1
|
Quevedo-Castro A, Bustos-Terrones YA, Bandala ER, Loaiza JG, Rangel-Peraza JG. Modeling the effect of climate change scenarios on water quality for tropical reservoirs. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 322:116137. [PMID: 36067670 DOI: 10.1016/j.jenvman.2022.116137] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/02/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
Impact of natural phenomena and anthropogenic activities on water quality is closely related with temperature increase and global warming. In this study, the effects of climate change scenarios on water quality forecasts were assessed through correlations, prediction algorithms, and water quality index (WQI) for tropical reservoirs. The expected trends for different water quality parameters were estimated for the 2030-2100 period in association with temperature trends to estimate water quality using historical data from a dam in Mexico. The WQI scenarios were obtained using algorithms supported by global models of representative concentration pathways (RCPs) adopted by the Intergovernmental Panel on Climate Change (IPCC). The RPCs were used to estimate water and air temperature values and extrapolate future WQI values for the water reservoir. The proposed algorithms were validated using historical information collected from 2012 to 2019 and four temperature variation intervals from 3.2 to 5.4 °C (worst forecast) to 0.9-2.3 °C (best forecast) were used for each trajectory using 0.1 °C increases to obtain the trend for each WQI parameter. Variations in the concentration (±30, ±70, and +100) of parameters related to anthropogenic activity (e.g., total suspended solids, fecal coliforms, and chemical oxygen demand) were simulated to obtain water quality scenarios for future health diagnosis of the reservoir. The results projected in the RCP models showed increasing WQI variation for lower temperature values (best forecast WQI = 74; worst forecast WQI = 71). This study offers a novel approach that integrates multiparametric statistical and WQI to help decision making on sustainable water resources management for tropical reservoirs impacted by climate change.
Collapse
Affiliation(s)
- Alberto Quevedo-Castro
- División de Estudios de Posgrado e Investigación, Instituto Tecnológico de Culiacán, Juan de Dios Bátiz 310, Col. Guadalupe, P.C. 80220, Culiacán, Sinaloa, Mexico
| | - Yaneth A Bustos-Terrones
- CONACYT-División de Estudios de Posgrado e Investigación, Instituto Tecnológico de Culiacán, Juan de Dios Bátiz 310, Col. Guadalupe, P.C. 80220, Culiacán, Sinaloa, Mexico
| | - Erick R Bandala
- Division of Hydrologic Sciences, Desert Research Institute, 755 Flamingo Road, Las Vegas, NV, 89119- 7363, USA.
| | - Juan G Loaiza
- División de Estudios de Posgrado e Investigación, Instituto Tecnológico de Culiacán, Juan de Dios Bátiz 310, Col. Guadalupe, P.C. 80220, Culiacán, Sinaloa, Mexico
| | - Jesús Gabriel Rangel-Peraza
- División de Estudios de Posgrado e Investigación, Instituto Tecnológico de Culiacán, Juan de Dios Bátiz 310, Col. Guadalupe, P.C. 80220, Culiacán, Sinaloa, Mexico
| |
Collapse
|
2
|
Yao X, Song C. Effect of different factors dominated by water level environment on wetland carbon emissions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:74150-74162. [PMID: 35633453 DOI: 10.1007/s11356-022-20289-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/12/2022] [Indexed: 06/15/2023]
Abstract
The exacerbation of global warming has led to changes in wetland carbon emissions worldwide. Therefore, we conducted a meta-analysis of methane (CH4) and carbon dioxide (CO2) emissions in wetland ecosystem and explored the underlying mechanisms. Our finding indicated that (1) water level of -50 to 30 cm (the negative value represents the depth of the groundwater table, whereas the positive value represents the height of the above-ground water table) and -10 cm will result in a large CH4 and CO2 emissions, respectively; (2) CO2 and CH4 massive emissions occurred at the temperature range of 15-20 °C and > 20 °C, respectively; (3) CH4 and CO2 emissions were higher when the mean annual precipitation (MAP) was between 400 and 800 mm, but lower at an range of 800-1200 mm; (4) there was no significant difference in CH4 and CO2 emissions in marsh over time; however, CO2 emissions in fen were relatively high; (5) there was no significant difference in CO2 emissions between the forest, grass, and shrub groups; there was also no significant difference in CH4 emission within the forest group; and (6) MAP has a low impact (0.577) on the CO2 emissions of wetlands. Collectively, our findings highlight the characteristics of wetland CH4 and CO2 emissions under different conditions dominated by water level, enhance our understanding of the potential mechanisms that govern these effects, and provide basis for future wetland management and restoration in the future.
