could be helpful for balancing targeting strategies among ecological and economic factors.
Collapse
|