1
|
Iftikhar-Ul-Haq, Ahmed M, Aslam AA, Aftab F, Sanaullah M, Hussain R, Eiman E, Aslam AA, Wani TA, Zargar S. Multivariate analysis of potentially toxic metal contents in soil and vegetables: Enrichment, bioconcentration, translocation from soil to vegetables, and assessment of human health toxicity. Food Chem Toxicol 2025; 200:115413. [PMID: 40154832 DOI: 10.1016/j.fct.2025.115413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/16/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
The excessive accumulation of metals in agricultural soils can profoundly impact the quality of vegetables grown in contaminated soil. Understanding the bioaccumulation of these metals in vegetables is essential for assessing human exposure risks. The present study aimed to investigate the concentration of potentially toxic metals (PTMs: Fe, Mn, Cu, Zn, Al, As, Cr, Cd, and Pb) in agricultural soil and some commonly consumed vegetables (carrot, reddish, cauliflower, pumpkin, and spinach). The samples were collected from agrarian farmlands near the industrial area of Multan Road, Kasur-Pakistan. The mean contents of all metals in soil, root, and shoot samples were within the limits set by the EU, WHO, FAO, and US EPA, except for Cr in soil and Cr, Cd, and Pb in root samples. Across all analyzed vegetables, the bioconcentration factors (BCFroot and BCFshoot < 1, except As) and translocation factor (TF < 1) for all metals suggested that while these vegetables absorb metals, they generally do not accumulate or translocate them. Multivariate analysis indicated that both natural and anthropogenic activities contribute to metal contamination. The calculated hazard index (HI > 1) and cumulative cancer risk (CCR >1 × 10-3) values indicated the probability of non-carcinogenic and carcinogenic health risks for adults and children associated with the consumption of these vegetables. The findings provide critical insights for policymakers, agricultural regulators, and public health authorities to mitigate metal contamination risks and promote food safety.
Collapse
Affiliation(s)
| | - Mahmood Ahmed
- Department of Chemistry, Division of Science and Technology, University of Education, College Road, Lahore, Pakistan.
| | - Ali Abbas Aslam
- Department of Chemistry, Division of Science and Technology, University of Education, College Road, Lahore, Pakistan
| | - Fatima Aftab
- Department of Chemistry, Division of Science and Technology, University of Education, College Road, Lahore, Pakistan
| | - Mudassar Sanaullah
- Department of Chemistry, Division of Science and Technology, University of Education, College Road, Lahore, Pakistan
| | - Riaz Hussain
- Department of Chemistry, University of Okara, Okara, 56300, Pakistan
| | - Eisha Eiman
- Department of Chemistry, Division of Science and Technology, University of Education, College Road, Lahore, Pakistan
| | - Awais Ali Aslam
- Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, Krzywoustego4, 44-100, Gliwice, Poland
| | - Tanveer A Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Seema Zargar
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 222452, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
2
|
Aksouh MY, Boudieb N, Benosmane N, Moussaoui Y, Michalski R, Klyta J, Kończyk J. Presence of Heavy Metals in Irrigation Water, Soils, Fruits, and Vegetables: Health Risk Assessment in Peri-Urban Boumerdes City, Algeria. Molecules 2024; 29:4187. [PMID: 39275035 PMCID: PMC11397094 DOI: 10.3390/molecules29174187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/16/2024] Open
Abstract
This study investigates heavy metal contamination in soils, irrigation water, and agricultural produce (fruits: Vitis vinifera (grape), Cucumis melo var. saccharimus (melon), and Citrullus vulgaris. Schrade (watermelon); vegetables: Lycopersicum esculentum L. (tomato), Cucurbita pepo (zucchini), Daucus carota (carrot), Lactuca sativa (lettuce), Convolvulus Batatas (potato), and Capsicum annuum L. (green pepper)) in the Boumerdes region of Algeria. The concentrations of seven heavy metals (cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), nickel (Ni), lead (Pb), and zinc (Zn)) in soil and food samples were analyzed using atomic absorption spectrometry. Health risks associated with these metals were evaluated through the estimated daily intake (EDI), non-carcinogenic risks (using target hazard quotient (THQ), total target hazard quotient (TTHQ), and hazard index (HI)), and carcinogenic risks (cancer risk factor (CR)). Statistical analyses, including cluster analysis (CA) and Pearson correlation, were conducted to interpret the data. The results revealed the highest metal transfer as follows: Cd was most significantly transferred to tomatoes and watermelons; Cr to carrots; Cu to tomatoes; and Fe, Ni, Pb, and Zn to lettuce. Among fruits, the highest EDI values were for Zn (2.54·10-3 mg/day) and Cu (1.17·10-3 mg/day), with melons showing the highest Zn levels. For vegetables, the highest EDI values were for Fe (1.68·10-2 mg/day) and Zn (8.37·10-3 mg/day), with potatoes showing the highest Fe levels. Although all heavy metal concentrations were within the World Health Organization's permissible limits, the HI and TTHQ values indicated potential health risks, particularly from vegetable consumption. These findings suggest the need for ongoing monitoring to ensure food safety and mitigate health risks associated with heavy metal contamination.
