1
|
Li W, Wu H, Wu C, Jiao P, Xu L, Song H. Immobilization of 4-MBA & Cu 2+ on Au nanoparticles modified screen-printed electrode for glyphosate detection. Talanta 2025; 286:127530. [PMID: 39798418 DOI: 10.1016/j.talanta.2025.127530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/23/2024] [Accepted: 01/02/2025] [Indexed: 01/15/2025]
Abstract
This study introduces an innovative electrochemical biosensor, engineered through the functionalization screen-printed electrode (SPE) with a coordination complex comprised of 4-mercaptobenzoic acid (4-MBA) and copper ions (Cu2+), achieving precise quantitative determination of glyphosate. Electrodepositing gold nanoparticles (AuNPs) onto the electrode surface, forming a self-assembled monolayer (SAM) of 4-MBA via thiol-gold interactions, and immobilizing Cu2+ via coordination bonding with the monolayer, finalizing the electrochemical biosensor construction as Cu2+/4-MBA/AuNPs/SPE. The successful modification of the biosensor interface is confirmed through scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and electrochemical characterization. Through parameter optimization, critical metrics for the biosensor preparation process have been determined. Using square wave voltammetry (SWV), a linear relationship between the glyphosate concentration and the peak current inhibition ratio at the electrode surface is established. Additionally, the repeatability and anti-interference capabilities of the fabricated biosensors are evaluated. The experimental outcomes affirm the biosensor's capability for quantitative glyphosate detection across a 5-100 nM range, boasting a 1.65 nM limit of detection (LOD). Testing on tap water samples verifies a robust recovery rate for glyphosate residues, spanning 89.84 %-107.48 %. The proposed biosensor holds significant promise for glyphosate detection, offering substantial applicability and this study provides a valuable reference for the advancement of biosensors geared toward the quantitative assessment of organophosphate pesticides (OPs).
Collapse
Affiliation(s)
- Wei Li
- College of Agricultural Engineering, Shanxi Agricultural University, Taigu, 030801, China; Dryland Farm Machinery Key Technology and Equipment Key Laboratory of Shanxi Province, Taigu, 030801, China.
| | - Hongqi Wu
- College of Agricultural Engineering, Shanxi Agricultural University, Taigu, 030801, China
| | - Cong Wu
- Department of Urology and Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Peidong Jiao
- College of Agricultural Engineering, Shanxi Agricultural University, Taigu, 030801, China
| | - Ling Xu
- Shanxi Hongrunqing Environmental Protection Technology Co., Ltd, Taiyuan, 030000, China
| | - Haiyan Song
- College of Agricultural Engineering, Shanxi Agricultural University, Taigu, 030801, China; Dryland Farm Machinery Key Technology and Equipment Key Laboratory of Shanxi Province, Taigu, 030801, China
| |
Collapse
|
2
|
Campbell G, Tscharke BJ, Prasad P, Knight ER, Reeks T, Jackson A, Thomas KV, Mueller JF, Kaserzon SL. Occurrence and fate of glyphosate and AMPA in wastewater treatment plants in Australia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 969:178964. [PMID: 40022983 DOI: 10.1016/j.scitotenv.2025.178964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 02/17/2025] [Accepted: 02/22/2025] [Indexed: 03/04/2025]
Abstract
Glyphosate is the most used herbicide globally, but little is known of its prevalence in the Australian environment or its behaviour during wastewater treatment. This study examined the concentration of glyphosate and its primary biodegradation product, aminomethylphosphonic acid (AMPA), in influent and effluent from 22 Australian wastewater treatment plants (WWTPs) to inform exposure risks. Glyphosate was detected in all 22 WWTP influent samples, with concentrations ranging from 0.37 to 370 μg/L (mean: 22 ± 76 μg/L). In treated effluent, glyphosate was found in 82 % of samples with concentrations ranging from
Collapse
Affiliation(s)
- Garth Campbell
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia.
| | - Ben J Tscharke
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Pritesh Prasad
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Emma R Knight
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia; Norwegian Institute for Water Research, Økernveien 94, 0579 Oslo, Norway
| | - Tim Reeks
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Aiko Jackson
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Kevin V Thomas
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Jochen F Mueller
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Sarit L Kaserzon
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia.
| |
Collapse
|
3
|
Ayenew B, Getu E. Pesticide Residues, Glyphosate Adsorption and Degradation Characteristics in Ethiopian Agricultural Soils. ENVIRONMENTAL HEALTH INSIGHTS 2025; 19:11786302241311679. [PMID: 39759479 PMCID: PMC11700414 DOI: 10.1177/11786302241311679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 12/18/2024] [Indexed: 01/07/2025]
Abstract
Background The decline in wheat output in Ethiopia is widely attributed to pests, which has led to a rise in the usage of pesticides to boost productivity. The degree of pesticides sorption and degradation which influence the likelihood of environmental contamination from pesticides seeping into water bodies from soil has not yet been published for Ethiopian soils. The study aimed at to quantify the levels of pesticide residues, assess glyphosate's adsorption capabilities and degradation rate in the soils. Materials and methods QuEChERS method of extraction was employed to determine the concentration of the respective pesticides. The adsorption capacities of glyphosate in agricultural soils of Cheha and Dinsho districts were measured using batch adsorption techniques. Results Six pesticide residues were found in 12 soil samples at varied quantities. Glyphosate (24.00-219.31 µg kg-1), s-metolachlor (23.67-220.67 µg kg-1), chlorpyrifos (27.74 202.67 µg kg-1), pyroxulam (14.67-50.65 µg kg-1), florasulam (78.00-250.67 µg kg-1), malathion (15.00-49.67 µg kg-1). The experimental results showed that glyphosate was slightly sorbed at SD10 soil (18.91 μg-1-n mLn g-1) in comparison to SC1 soil (114.66 μg-1-n mLn g-1). Organic matter and clay content proving to be the principal factors influencing the process. According to adsorption experimental data, chemisorption is the major process in glyphosate adsorption, with the pseudo-second order kinetic model providing the best fit (R 2 = .99). The soils in the study area exhibit notable variations in glyphosate rate of degradation (0.0076-0.0221 week-1). The findings show that the main soil variables affecting the half-life (glyphosate degradation) were clay concentrations (R 2 = .48; P = .013), pH (R 2 = .55; P = .0055), Organic matter (R 2 = .74; P = .00027), Feox (R 2 = .50; P = .0105), and Alox (R 2 = .73; P = .00046). Conclusion The weak glyphosate adsorption capabilities of soils can be a good indicator that the pesticide residues in the soil are poised to endanger soil organisms and contaminate nearby water bodies through runoff and leaching.