Collapse
Affiliation(s)
- Xiaochen Yao
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Changchun Song
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
- School of Hydraulic Engineering, Dalian University of Technology, Dalian, 116023, China.
| |
Collapse
|
3
|
Salimi S, Scholz M. Importance of water level management for peatland outflow water quality in the face of climate change and drought. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:75455-75470. [PMID: 35653024 PMCID: PMC9553818 DOI: 10.1007/s11356-022-20614-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/30/2022] [Indexed: 06/15/2023]
Abstract
The impact of different climate scenarios, drought, and water level management on the outflow water quality of peatlands has been investigated. A mesocosm experiment has been conducted within climate control chambers to simulate current (2016-2019 real-time) and future representative concentration pathway (RCP) climate scenarios (RCP 2.6, 4.5 and 8.5). To assess the efficiency of a management strategy for improving peatland water quality, water level adjustment was applied to half of the system at the same time for each climate scenario. Furthermore, the mesocosm experienced the 2018 European drought during the simulation years, and the corresponding impact was analyzed. The results of this study revealed a substantial and favorable impact of water level management on water quality of peatlands under different climate scenarios. The effect of water level management was the largest for ammonium (NH4-N) and 5-day biochemical oxygen demand (BOD5), and the smallest for total phosphorus (TP). Drought had a strong impact on chemical variables, increasing their concentration and deteriorating the water quality of peatland outflow. However, water level management can stabilize the nutrient levels in peatland outflows, particularly during drought and under warmer climate scenarios, thus mitigating the adverse effects of climate change.
Collapse
Affiliation(s)
- Shokoufeh Salimi
- Division of Water Resources Engineering, Faculty of Engineering, Lund University, P.O. Box 118, 221 00, Lund, Sweden
| | - Miklas Scholz
- Division of Water Resources Engineering, Faculty of Engineering, Lund University, P.O. Box 118, 221 00, Lund, Sweden.
- School of Science, Engineering and Environment, The University of Salford, Newton Building, M5 4WT, Salford, United Kingdom.
- Department of Civil Engineering Science, School of Civil Engineering and the Built Environment, University of Johannesburg, Kingsway Campus, Aukland Park 2006, PO Box 524, Johannesburg, South Africa.
- Department of Town Planning, Engineering Networks and Systems, South Ural State University (National Research University), Prospekt Lenin 76, Chelyabinsk, 454080, Russia.
| |
Collapse
|
4
|
Knowledge Atlas on the Relationship between Water Management and Constructed Wetlands—A Bibliometric Analysis Based on CiteSpace. SUSTAINABILITY 2022. [DOI: 10.3390/su14148288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Water management is a crucial resource conservation challenge that mankind faces, and encouraging the creation of manmade wetlands with the goal of achieving long-term water management is the key to long-term urban development. To summarise and analyse the status of the research on the relationship between water management and constructed wetlands, this paper makes use of the advantages of the bibliometric visualization of CiteSpace to generate country/region maps and author-collaboration maps, and to analyse research hotspots and research dynamics by using keywords and literature co-citations based on 1248 pieces of related literature in the core collection in the Web of Science (WoS) database. The existing research shows that the research content and methods in the field of constructed-wetland and water-management research are constantly being enriched and deepened, including the research methods frequently used in constructed wetlands in water management and in the research content under concern, the functions and roles of constructed wetlands, the relevant measurement indicators of the purification impact of constructed wetlands on water bodies, and the types of water bodies treated by constructed wetlands in water management. We summarise the impact pathways of constructed wetlands on water management, as well as the impact factors of constructed wetlands under water-management objectives, by analysing the future concerns in the research field to provide references for research.