Collapse
Affiliation(s)
- Mohamed Younes Aksouh
- Laboratory of Treatment and Shape of Polymers, University M'Hamed Bougara of Boumerdes, Boumerdes 35000, Algeria
| | - Naima Boudieb
- Laboratory of Treatment and Shape of Polymers, University M'Hamed Bougara of Boumerdes, Boumerdes 35000, Algeria
- Department of Chemistry, Faculty of Science, University M'hamed Bougara of Boumerdes, Boumerdes 35000, Algeria
| | - Nadjib Benosmane
- Department of Chemistry, Faculty of Science, University M'hamed Bougara of Boumerdes, Boumerdes 35000, Algeria
- Laboratory of Heterocyclic Compounds, Faculty of Chemistry, University Houari, Boumediene of Science and Technology, Bab Ezzouar 16111, Algeria
| | - Yacine Moussaoui
- Laboratoire de Valorisation et Promotion des Ressources Sahariennes (VPRS), Faculté des Mathématiques et Sciences de la Matière, Université Kasdi Merbah (UKMO), Ouargla 30000, Algeria
- Laboratoire des Sciences et Techniques de l'Environnement, Ecole Nationale Polytechnique, El Harrach 16200, Algeria
| | - Rajmund Michalski
- Institute of Environmental Engineering of Polish Academy of Sciences, 41-819 Zabrze, Poland
| | - Justyna Klyta
- Institute of Environmental Engineering of Polish Academy of Sciences, 41-819 Zabrze, Poland
| | - Joanna Kończyk
- Institute of Chemistry, Faculty of Science & Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Avenue, 42-200 Czestochowa, Poland
| |
Collapse
|
3
|
McTaggart R. The assay of soil carbon with naturally occurring cosmic ray neutrons. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2023; 264:107202. [PMID: 37156092 DOI: 10.1016/j.jenvrad.2023.107202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
The detection of gamma rays induced in soil by naturally occurring cosmic ray neutrons is explored with the Geant4 Simulation Toolkit to monitor carbon sequestration in soil. The simulated soil is a uniform mixture of minerals, air, water, and soil organic carbon. As the soil organic carbon increases from 0% to 15% by volume, the mineral matter decreases, and gamma ray counts from mineral-related isotopes decrease. Characteristic gamma ray energies from a variety of elements are collected near the surface with a germanium detector. Of these, the 2.224 MeV gamma ray from hydrogen is sensitive to changes in soil organic carbon as low as 0.12% after counting for the equivalent of 3.45 days. Counting longer is recommended to reduce the sensitivity of the primary 4.438 MeV gamma ray from carbon below its current value of 2.81% in the simulation.