Collapse
Affiliation(s)
- Bereket Ayenew
- College of Natural and Computational Sciences, Department of Chemistry, Madda Walabu University, Robe, Ethiopia
| | - Endalkachew Getu
- Department of Environment and Climate Change, Ethiopian Civil Service University, Addis Ababa, Ethiopia
| |
Collapse
|
4
|
Hao DC, Wang F, Li C, Wang Y, Xue J, Xiao PG. Fungal bioaugmentation enhanced herbicide removal via soil microbial fuel cell: Taking Myrothecium verrucaria and haloxyfop-P as an example. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178012. [PMID: 39657334 DOI: 10.1016/j.scitotenv.2024.178012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/27/2024] [Accepted: 12/06/2024] [Indexed: 12/12/2024]
Abstract
Microbial fuel cell (MFC), which produces electricity while removing pollutants, is a green approach of ecological restoration. Whether fungal bioaugmentation could enhance the herbicide removal in MFC has not been fully investigated. This study aims to construct the fungal-augmented MFC device, compare the effects of different types of remediation against soil haloxyfop-P, and explore the mechanisms of xeno-fungusphere MFC in alleviating organic pollution. The Myrothecium verrucaria addition achieved the current density of 15.27 μA/cm2 and power density (PD) of 1.174 μW/cm2, which were much higher than those with indigenous microbes and MFC alone. On day 60, the haloxyfop removal efficiency of 93.7 % was achieved with the M. verrucaria bioaugmentation, and double herbicide further increased the removal efficiency to 97.9 %, along with PD of 9.3 μW/cm2. The M. verrucaria addition significantly changed the correlation pattern between bacterial genera, as well as between dominant genera and herbicide degradation, electrogenesis, edaphic factors and functional abundance. Facing herbicide challenge, the biogeochemical processes of C/N/Fe/Mn/S were reorganized in MFC microbiota, which were also profoundly impacted by bioelectric field and xeno-fungusphere. The MFC degradation of haloxyfop-P followed the second-order kinetics; the fungal addition reduced the gap between the highest occupied molecular orbitals and lowest unoccupied molecular orbitals of herbicide molecules, and reduced the energy barrier for the herbicide transformation. Compared with MFC alone, xeno-fungusphere MFC had a better effect, which can remediate the soil without additional power supply, making it a cost-effective self-sustaining remediation strategy.
Collapse
Affiliation(s)
- Da-Cheng Hao
- Liaoning Provincial Universities Key Laboratory of Environmental Science and Technology, Department of Environment Science and Engineering, Dalian Jiaotong University, Dalian 116028, China.
| | - Fan Wang
- Liaoning Provincial Universities Key Laboratory of Environmental Science and Technology, Department of Environment Science and Engineering, Dalian Jiaotong University, Dalian 116028, China
| | - Chengxun Li
- Liaoning Provincial Universities Key Laboratory of Environmental Science and Technology, Department of Environment Science and Engineering, Dalian Jiaotong University, Dalian 116028, China
| | - Yaoxuan Wang
- Liaoning Provincial Universities Key Laboratory of Environmental Science and Technology, Department of Environment Science and Engineering, Dalian Jiaotong University, Dalian 116028, China
| | - Jiayi Xue
- Liaoning Provincial Universities Key Laboratory of Environmental Science and Technology, Department of Environment Science and Engineering, Dalian Jiaotong University, Dalian 116028, China
| | - Pei-Gen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100193, China
| |
Collapse
|
5
|
Fuenzalida FB, Slepčíková P, Repovská M, Jutková A, Vega Cañamares M, Miškovský P, Jurašeková Z, Sanchez-Cortes S. Selective and ultrasensitive detection of the herbicide glyphosate by means of plasmon catalysis on Ag nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 323:124845. [PMID: 39106718 DOI: 10.1016/j.saa.2024.124845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 08/09/2024]
Abstract
This work aims at the detection of the important herbicide glyphosate based on the previous modification of glyphosate in two stages and final detection by surface-enhanced Raman spectroscopy (SERS). In a first step, the affinity of glyphosate for metal plasmonic surfaces was increased by inclusion of a sulphur containing group (dithiocarbamate). In a second step, the cyclization of the latter intermediate rendered a thiazole derivative of the herbicide. The latter compound exhibits higher Raman cross section which leads to stronger SERS enhancement factors. The second step was possible thanks to the plasmon catalysis driven by metal nanoparticles, specifically silver adatoms created at the surface, and irradiated at a proper wavelength. This methodology was optimized by selecting the most appropriate experimental conditions for the chemical reactions. Density Functional Theory treatment of all the involved molecules was done in order to obtain the theoretical spectra and to identify the structural marker bands. A key goal of this work was to develop an effective system of glyphosate detection based on portable PickMolTM technology developed and patented by the SAFTRA Photonics Ltd. company to ensure an easy, quick, low cost, in-situ, and univocal detection of glyphosate in the environment.
Collapse
Affiliation(s)
- Francisca B Fuenzalida
- Department of Biophysics, Faculty of Science, P. J. Šafárik University, Jesenná 5, 040 01 Košice, Slovakia
| | | | - Mária Repovská
- SAFTRA Photonics, s.r.o., Moldavská cesta 51, 040 11 Košice, Slovakia
| | - Annamária Jutková
- SAFTRA Photonics, s.r.o., Moldavská cesta 51, 040 11 Košice, Slovakia
| | - Maria Vega Cañamares
- Institute of the Structure of Matter, IEM-CSIC, Serrano 121, 28006 Madrid, Spain
| | - Pavol Miškovský
- Department of Biophysics, Faculty of Science, P. J. Šafárik University, Jesenná 5, 040 01 Košice, Slovakia; SAFTRA Photonics, s.r.o., Moldavská cesta 51, 040 11 Košice, Slovakia.
| | - Zuzana Jurašeková
- Department of Biophysics, Faculty of Science, P. J. Šafárik University, Jesenná 5, 040 01 Košice, Slovakia.
| | | |
Collapse
|
6
|
Parven A, Meftaul IM, Venkateswarlu K, Megharaj M. Pre-emergence herbicides used in urban and agricultural settings: dissipation and ecological implications. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:493. [PMID: 39508979 PMCID: PMC11543765 DOI: 10.1007/s10653-024-02269-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/13/2024] [Indexed: 11/15/2024]
Abstract
Herbicides are widely recognized as the most cost-effective solution for weed control, but their extensive use in both urban and agricultural settings raise serious concerns about nontarget effects. We assessed the possible hazards associated with pre-emergence herbicides such as dimethenamid-P, metazachlor, and pyroxasulfone, which are frequently applied in both urban and agricultural soils. The dissipation rate constant values (k day-1: 0.010-0.024) were positively linked to total organic carbon (TOC), silt, clay, soil pH, and Al and Fe oxides, but negatively correlated with sand content. In contrast, half-life values (DT50: 29-69 days) of the herbicides showed negative correlations with TOC, clay, silt, soil pH, and Fe and Al oxides, while sand content showed a positive impact. The selected herbicides showed minimal impact on soil dehydrogenase activity (DHA). Mostly, soils with higher organic matter (OM) content exhibited increased DHA levels, highlighting the role of OM in influencing this soil enzyme across different soils. Assessment of environmental indicators like groundwater ubiquity score (GUS:1.69-6.30) and leachability index (LIX: 0.23-0.97) suggested that the herbicides might reach groundwater, posing potential risks to nontarget biota and food safety. Human non-cancer risk evaluation, in terms of hazard quotient (HQ < 1) and hazard index (HI < 1), suggests minimal or no risks from exposure to soil containing herbicide residues at 50% of the initial concentrations. Our data thus help the stakeholders and regulatory agencies while applying these pre-emergence herbicides in soils and safeguarding human and environmental health.
Collapse
Affiliation(s)
- Aney Parven
- Global Centre for Environmental Remediation (GCER), School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, ATC Building, University Drive, Callaghan, NSW, 2308, Australia
- Department of Agricultural Chemistry, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh
| | - Islam Md Meftaul
- Global Centre for Environmental Remediation (GCER), School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, ATC Building, University Drive, Callaghan, NSW, 2308, Australia
- Department of Agricultural Chemistry, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh
| | - Kadiyala Venkateswarlu
- Formerly Department of Microbiology, Sri Krishnadevaraya University, Anantapuramu, 515003, India
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, ATC Building, University Drive, Callaghan, NSW, 2308, Australia.