Collapse
|
5
|
Novel Water Retention and Nutrient Management Technologies and Strategies Supporting Agricultural Water Management in Continental, Pannonian and Boreal Regions. WATER 2022. [DOI: 10.3390/w14091486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Urgent water and food security challenges, particularly in continental and boreal regions, need to be addressed by initiatives such as the Horizon 2020-funded project WATer retention and nutrient recycling in soils and streams for improved AGRIcultural production (WATERAGRI). A new methodological framework for the sustainable management of various solutions resilient to climate change has been developed. The results indicate that the effect of the climate scenario is significantly different for peatlands and constructed wetlands. The findings also highlight that remote-sensing-based yield prediction models developed from vegetation indices have the potential to provide quantitative and timely information on crops for large regions or even at the local farm scale. Verification of remotely sensed data is one of the prerequisites for the proper utilization and understanding of data. Research shows that current serious game applications fall short due to challenges such as not clarifying the decision problem, the lack of use of decision quality indicators and limited use of gaming. Overall, WATERAGRI solutions improve water and food security by adapting agriculture to climate change, recycling nutrients and providing educational tools to the farming community. Farmers in small agricultural catchments benefit directly from WATERAGRI, but over the long-term, the general public does as well.
Collapse
|
6
|
Ferretto A, Brooker R, Matthews R, Smith P. Climate change and drinking water from Scottish peatlands: Where increasing DOC is an issue? JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 300:113688. [PMID: 34525430 DOI: 10.1016/j.jenvman.2021.113688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Increasing levels of dissolved organic carbon (DOC) have been detected in the last decades in water bodies of the Northern hemisphere, and climate change might fuel this rise. For drinking water reservoirs located in peatland catchments, already subjected to elevated amounts of DOC that needs to be removed, this might pose a further problem. Scotland is predicted to face warmer temperatures and a change in rainfall patterns, which will result in more frequent and severe summer droughts and in heavier winter precipitation. These conditions are not ideal for peatlands, which may undergo a drastic reduction in area. Using two bioclimatic envelope models (Blanket bog Tree model and Lindsay Modified model) that project blanket bog distribution in Scotland in the 2050s, we extracted the area of blanket bog that is at risk of loss. Assuming that part of the carbon stored in this area is likely to be lost, we calculated how much of it could be added to DOC in catchments that contain public drinking water reservoirs each year. This analysis is a first estimate of the risk for the provision of drinking water from peatlands in Scotland due to climate change. The aim is to identify the catchments that may face the highest consequences of future climates in terms of the concentration of DOC ([DOC]), where more sophisticated water treatments might be needed. Our results show a great variability among the catchments, with only a few being unaffected by this problem, whereas others could experience substantial seasonal increase in [DOC]. This highlights the necessity to frequently monitor DOC levels in the reservoirs located in catchments where the major problems could arise, and to take the necessary measures to reduce it. Given that peatland condition and vegetation cover play a fundamental role in influencing DOC losses, this study also offers an indication of where peatland restoration might be useful to counteract the projected DOC increase and bring the highest benefits in terms of safe drinking water provision.
Collapse
Affiliation(s)
- Anna Ferretto
- School of Biological Sciences, University of Aberdeen, 23 St Machar Drive, AB24 3UU, UK; The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK.
| | - Rob Brooker
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
| | - Robin Matthews
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
| | - Pete Smith
- School of Biological Sciences, University of Aberdeen, 23 St Machar Drive, AB24 3UU, UK
| |
Collapse
|