Collapse
Affiliation(s)
- Robert McTaggart
- Department of Physics, South Dakota State University, Brookings, SD, 57007, USA.
| |
Collapse
|
4
|
Documentation of Phytotoxic Compounds Existing in Parthenium hysterophorus L. Leaf and Their Phytotoxicity on Eleusine indica (L.) Gaertn. and Digitaria sanguinalis (L.) Scop. Toxins (Basel) 2022; 14:toxins14080561. [PMID: 36006222 PMCID: PMC9414375 DOI: 10.3390/toxins14080561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 12/05/2022] Open
Abstract
The utilization of the invasive weed, Parthenium hysterophorus L. for producing value-added products is novel research for sustaining our environment. Therefore, the current study aims to document the phytotoxic compounds contained in the leaf of parthenium and to examine the phytotoxic effects of all those phytochemicals on the seed sprouting and growth of Crabgrass Digitaria sanguinalis (L.) Scop. and Goosegrass Eleusine indica (L.) Gaertn. The phytotoxic substances of the methanol extract of the P. hysterophorus leaf were analyzed by LC-ESI-QTOF-MS=MS. From the LC-MS study, many compounds, such as terpenoids, flavonoids, amino acids, pseudo guaianolides, and carbohydrate and phenolic acids, were identified. Among them, seven potential phytotoxic compounds (i.e., caffeic acid, vanillic acid, ferulic acid, chlorogenic acid, quinic acid, anisic acid, and parthenin) were documented, those are responsible for plant growth inhibition. The concentration needed to reach 50% growth inhibition in respect to germination (ECg50), root length (ECr50), and shoot length (ECs50) was estimated and the severity of phytotoxicity of the biochemicals was determined by the pooled values (rank value) of three inhibition parameters. The highest growth inhibition was demarcated by caffeic acid, which was confirmed and indicated by cluster analysis and principal component analysis (PCA). In the case of D. sanguinalis, the germination was reduced by 60.02%, root length was reduced by 76.49%, and shoot length was reduced by 71.14% when the chemical was applied at 800 μM concentration, but in the case of E. indica, 100% reduction of seed germination, root length, and shoot length reduction occurred at the same concentration. The lowest rank value was observed from caffeic acids in both E. indica (rank value 684.7) and D. sanguinalis (909.5) caused by parthenin. It means that caffeic acid showed the highest phytotoxicity. As a result, there is a significant chance that the parthenium weed will be used to create bioherbicides in the future.
Collapse
|
5
|
Tong S, Yang L, Gong H, Wang L, Li H, Yu J, Li Y, Deji Y, Nima C, Zhao S, Gesang Z, Kong C, Wang X, Men Z. Bioaccumulation characteristics, transfer model of heavy metals in soil-crop system and health assessment in plateau region, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113733. [PMID: 35689891 DOI: 10.1016/j.ecoenv.2022.113733] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/26/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
This study investigated the bioaccumulation and transfer of heavy metals including Cd, Cr, Cu, Mn, Ni, Pb and Zn in soil-crop system in Lhasa, and assessed the health risks of the edible part of the crops. The results showed that the average values of Cd, Cr, Cu, Mn, Ni, Pb and Zn were 0.15, 44.55, 24.68, 532.40, 22.47, 38.18 and 73.99 mg kg-1 in natural soil, and 0.16, 46.93, 38.45, 559.13, 23.23, 40.03 and 83.29 mg kg-1 in cultivated soil, respectively. Highland barley and wheat had the strongest ability to accumulate Zn in grain, the BCF values were 0.24 and 0.27, respectively, significant differences in the distribution of metal contents in crop root, stem, leaf and grain were observed. Root presented larger accumulation capacity in most metals, Zn and Cu was easily transferred in the plant organs, most metals in this study presented difficult to migrate from root to grain. The transfer peak of most metals in soil-crop system appeared from stem to leaf. The concentrations of Cr and Mn in crop grains could be predicted according to the multiple linear regression models. THQ and HI values of heavy metals in edible parts of both highland barley and wheat were below the safety threshold of 1, indicating no detrimental effects posed to adults health. This study helps to understand the accumulation and transfer of heavy metals in soil-crop system in plateau region.