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
7
|
Xu Y, Zhou J, Liang L, Xiong J. Removal characteristics of high concentration glyphosate in bioretention cells. ENVIRONMENTAL TECHNOLOGY 2024; 45:5773-5783. [PMID: 38295846 DOI: 10.1080/09593330.2024.2306797] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/06/2024] [Indexed: 12/02/2024]
Abstract
Glyphosate, as one of the most widely used pesticides, has been found in rainwater runoff. A bioretention cell with two types of fillers was constructed to explore removal of glyphosate in runoff an transformation of glyphosate in the filler. The type of filler had a significant impact on adsorption and degradation of glyphosate in the bioretention cell. The glyphosate removal efficiencies of coal cinder modified loess (CLB) and zeolite modified loess (ZLB) were 33.13-99.7% and 55.04-99.7%, respectively. Conversion of glyphosate in the bioretention cell occurred mainly in the upper layer of the filler. When the concentration of glyphosate in the runoff was 0.25 or 0.5 mg/L, the concentration of glyphosate degradation products at the two outlets along the way was as much as 26 times higher than that at the lowest outlet. Rainfall events promoted the migration of glyphosate and its degradation products within the filler. Glyphosate and its degradation products in ZLB were mainly distributed at 15 and 25 cm deep in the filler layer, while the highest concentrations in CLB were at 5 and 35 cm. Discontinuous runoff into the bioretention cell leads to continuous leaching and adsorption of glyphosate in the bioretention cell until complete degradation occurs.
Collapse
Affiliation(s)
- Yanwei Xu
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
| | - Jiajia Zhou
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
| | - Lipeng Liang
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
| | - Jiaqing Xiong
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
| |
Collapse
|
8
|
Zerrouki H, Hamieh A, Hadjadj L, Rolain JM, Baron SA. The effect of combinations of a glyphosate-based herbicide with various clinically used antibiotics on phenotypic traits of Gram-negative species from the ESKAPEE group. Sci Rep 2024; 14:21006. [PMID: 39251613 PMCID: PMC11383965 DOI: 10.1038/s41598-024-68968-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 07/30/2024] [Indexed: 09/11/2024] Open
Abstract
The emission of glyphosate and antibiotic residues from human activities threatens the diversity and functioning of the microbial community. This study examines the impact of a glyphosate-based herbicide (GBH) and common antibiotics on Gram-negative bacteria within the ESKAPEE group (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp. and Escherichia coli). Ten strains, including type and multidrug-resistant strains for each species were analysed and eight antibiotics (cefotaxime, meropenem, aztreonam, ciprofloxacin, gentamicin, tigecycline, sulfamethoxazole-trimethoprim, and colistin) were combined with the GBH. While most combinations yielded additive or indifferent effects in 70 associations, antagonistic effects were observed with ciprofloxacin and gentamicin in five strains. GBH notably decreased the minimum inhibitory concentration of colistin in eight strains and displayed synergistic activity with meropenem against metallo-β-lactamase (MBL)-producing strains. Investigation into the effect of GBH properties on outer membrane permeability involved exposing strains to a combination of this GBH and vancomycin. Results indicated that GBH rendered strains sensitive to vancomycin, which is typically ineffective against Gram-negative bacteria. Furthermore, we examined the impact of GBH in combination with three carbapenem agents on 14 strains exhibiting varying carbapenem-resistance mechanisms to assess its effect on carbapenemase activity. The GBH efficiently inhibited MBL activity, demonstrating similar effects to EDTA (ethylenediaminetetraacetic acid). Chelating effect of GBH may have multifaceted impacts on bacterial cells, potentially by increasing outer membrane permeability and inactivating metalloenzyme activity.
Collapse
Affiliation(s)
- Hanane Zerrouki
- MEPHI, Faculté de Médecine et de Pharmacie, Aix Marseille University, 19-21 Boulevard Jean Moulin, 13385, Marseille Cedex 05, France
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13385, Marseille Cedex 05, France
| | - Aïcha Hamieh
- MEPHI, Faculté de Médecine et de Pharmacie, Aix Marseille University, 19-21 Boulevard Jean Moulin, 13385, Marseille Cedex 05, France
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13385, Marseille Cedex 05, France
| | - Linda Hadjadj
- MEPHI, Faculté de Médecine et de Pharmacie, Aix Marseille University, 19-21 Boulevard Jean Moulin, 13385, Marseille Cedex 05, France
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13385, Marseille Cedex 05, France
| | - Jean-Marc Rolain
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13385, Marseille Cedex 05, France.
- APHM, MEPHI, Faculté de Médecine et de Pharmacie, Aix Marseille University, 19-21 Boulevard Jean Moulin, 13385, Marseille Cedex 05, France.
| | - Sophie Alexandra Baron
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13385, Marseille Cedex 05, France.
- APHM, MEPHI, Faculté de Médecine et de Pharmacie, Aix Marseille University, 19-21 Boulevard Jean Moulin, 13385, Marseille Cedex 05, France.
| |
Collapse
|
9
|
Anarghou H, Malqui H, Ihbour S, Laaroussi M, Essaidi O, Fetoui H, Bouhrim M, Najimi M, Chigr F. Impact of glyphosate-based herbicide exposure through maternal milk on offspring's antioxidant status, neurodevelopment, and behavior. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6591-6609. [PMID: 38466353 DOI: 10.1007/s00210-024-03035-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 03/01/2024] [Indexed: 03/13/2024]
Abstract
Glyphosate-based Herbicide (GBH) is a widely used pesticide that functions as a broad-spectrum, non-selective herbicide. Despite advanced research to describe the neurotoxic potential of GBH, the harmful effects on maternal behavior and neurodevelopment of offspring remain unclear. This study was conducted to highlight the effects of GBH on the antioxidant system, anxiety traits, social interaction, and cognitive and sensorimotor functions in pups exposed to 25 or 50 mg/l daily via their mother's milk. Concerning the biochemical biomarkers, GBH administered during the early stages of development negatively affected the status of antioxidant enzymes and lipid peroxidation in the brain structures of the pups. Furthermore, our results showed a significant decrease in acetylcholinesterase (AChE) specific activity within the brains of treated pups. The results of the behavioral tests indicated that the treated offspring developed anxiety, memory, and sociability disorders, as evidenced by the Open Field, Y-maze, object recognition task, and social interaction tests. Through neurodevelopmental testing, we also showed sensorimotor impairment (righting reflex and negative geotaxis) and abnormal maternal behavior. Altogether, our study clearly demonstrates that the developing brain is sensitive to GBH.
Collapse
Affiliation(s)
- Hammou Anarghou
- Biological Engineering Laboratory, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, Beni Mellal, Morocco.
- High Institute of Nursing Professions and Health Techniques Dakhla Annex, Dakhla, Morocco.
| | - Hafsa Malqui
- Biological Engineering Laboratory, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Said Ihbour
- Biological Engineering Laboratory, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Meriem Laaroussi
- Biological Engineering Laboratory, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Oumaima Essaidi
- Biological Engineering Laboratory, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Hamadi Fetoui
- Laboratory of Toxicology-Microbiology and Environmental Health (17ES06), Faculty of Sciences of Sfax, University of Sfax, BP1171, 3000, Sfax, Tunisia
| | - Mohamed Bouhrim
- Biological Engineering Laboratory, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, Beni Mellal, Morocco
- Laboratories TBC, Laboratory of Pharmacology, Pharmacokinetics and Clinical Pharmacy, University of Lille, Faculty of Pharmacy, F-59000, Lille, France
| | - Mohamed Najimi
- Biological Engineering Laboratory, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Fatiha Chigr
- Biological Engineering Laboratory, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, Beni Mellal, Morocco
| |
Collapse
|
10
|
Parven A, Md Meftaul I, Venkateswarlu K, Gopalan S, Megharaj M. Pre-emergence herbicides widely used in urban and farmland soils: fate, and potential human and environmental health risks. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:132. [PMID: 38483701 PMCID: PMC10940459 DOI: 10.1007/s10653-024-01907-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/08/2024] [Indexed: 03/17/2024]
Abstract
We determined the distribution, fate, and health hazards of dimethenamid-P, metazachlor, and pyroxasulfone, the effective pre-emergence herbicides widely used both in urban and agricultural settings globally. The rate-determining phase of sorption kinetics of these herbicides in five soils followed a pseudo-second-order model. Freundlich isotherm model indicated that the herbicides primarily partition into heterogeneous surface sites on clay minerals and organic matter (OM) and diffuse into soil micropores. Principal component analysis revealed that soil OM (R2, 0.47), sand (R2, 0.56), and Al oxides (R2, 0.33) positively correlated with the herbicide distribution coefficient (Kd), whereas clay (R2, ‒ 0.43), silt (R2, ‒ 0.51), Fe oxides (R2, ‒ 0.02), alkaline pH (R2, ‒ 0.57), and EC (R2, ‒ 0.03) showed a negative correlation with the Kd values. Decomposed OM rich in C=O and C-H functional groups enhanced herbicide sorption, while undecomposed/partially-decomposed OM facilitated desorption process. Also, the absence of hysteresis (H, 0.27‒0.88) indicated the enhanced propensity of herbicide desorption in soils. Leachability index (LIX, < 0.02-0.64) and groundwater ubiquity score (GUS, 0.02‒3.59) for the soils suggested low to moderate leaching potential of the herbicides to waterbodies, indicating their impact on water quality, nontarget organisms, and food safety. Hazard quotient and hazard index data for human adults and adolescents suggested that exposure to soils contaminated with herbicides via dermal contact, ingestion, and inhalation poses minimal to no non-carcinogenic risks. These insights can assist farmers in judicious use of herbicides and help the concerned regulatory authorities in monitoring the safety of human and environmental health.
Collapse
Affiliation(s)
- Aney Parven
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, ATC Building, University Drive, Callaghan, NSW, 2308, Australia
- Department of Agricultural Chemistry, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh
| | - Islam Md Meftaul
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, ATC Building, University Drive, Callaghan, NSW, 2308, Australia
- Department of Agricultural Chemistry, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh
| | - Kadiyala Venkateswarlu
- Formerly Department of Microbiology, Sri Krishnadevaraya University, Anantapuramu, 515003, India
| | - Saianand Gopalan
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, ATC Building, University Drive, Callaghan, NSW, 2308, Australia
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, ATC Building, University Drive, Callaghan, NSW, 2308, Australia.
- crcCARE, University Drive, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
11
|
Yang Z, Gaillard JF. Dissolution kinetics of copper oxide nanoparticles in presence of glyphosate. NANOIMPACT 2024; 33:100492. [PMID: 38195029 DOI: 10.1016/j.impact.2024.100492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 12/31/2023] [Accepted: 01/03/2024] [Indexed: 01/11/2024]
Abstract
Recently CuO nanoparticles (n-CuO) have been proposed as an alternative method to deliver a Cu-based pesticide for controlling fungal infestations. With the concomitant use of glyphosate as an herbicide, the interactions between n-CuO and this strong ligand need to be assessed. We investigated the dissolution kinetics of n-CuO and bulk-CuO (b-CuO) particles in the presence of a commercial glyphosate product and compared it to oxalate, a natural ligand present in soil water. We performed experiments at concentration levels representative of the conditions under which n-CuO and glyphosate would be used (∼0.9 mg/L n-CuO and 50 μM of glyphosate). As tenorite (CuO) dissolution kinetics are known to be surface controlled, we determined that at pH 6.5, T ∼ 20 °C, using KNO3 as background electrolyte, the presence of glyphosate leads to a dissolution rate of 9.3 ± 0.7 ×10-3 h-1. In contrast, in absence of glyphosate, and under the same conditions, it is 2 orders of magnitude less: 8.9 ± 3.6 ×10-5 h-1. In a more complex multi-electrolyte aqueous solution the same effect is observed; glyphosate promotes the dissolution rates of n-CuO and b-CuO within the first 10 h of reaction by a factor of ∼2 to ∼15. In the simple KNO3 electrolyte, oxalate leads to dissolution rates of CuO about two times faster than glyphosate. However, the kinetic rates within the first 10 h of reaction are about the same for the two ligands when the reaction takes place in the multi-electrolyte solution as oxalate is mostly bound to Ca2+ and Mg2+.
Collapse
Affiliation(s)
- Zhaoxun Yang
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3109, USA.
| | - Jean-François Gaillard
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3109, USA.
| |
Collapse
|
12
|
Liu Q, Yu Y, Wu M, Yan X, Wu W, You J. Synthesis and application of a dual-functional fluorescent probe for sequential recognition of Zn 2+and glyphosate. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123221. [PMID: 37544213 DOI: 10.1016/j.saa.2023.123221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 08/08/2023]
Abstract
A novel fluorescent probe QL was designed and synthesized based on Schiff base by 2-hydrazinobenzothiazole to sequentially recognize Zn2+ and glyphosate. The probe QL was capable to detect Zn2+ in DMSO solution via fluorescence enhancement, and exhibited good selectivity and anti-interference ability. The combination mode was 1:2 between probe QL and Zn2+ according to the method of job's plot, and the detection limit of probe QL for Zn2+ was found to be 4.51 × 10-8 M, which exhibited excellent sensitivity. Furthermore, the system QL-Zn2+ could detect glyphosate by causing fluorescence quenching response and with a color change from yellow to colorless for naked-eye detection. The detection limit for glyphosate was found to be 4.93 × 10-8 M, which was far below the Standards for Drinking Water Quality (GB5749-2006) acceptable limits (0.7 μg/mL for glyphosate). Notably, the probe QL and its complex QL-Zn2+ have been successfully applied to detect Zn2+ and glyphosate in water, respectively.
Collapse
Affiliation(s)
- Qiye Liu
- Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province, College of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150080, Heilongjiang, China
| | - Yanchao Yu
- Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province, College of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150080, Heilongjiang, China
| | - Mianyuan Wu
- Institute of Petrochemistry Heilongjiang Academy of Sciences, Harbin 150040, Heilongjiang, China
| | - Xuexue Yan
- Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province, College of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150080, Heilongjiang, China
| | - Wenju Wu
- Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province, College of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150080, Heilongjiang, China
| | - Jun You
- Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province, College of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150080, Heilongjiang, China.