Collapse
Affiliation(s)
- Shuangmei Tong
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, People's Republic of China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China; College of Tourism and Historical Culture, Liupanshui Normal University, Liupanshui 553004, People's Republic of China
| | - Linsheng Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, People's Republic of China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.
| | - Hongqiang Gong
- Tibet Center of Disease Control and Prevention, Lhasa 850030, People's Republic of China
| | - Li Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, People's Republic of China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Hairong Li
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, People's Republic of China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.
| | - Jiangping Yu
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Yonghua Li
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, People's Republic of China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yangzong Deji
- Tibet Center of Disease Control and Prevention, Lhasa 850030, People's Republic of China
| | - Cangjue Nima
- Tibet Center of Disease Control and Prevention, Lhasa 850030, People's Republic of China
| | - Shengcheng Zhao
- Tibet Center of Disease Control and Prevention, Lhasa 850030, People's Republic of China
| | - Zongji Gesang
- Tibet Center of Disease Control and Prevention, Lhasa 850030, People's Republic of China
| | - Chang Kong
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, People's Republic of China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xiaoya Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, People's Republic of China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zhuming Men
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, People's Republic of China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
6
|
Soil-to-plant transfer factor for stable elements in lemon balm (Melissa officinalis L.) and estimates of the daily intakes. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08353-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Variation of radioactivity and trace metal elements during the growth period of water spinach. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08293-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Mng'ong'o M, Munishi LK, Blake W, Comber S, Hutchinson TH, Ndakidemi PA. Soil fertility and land sustainability in Usangu Basin-Tanzania. Heliyon 2021; 7:e07745. [PMID: 34430736 PMCID: PMC8365449 DOI: 10.1016/j.heliyon.2021.e07745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/13/2021] [Accepted: 08/06/2021] [Indexed: 11/30/2022] Open
Abstract
Soil fertility determines crop growth, productivity and consequently determines land productivity and sustainability. Continuous crop production exploits plant nutrients from soils leading to plant nutrient imbalance, thus affecting soil productivity. This study was conducted to monitor soil fertility status in soils of Usangu agro-ecosystem to establish management strategies. To assess soil fertility status in Usangu agro-ecosystem in Southern Highland Tanzania; 0–30 cm depth soil samples were taken for organic carbon, soil pH, N, P, Ca, K, Mg, S, Al, and micronutrients such as Zn, Mn, Cu, Fe, and Cr analyses by various established standard analytical methods. The results indicated most micronutrients were available in the deficient amount in many studied sites except for Fe and Mn, which were observed to be above optimum requirement. Based on critical levels established in other areas, 90 % of the soils were ranked as N, P, K, and Mg deficient. The micronutrients (Cu, Fe, and Zn) were inadequate in all soils resulting in limited crop growth and productivity. A high concentration of trace metals was detected in agricultural soils, this might affect plant nutrients availability and leading to environmental contamination affecting land productivity and sustainability. The study found that Usangu agro-ecosystem has deprived of soil fertility leading to poor crop growth and productivity. The authors recommend the addition of supplemental materials rich in plant nutrients such as inorganic fertilizer, manure, crop residues, and treated wastes to improve soil fertility for improved productivity and land sustainability.
Collapse
Affiliation(s)
- Marco Mng'ong'o
- School of Life Sciences and Bioengineering (LiSBE), Nelson Mandela African Institution of Science and Technology, P.O. Box 447, Arusha, Tanzania.,School of Geography, Earth and Environmental Science, University of Plymouth, Drake Circus, PL4 8AA, UK
| | - Linus K Munishi
- School of Life Sciences and Bioengineering (LiSBE), Nelson Mandela African Institution of Science and Technology, P.O. Box 447, Arusha, Tanzania
| | - William Blake
- School of Geography, Earth and Environmental Science, University of Plymouth, Drake Circus, PL4 8AA, UK
| | - Sean Comber
- School of Geography, Earth and Environmental Science, University of Plymouth, Drake Circus, PL4 8AA, UK
| | - Thomas H Hutchinson
- School of Geography, Earth and Environmental Science, University of Plymouth, Drake Circus, PL4 8AA, UK
| | - Patrick A Ndakidemi
- School of Life Sciences and Bioengineering (LiSBE), Nelson Mandela African Institution of Science and Technology, P.O. Box 447, Arusha, Tanzania
| |
Collapse
|