| |
Collapse
|
13
|
Lugo L, Venegas C, Guarin Trujillo E, Diaz Granados-Ramírez MA, Martin A, Vesga FJ, Pérez-Flórez A, Celis C. Ecotoxicology Evaluation of a Fenton-Type Process Catalyzed with Lamellar Structures Impregnated with Fe or Cu for the Removal of Amoxicillin and Glyphosate. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:7172. [PMID: 38131723 PMCID: PMC10743043 DOI: 10.3390/ijerph20247172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/10/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023]
Abstract
Antibiotics and pesticides, as well as various emerging contaminants that are present in surface waters, raise significant environmental concerns. Advanced oxidation processes, which are employed to eliminate these substances, have demonstrated remarkable effectiveness. However, during the degradation process, by-products that are not completely mineralized are generated, posing a substantial risk to aquatic ecosystem organisms; therefore, it is crucial to assess effluent ecotoxicity following treatment. This study aimed to assess the toxicity of effluents produced during the removal of amoxicillin and glyphosate with a Fenton-type process using a laminar structure catalyzed with iron (Fe) and copper (Cu). The evaluation included the use of Daphnia magna, Selenastrum capricornutum, and Lactuca sativa, and mutagenicity testing was performed using strains TA98 and TA100 of Salmonella typhimurium. Both treated and untreated effluents exhibited inhibitory effects on root growth in L. sativa, even at low concentrations ranging from 1% to 10% v/v. Similarly, negative impacts on the growth of algal cells of S. capricornutum were observed at concentrations as low as 0.025% v/v, particularly in cases involving amoxicillin-copper (Cu) and glyphosate with copper (Cu) and iron (Fe). Notably, in the case of D. magna, mortality was noticeable even at concentrations of 10% v/v. Additionally, the treatment of amoxicillin with double-layer hydroxides of Fe and Cu resulted in mutagenicity (IM ≥ 2.0), highlighting the necessity to treat the effluent further from the advanced oxidation process to reduce ecological risks.
Collapse
Affiliation(s)
- Lorena Lugo
- Department of Chemistry, Research Line in Environmental and Materials Technology (ITAM), Pontificia Universidad Javeriana, Carrera 7 No. 43–82, Bogotá 110231, Colombia; (L.L.); (A.M.); (A.P.-F.)
| | - Camilo Venegas
- Department of Microbiology, School of Sciences, Microbiological Quality of Water and Sludge (CMAL), Pontificia Universidad Javeriana, Carrera 7 No. 43-82, Bogotá 110231, Colombia; (C.V.); (E.G.T.); (M.A.D.G.-R.); (F.-J.V.)
| | - Elizabeth Guarin Trujillo
- Department of Microbiology, School of Sciences, Microbiological Quality of Water and Sludge (CMAL), Pontificia Universidad Javeriana, Carrera 7 No. 43-82, Bogotá 110231, Colombia; (C.V.); (E.G.T.); (M.A.D.G.-R.); (F.-J.V.)
| | - Maria Alejandra Diaz Granados-Ramírez
- Department of Microbiology, School of Sciences, Microbiological Quality of Water and Sludge (CMAL), Pontificia Universidad Javeriana, Carrera 7 No. 43-82, Bogotá 110231, Colombia; (C.V.); (E.G.T.); (M.A.D.G.-R.); (F.-J.V.)
| | - Alison Martin
- Department of Chemistry, Research Line in Environmental and Materials Technology (ITAM), Pontificia Universidad Javeriana, Carrera 7 No. 43–82, Bogotá 110231, Colombia; (L.L.); (A.M.); (A.P.-F.)
| | - Fidson-Juarismy Vesga
- Department of Microbiology, School of Sciences, Microbiological Quality of Water and Sludge (CMAL), Pontificia Universidad Javeriana, Carrera 7 No. 43-82, Bogotá 110231, Colombia; (C.V.); (E.G.T.); (M.A.D.G.-R.); (F.-J.V.)
| | - Alejandro Pérez-Flórez
- Department of Chemistry, Research Line in Environmental and Materials Technology (ITAM), Pontificia Universidad Javeriana, Carrera 7 No. 43–82, Bogotá 110231, Colombia; (L.L.); (A.M.); (A.P.-F.)
| | - Crispín Celis
- Department of Chemistry, Research Line in Environmental and Materials Technology (ITAM), Pontificia Universidad Javeriana, Carrera 7 No. 43–82, Bogotá 110231, Colombia; (L.L.); (A.M.); (A.P.-F.)
| |
Collapse
|
14
|
Ferrante M, Rapisarda P, Grasso A, Favara C, Oliveri Conti G. Glyphosate and environmental toxicity with "One Health" approach, a review. ENVIRONMENTAL RESEARCH 2023; 235:116678. [PMID: 37459948 DOI: 10.1016/j.envres.2023.116678] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/26/2023]
Abstract
The herbicide Glyphosate (GLY), or N-(phosphonomethyl) glycine was synthesized in 1950 and applied to control weeds in agricultural production. For a long time, it was believed that it was an inert compound, but many studies have instead demonstrated over the years the dangers of GLY to the ecosystem and human health. Among the best-known effects, it is known that GLY interferes with the metabolic pathways of plants and the main groups of microorganisms, negatively influencing their growth. GLY interferes with the metabolic pathways of plants and major groups of microorganisms negatively affecting their growth. The extensive GLY application on fields results in a "slow death" of plants through the minor resistance to root pathogens and in increasing pollution of freshwaters and soils. Unfortunately, however, unlike the old beliefs, GLY can reach non-target destinations, in this regard, ecological studies and environmental epidemiology are of significant interest. In this review, we focus on the effects of acute and chronic exposure to GLY on the health of plants, animals, and humans from a One Health perspective. GLY has been linked to neurological and endocrine issues in both humans and animals, and behavioral modification on specific bioindicators, but the knowledge about the ratio cause-and-effect still needs to be better understood and elucidated. Environmental GLY residues analysis and policy acts will both require new criteria to protect environmental and human health.
Collapse
Affiliation(s)
- Margherita Ferrante
- Environmental and Food Hygiene Laboratory (LIAA), Department of Medical, Surgical and Advanced Technology "G.F. Ingrassia", University of Catania, Catania, Italy; International Society of Doctors for Environments - ISDE, Catania Section, Italy
| | - Paola Rapisarda
- Environmental and Food Hygiene Laboratory (LIAA), Department of Medical, Surgical and Advanced Technology "G.F. Ingrassia", University of Catania, Catania, Italy; International Society of Doctors for Environments - ISDE, Catania Section, Italy
| | - Alfina Grasso
- Environmental and Food Hygiene Laboratory (LIAA), Department of Medical, Surgical and Advanced Technology "G.F. Ingrassia", University of Catania, Catania, Italy; International Society of Doctors for Environments - ISDE, Catania Section, Italy
| | - Claudia Favara
- Environmental and Food Hygiene Laboratory (LIAA), Department of Medical, Surgical and Advanced Technology "G.F. Ingrassia", University of Catania, Catania, Italy; International Society of Doctors for Environments - ISDE, Catania Section, Italy; Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
| | - Gea Oliveri Conti
- Environmental and Food Hygiene Laboratory (LIAA), Department of Medical, Surgical and Advanced Technology "G.F. Ingrassia", University of Catania, Catania, Italy; International Society of Doctors for Environments - ISDE, Catania Section, Italy.
| |
Collapse
|
15
|
Meftaul IM, Venkateswarlu K, Annamalai P, Parven A, Megharaj M. Degradation of four pesticides in five urban landscape soils: human and environmental health risk assessment. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:1599-1614. [PMID: 35538333 PMCID: PMC10140087 DOI: 10.1007/s10653-022-01278-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Pesticides are the most cost-effective means of pest control; however, the serious concern is about the non-target effects due to their extensive and intensive use in both agricultural and non-agricultural settings. The degradation rate constant (k) and half-life (DT50) of four commonly used pesticides, glyphosate, 2,4-D, chlorothalonil and dimethoate were determined in five Australian urban landscape soils, with varying physicochemical characteristics, to assess their environmental and human health risks. The k values (day-1) for the selected pesticides were inversely proportional to those of organic carbon (OC), silt, clay and Fe and Al oxides, and directly proportional to pH and sand content in soils. In contrast, the calculated values of DT50 (days) of all the four pesticides in five soils positively correlated with OC, clay, silt and oxides of Fe and Al, whereas soil pH and sand content exhibited a negative correlation. The calculated values of environmental indices, GUS and LIX, for the selected pesticides indicate their potential portability into water bodies, affecting non-target organisms as well as food safety. The evaluation for human non-cancer risk of these pesticides, based on the calculated values of hazard quotient (HQ) and hazard index (HI), suggested that exposure of adults and children to soils, contaminated with 50% of initially applied concentrations, through ingestion, dermal and inhalation pathways might cause negligible to zero non-carcinogenic risks. The present data might help the stakeholders in applying recommended doses of pesticides in urban landscapes and regulatory bodies concerned in monitoring the overall environmental quality and implementing safeguard policies. Our study also clearly demonstrates the need for developing improved formulations and spraying technologies for pesticides to minimize human and environmental health risks.
Collapse
Affiliation(s)
- Islam Md Meftaul
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, ATC Building, University Drive, Callaghan, NSW, 2308, Australia
- Department of Agricultural Chemistry, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh
| | - Kadiyala Venkateswarlu
- Formerly Department of Microbiology, Sri Krishnadevaraya University, Anantapuramu, 515003, India
| | - Prasath Annamalai
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, ATC Building, University Drive, Callaghan, NSW, 2308, Australia
| | - Aney Parven
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, ATC Building, University Drive, Callaghan, NSW, 2308, Australia
- Department of Agricultural Chemistry, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, ATC Building, University Drive, Callaghan, NSW, 2308, Australia.
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
16
|
Côco AS, Campos FV, Díaz CAR, Guimarães MCC, Prado AR, de Oliveira JP. Localized Surface Plasmon Resonance-Based Nanosensor for Rapid Detection of Glyphosate in Food Samples. BIOSENSORS 2023; 13:bios13050512. [PMID: 37232873 DOI: 10.3390/bios13050512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023]
Abstract
In this study, we developed a biosensor based on the localized surface plasmon resonance (LSPR) phenomenon of gold nanoparticles (AuNPs) to detect the widely used herbicide glyphosate in food samples. To do so, either cysteamine or a specific antibody for glyphosate were conjugated to the surface of the nanoparticles. AuNPs were synthesized using the sodium citrate reduction method and had their concentration determined via inductively plasma coupled mass spectrometry. Their optical properties were analyzed using UV-vis spectroscopy, X-ray diffraction, and transmission electron microscopy. Functionalized AuNPs were further characterized via Fourier-transform infrared spectroscopy, Raman scattering, Zeta potential, and dynamic light scattering. Both conjugates succeeded in detecting the presence of glyphosate in the colloid, although nanoparticles functionalized with cysteamine tended to aggregate at high concentrations of the herbicide. On the other hand, AuNPs functionalized with anti-glyphosate functioned at a broad concentration range and successfully identified the presence of the herbicide in non-organic coffee samples and when it was added to an organic coffee sample. This study demonstrates the potential of AuNP-based biosensors to detect glyphosate in food samples. The low-cost and specificity of these biosensors make them a viable alternative to current methods for detecting glyphosate in foodstuffs.
Collapse
Affiliation(s)
- Ariany Soares Côco
- Functional Nanomaterials Laboratory, Morphology Department, Federal University of Espírito Santo (UFES), Av Marechal Campos 1468, Vitória 29040-090, ES, Brazil
| | - Fabiana Vasconcelos Campos
- Functional Nanomaterials Laboratory, Morphology Department, Federal University of Espírito Santo (UFES), Av Marechal Campos 1468, Vitória 29040-090, ES, Brazil
| | - Camilo Arturo Rodríguez Díaz
- Telecommunications Laboratory, Electrical Engineering Department, Federal University of Espírito Santo (UFES), Av Fernando Ferrari 514, Vitória 29075-910, ES, Brazil
| | - Marco César Cunegundes Guimarães
- Functional Nanomaterials Laboratory, Morphology Department, Federal University of Espírito Santo (UFES), Av Marechal Campos 1468, Vitória 29040-090, ES, Brazil
| | - Adilson Ribeiro Prado
- Federal Institute of Espírito Santo (IFES), km 6.5 ES 010, Vitória 29173-087, ES, Brazil
| | - Jairo Pinto de Oliveira
- Functional Nanomaterials Laboratory, Morphology Department, Federal University of Espírito Santo (UFES), Av Marechal Campos 1468, Vitória 29040-090, ES, Brazil
| |
Collapse
|
17
|
Suciu N, Russo E, Calliera M, Luciani GP, Trevisan M, Capri E. Glyphosate, glufosinate ammonium, and AMPA occurrences and sources in groundwater of hilly vineyards. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161171. [PMID: 36572287 DOI: 10.1016/j.scitotenv.2022.161171] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 06/18/2023]
Abstract
Glyphosate [N-(phosphonomethyl) glycine] and glufosinate ammonium [ammonium dl-homoalanin-4-(methyl) phosphinate] are broad-spectrum, nonselective, post-emergence herbicides extensively used in various applications for weed control in both agricultural and non-crop areas. Aminomethylphosphonic acid (AMPA) is the major degradation product of glyphosate found in plants, water, and soil. Due to glyphosate's presumed low mobility, its monitoring in European water was limited. Recently both glyphosate and AMPA have been detected in several groundwater samples in Europe, U.S, Canada, Argentina, and China. Understanding the sources of these substances in water, especially in groundwater used for drinking, becomes a priority. In the present work the occurrences and the main drives of glyphosate, AMPA, and glufosinate ammonium in the groundwater of hilly vineyards located in the North-West of Italy were evaluated. Groundwater monitoring results showed frequent detection and concentrations above EQSGW for glyphosate and AMPA, while glufosinate ammonium was never detected. More frequent occurrences and higher concentrations were detected in the samples collected from wells located in the farmyards, most of them being used for irrigation and/or preparation of PPPs mixtures. Indeed, AMPA was the only compound detected in one groundwater well used for drinking, at values bellow EQSGw/DWQS. Such monitoring results were not expected as the modelling estimations under local pedoclimatic conditions indicated no risk of leaching to groundwater. However, the modelling performance and output may have been influenced by the non-consideration of important specific processes. Integrating monitoring and modelling results with information concerning the agricultural practices adopted and the wells use and location, possible contamination drivers were identified. These include the non-agricultural use of glyphosate in the farmyard, the point source contamination of wells and the possible transport with the subsurface lateral inflow of water from up-hill vineyard. This study strengthens the position of SETAC EMAG-Pest GW group concerning the necessity of spatial and temporal contextualisation of groundwater monitoring for a better understanding of its contamination drivers by PPPs.
Collapse
Affiliation(s)
- Nicoleta Suciu
- Università Cattolica del Sacro Cuore, Department for Sustainable Food Process, Via Emilia Parmense 84, 29122 Piacenza (PC), Italy; European Observatory on sustainable agriculture (OPERA), Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza (PC), Italy.
| | - Elisabetta Russo
- ARPAE - Regional Agency for Prevention, Environment and Energy of Emilia-Romagna, via Po 5, 40139 Bologna, Italy
| | - Maura Calliera
- European Observatory on sustainable agriculture (OPERA), Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza (PC), Italy
| | | | - Marco Trevisan
- Università Cattolica del Sacro Cuore, Department for Sustainable Food Process, Via Emilia Parmense 84, 29122 Piacenza (PC), Italy
| | - Ettore Capri
- Università Cattolica del Sacro Cuore, Department for Sustainable Food Process, Via Emilia Parmense 84, 29122 Piacenza (PC), Italy; European Observatory on sustainable agriculture (OPERA), Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza (PC), Italy
| |
Collapse
|
18
|
Lima IB, Boëchat IG, Fernandes MD, Monteiro JAF, Rivaroli L, Gücker B. Glyphosate pollution of surface runoff, stream water, and drinking water resources in Southeast Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:27030-27040. [PMID: 36376647 DOI: 10.1007/s11356-022-24167-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Glyphosate-based herbicides can be harmful to the environment and human health. Especially in developing countries, these herbicides are often used indiscriminately in agricultural and urban areas. Here, we optimized a simple and efficient flow injection-based spectrophotometric method to monitor environmentally relevant glyphosate concentrations in surface waters. The method was then used to assess the environmental mobility of glyphosate in Southeast Brazil by monitoring surface runoff from experimental agricultural soil plots that received glyphosate applications in 2015. Further, water samples from low-order streams were collected in five agricultural, urban, and natural areas, as well as from the 5th-order Rio das Mortes during the rainy season. Finally, 20 drinking water sources were sampled in urban, rural, and agricultural areas. Runoff from reference plots without glyphosate application showed concentrations below the method's detection limit of 0.49 mg.L-1, whereas runoff from plots with standard glyphosate application had concentrations between 1.24 and 6.1 mg.L-1. Similarly, concentrations in natural stream water were below the detection limit, whereas agricultural streams had concentrations of up to 3.7 mg.L-1 (average: 0.97 mg.L-1). In an agricultural stream monitored weekly, concentration peaks were observed after glyphosate applications by farmers, and concentrations were correlated to stream discharge. Urban streams had concentrations of up to 5.8 mg.L-1 (average: 2.6 mg.L-1), but samples from the catchment's major river were mostly below detection limits, illustrating the dilution of urban and agricultural runoff in high-order rivers. In the sampled drinking water resources, glyphosate pollution occurred mainly in the rainy season, with detectable concentrations between 0.5 and 8.7 mg.L-1 in 80% of the sampled drinking water sources. In conclusion, our results suggest considerable environmental mobility of glyphosate in the studied Southeast Brazilian catchment. Substantial pollution, well above national and international limits, was detected in surface runoff, stream water, and drinking water resources.
Collapse
Affiliation(s)
- Igor B Lima
- Department of Geosciences, Federal University of São João del-Rei, São João del-Rei, MG, Brazil
| | - Iola G Boëchat
- Department of Geosciences, Federal University of São João del-Rei, São João del-Rei, MG, Brazil
| | - Marco D Fernandes
- Department of Geosciences, Federal University of São João del-Rei, São João del-Rei, MG, Brazil
| | | | - Luciano Rivaroli
- Department of Natural Sciences, Federal University of São João del-Rei, São João del-Rei, MG, Brazil
| | - Björn Gücker
- Department of Geosciences, Federal University of São João del-Rei, São João del-Rei, MG, Brazil.
| |
Collapse
|
19
|
Laboni FA, Ahmed MW, Kaium A, Alam MK, Parven A, Jubayer MF, Rahman MA, Meftaul IM, Khan MSI. Heavy Metals in Widely Consumed Vegetables Grown in Industrial Areas of Bangladesh: a Potential Human Health Hazard. Biol Trace Elem Res 2023; 201:995-1005. [PMID: 35286576 DOI: 10.1007/s12011-022-03179-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/22/2022] [Indexed: 01/21/2023]
Abstract
The prevalence of heavy metals in frequently consumed vegetables constitutes a considerable public health hazard. This study aims to determine the quantity of heavy metals in widely consumed watercress (WC), alligator weed (AW), red amaranth (RA), spinach (SP), cauliflower (CF), and eggplant (EP) cultivated in industrial areas (e.g., Narsingdi district) of Bangladesh to assess the potential health hazards. Atomic absorption spectroscopy (AAS) served to determine the concentrations of lead (Pb), cadmium (Cd), chromium (Cr), and nickel (Ni) in vegetable samples (n = 72). The contents of Pb, Cd, Cr, and Ni were found in most of the analyzed vegetables, whereas 79.17%, 44.44%, and 1.39% samples exceeded the FAO/WHO maximum allowable concentration (MAC) for Pb, Cd, and Ni, respectively. The estimated daily intake (EDI) of single heavy metal was below the corresponding maximum tolerable daily intake (MTDI). The incremental lifetime cancer risk (ILCR) values of Cd in all samples exceeded the threshold limit (ILCR > 10-4) for both adults and children, indicating lifetime cancer risk due to the consumption of contaminated vegetables. The target hazard quotient (THQ) of each heavy metal was THQ < 1.0 (except Ni in few samples), indicating that consumers have no non-cancer risk when exposed to a single heavy metal. However, hazard index (HI) values of heavy metals were greater than unity in contaminated WC and AW for adults and children. Meanwhile, WC, AW, and SP samples for children emerged as potential health risks of inhabitants in the studied areas. The outcomes of the present investigation might assist the regulatory bodies concerned in setting new strategies through monitoring the quality of marketed vegetables to minimize the risks to humans.
Collapse
Affiliation(s)
- Farzana Akter Laboni
- Department of Agricultural Chemistry, Sher-e-Bangla Agricultural University, Dhaka-1207, Bangladesh
| | - Md Wadud Ahmed
- Department of Agricultural Engineering, Sher-e-Bangla Agricultural University, Dhaka-1207, Bangladesh
| | - Abdul Kaium
- Department of Agricultural Chemistry, Sher-e-Bangla Agricultural University, Dhaka-1207, Bangladesh
| | - Md Khairul Alam
- Bangladesh Agricultural Research Council, Dhaka, 1215, Bangladesh
| | - Aney Parven
- Department of Agricultural Chemistry, Sher-e-Bangla Agricultural University, Dhaka-1207, Bangladesh
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Md Fahad Jubayer
- Department of Food Engineering and Technology, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Md Aminur Rahman
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Islam Md Meftaul
- Department of Agricultural Chemistry, Sher-e-Bangla Agricultural University, Dhaka-1207, Bangladesh.
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia.
| | - Md Sirajul Islam Khan
- Department of Agricultural Chemistry, Sher-e-Bangla Agricultural University, Dhaka-1207, Bangladesh.
| |
Collapse
|
20
|
Meftaul IM, Venkateswarlu K, Parven A, Annamalai P, Megharaj M. Human health risk assessment of pesticides in lettuce and spinach grown in urban backyard garden soils. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2022.104977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
21
|
Parus A, Zdebelak O, Ciesielski T, Szumski R, Woźniak-Karczewska M, Framski G, Baranowski D, Niemczak M, Zembrzuska J, Cajthaml T, Heipieper HJ, Chrzanowski Ł. Can ionic liquids exist in the soil environment? Effect of quaternary ammonium cations on glyphosate sorption, mobility and toxicity in the selected herbicidal ionic liquids. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Del Castilo I, Neumann AS, Lemos FS, De Bastiani MA, Oliveira FL, Zimmer ER, Rêgo AM, Hardoim CCP, Antunes LCM, Lara FA, Figueiredo CP, Clarke JR. Lifelong Exposure to a Low-Dose of the Glyphosate-Based Herbicide RoundUp ® Causes Intestinal Damage, Gut Dysbiosis, and Behavioral Changes in Mice. Int J Mol Sci 2022; 23:5583. [PMID: 35628394 PMCID: PMC9146949 DOI: 10.3390/ijms23105583] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 02/04/2023] Open
Abstract
RoundUp® (RUp) is a comercial formulation containing glyphosate (N-(phosphono-methyl) glycine), and is the world's leading wide-spectrum herbicide used in agriculture. Supporters of the broad use of glyphosate-based herbicides (GBH) claim they are innocuous to humans, since the active compound acts on the inhibition of enzymes which are absent in human cells. However, the neurotoxic effects of GBH have already been shown in many animal models. Further, these formulations were shown to disrupt the microbiome of different species. Here, we investigated the effects of a lifelong exposure to low doses of the GBH-RUp on the gut environment, including morphological and microbiome changes. We also aimed to determine whether exposure to GBH-RUp could harm the developing brain and lead to behavioral changes in adult mice. To this end, animals were exposed to GBH-RUp in drinking water from pregnancy to adulthood. GBH-RUp-exposed mice had no changes in cognitive function, but developed impaired social behavior and increased repetitive behavior. GBH-Rup-exposed mice also showed an activation of phagocytic cells (Iba-1-positive) in the cortical brain tissue. GBH-RUp exposure caused increased mucus production and the infiltration of plama cells (CD138-positive), with a reduction in phagocytic cells. Long-term exposure to GBH-RUp also induced changes in intestinal integrity, as demonstrated by the altered expression of tight junction effector proteins (ZO-1 and ZO-2) and a change in the distribution of syndecan-1 proteoglycan. The herbicide also led to changes in the gut microbiome composition, which is also crucial for the establishment of the intestinal barrier. Altogether, our findings suggest that long-term GBH-RUp exposure leads to morphological and functional changes in the gut, which correlate with behavioral changes that are similar to those observed in patients with neurodevelopmental disorders.
Collapse
Affiliation(s)
- Ingrid Del Castilo
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (I.D.C.); (C.P.F.)
| | - Arthur S. Neumann
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (A.S.N.); (F.S.L.); (F.L.O.)
| | - Felipe S. Lemos
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (A.S.N.); (F.S.L.); (F.L.O.)
| | - Marco A. De Bastiani
- Departamento de Farmacologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90040-193, RS, Brazil; (M.A.D.B.); (E.R.Z.)
| | - Felipe L. Oliveira
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (A.S.N.); (F.S.L.); (F.L.O.)
| | - Eduardo R. Zimmer
- Departamento de Farmacologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90040-193, RS, Brazil; (M.A.D.B.); (E.R.Z.)
| | - Amanda M. Rêgo
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil; (A.M.R.); (L.C.M.A.); (F.A.L.)
| | - Cristiane C. P. Hardoim
- Instituto de Biociências, Universidade Estadual Paulista, São Vicente 11380-972, SP, Brazil;
| | - Luis Caetano M. Antunes
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil; (A.M.R.); (L.C.M.A.); (F.A.L.)
- Instituto Nacional de Ciência e Tecnologia de Inovação em Doenças de Populações Negligenciadas, Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Rio de Janeiro 21040-361, RJ, Brazil
| | - Flávio A. Lara
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil; (A.M.R.); (L.C.M.A.); (F.A.L.)
| | - Claudia P. Figueiredo
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (I.D.C.); (C.P.F.)
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (A.S.N.); (F.S.L.); (F.L.O.)
| | - Julia R. Clarke
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (I.D.C.); (C.P.F.)
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (A.S.N.); (F.S.L.); (F.L.O.)
| |
Collapse
|
23
|
Meftaul IM, Venkateswarlu K, Annamalai P, Parven A, Sobhani Z, Megharaj M. Behavior and fate of fungicide chlorothalonil in urban landscape soils and associated environmental concern. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2021; 56:1066-1077. [PMID: 34913835 DOI: 10.1080/03601234.2021.2014255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This novel study investigated the behavior and fate of chlorothalonil in terms of kinetics, sorption‒desorption and leaching potential in urban landscape soils using batch experiments. The pseudo-second-order model well described the sorption kinetics of chlorothalonil in urban soils. Consequently, chlorothalonil was partitioned into heterogeneous surfaces of soil following the Freundlich isotherm model. According to PCA, soil organic matter (OM), silt, clay, and oxides of Al and Fe exhibited a significant positive correlation (P < 0.05) with chlorothalonil Kd (P < 0.05), while sand content and soil pH showed a negative correlation at P < 0.05. In soils, decreased sorption of chlorothalonil was also due to the presence of undecomposed or partly decomposed OM, whereas increased sorption could be attributed to the combined effect of OM with C = O and C-H groups, silt, clay, Al and Fe oxides and hydrophobicity of the fungicide. Also, HI, GUS, LIX and Kd of four among nine urban soils indicated that chlorothalonil has a great potential for leaching into the groundwater from the soil surface, posing an unintended threat to non-target biota and food safety. Therefore, utmost care must be taken while applying chlorothalonil in urban landscapes, particularly on impervious surfaces, to minimize the impact on the ecosystem.
Collapse
Affiliation(s)
- Islam Md Meftaul
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, Australia
- Department of Agricultural Chemistry, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Kadiyala Venkateswarlu
- Formerly Department of Microbiology, Sri Krishnadevaraya University, Anantapuramu, India
| | - Prasath Annamalai
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, Australia
| | - Aney Parven
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, Australia
- Department of Agricultural Chemistry, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Zahra Sobhani
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, Australia
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, NSW
| |
Collapse
|
24
|
Spinelli V, Ceci A, Dal Bosco C, Gentili A, Persiani AM. Glyphosate-Eating Fungi: Study on Fungal Saprotrophic Strains' Ability to Tolerate and Utilise Glyphosate as a Nutritional Source and on the Ability of Purpureocillium lilacinum to Degrade It. Microorganisms 2021; 9:2179. [PMID: 34835305 PMCID: PMC8623091 DOI: 10.3390/microorganisms9112179] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
Glyphosate is the most commonly used herbicide worldwide. Its improper use during recent decades has resulted in glyphosate contamination of soils and waters. Fungal bioremediation is an environmentally friendly, cost effective, and feasible solution to glyphosate contamination in soils. In this study, several saprotrophic fungi isolated from agricultural environments were screened for their ability to tolerate and utilise Roundup in different cultural conditions as a nutritional source. Purpureocillium lilacinum was further screened to evaluate the ability to break down and utilise glyphosate as a P source in a liquid medium. The dose-response effect for Roundup, and the difference in toxicity between pure glyphosate and Roundup were also studied. This study reports the ability of several strains to tolerate 1 mM and 10 mM Roundup and to utilise it as nutritional source. P. lilacinum was reported for the first time for its ability to degrade glyphosate to a considerable extent (80%) and to utilise it as a P source, without showing dose-dependent negative effects on growth. Pure glyphosate was found to be more toxic than Roundup for P. lilacinum. Our results showed that pure glyphosate toxicity can be only partially addressed by the pH decrease determined in the culture medium. In conclusion, our study emphasises the noteworthy potential of P. lilacinum in glyphosate degradation.
Collapse
Affiliation(s)
- Veronica Spinelli
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Andrea Ceci
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Chiara Dal Bosco
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (C.D.B.); (A.G.)
| | - Alessandra Gentili
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (C.D.B.); (A.G.)
| | - Anna Maria Persiani
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| |
Collapse
|
25
|
Parven A, Khan MSI, Prodhan MDH, Venkateswarlu K, Megharaj M, Meftaul IM. Human health risk assessment through quantitative screening of insecticide residues in two green beans to ensure food safety. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.104121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|