1
|
Malla MA, Nomalihle M, Featherston J, Kumar A, Amoah ID, Ismail A, Bux F, Kumari S. Comprehensive profiling and risk assessment of antibiotic resistomes in surface water and plastisphere by integrated shotgun metagenomics. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137180. [PMID: 39847933 DOI: 10.1016/j.jhazmat.2025.137180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/20/2024] [Accepted: 01/09/2025] [Indexed: 01/25/2025]
Abstract
The ever-increasing microplastics (MPs) and antibiotic-resistance genes (ARGs) in aquatic ecosystems has become a serious global challenging issue. However, the impact of different pollution sources on microbiome and antibiotic resistome in surface water (SW) and plastisphere (PS) remains largely elusive. Here, shotgun metagenomics was used to analyze microbiome structure and antibiotic resistome in SW and PS under the influence of different pollution sources. Pseudomonas were the most abundant genus, followed by Flavobacterium, Acinetobacter, Acidovorax, and Limnohabitans. However, their relative abundance varied significantly both across the sampling sites and habitats i.e. SW and PS (p < 0.05). Additionally, various ARGs were detected in SW and PS, with PS (372) having significantly more potential ARGs than SW (293). The results further showed significant variations in the relative abundance of potential pathogenic bacteria across the sampling sites and habitats (p < 0.05). Further moreover, significant differences were observed in antibiotic resistome risk scores, ARGs and MGEs across different habitats. Over all, this study suggests that pollution source and water quality parameters had a significant impact on microbiome composition and antibiotic resistome in SW and PS.
Collapse
Affiliation(s)
- Muneer Ahmad Malla
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban 4001, South Africa
| | - Malambule Nomalihle
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban 4001, South Africa
| | - Jonathan Featherston
- Sequencing Core Facility, National Institute for Communicable Diseases Division of the National Health Laboratory Service, Johannesburg 2131, South Africa
| | - Arvind Kumar
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban 4001, South Africa
| | - Isaac D Amoah
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban 4001, South Africa; Department of Environmental Science, The University of Arizona, Shantz Building Rm10 4291177 E 4th St., Tucson, AZ 85721, USA
| | - Arshad Ismail
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban 4001, South Africa; Sequencing Core Facility, National Institute for Communicable Diseases Division of the National Health Laboratory Service, Johannesburg 2131, South Africa
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban 4001, South Africa
| | - Sheena Kumari
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban 4001, South Africa.
| |
Collapse
|
2
|
Zhang M, Bai L, Yao Z, Li W, Yang W. Seasonal lake ice cover drives the restructuring of bacteria-archaea and bacteria-fungi interdomain ecological networks across diverse habitats. ENVIRONMENTAL RESEARCH 2025; 269:120907. [PMID: 39848515 DOI: 10.1016/j.envres.2025.120907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/14/2025] [Accepted: 01/19/2025] [Indexed: 01/25/2025]
Abstract
The coexistence of different microbial communities is fundamental to the sustainability of many ecosystems, yet our understanding of the relationships among microbial communities in plateau cold-region lakes affected by seasonal ice cover remains limited. This research involved investigating three lakes in the Inner Mongolia segment of the Yellow River basin during frozen and unfrozen periods in two habitats: water bodies and sediments. The research examined the composition and function of bacteria, archaea, and fungi across different times and habitats within the basin, their response to environmental variables in water and sediment, and inter-domain interactions between bacteria-archaea and bacteria-fungi were compared using interdomain ecological network (IDEN). The findings indicate significant variations in the structures of bacterial, archaeal, and fungal communities across different periods and habitats, with the pH of the water body being a crucial environmental variable affecting microbial community composition. In the frozen period, the functionality of microbial communities, especially in terms of energy metabolism, was significantly impacted, with water bodies experiencing more pronounced effects than sediments. Archaea and fungi significantly contribute to the stability of bacterial communities across various habitats, especially in ice-covered conditions, where stronger associations between bacterial communities, archaea, and fungi promote the microbial communities' adaptability to cold stress. Furthermore, our results indicate that the primary environmental variable influencing the structure of IDENs is the nutrient salt content in both water bodies and sediments. This study broadens our understanding of the responses and feedback mechanisms of inter-domain microbial interactions in lakes influenced by seasonal ice cover.
Collapse
Affiliation(s)
- Mingyu Zhang
- College of Energy and Environment, Inner Mongolia University of Science and Technology,Baotou, 014010, PR China; Collaborative Innovation Center of Autonomous Region for Ecological Protection and Comprehensive Utilization in the Inner Mongolia Section of the Yellow River Basin, Baotou, 014010, PR China
| | - Long Bai
- College of Energy and Environment, Inner Mongolia University of Science and Technology,Baotou, 014010, PR China; Collaborative Innovation Center of Autonomous Region for Ecological Protection and Comprehensive Utilization in the Inner Mongolia Section of the Yellow River Basin, Baotou, 014010, PR China
| | - Zhi Yao
- College of Energy and Environment, Inner Mongolia University of Science and Technology,Baotou, 014010, PR China; Collaborative Innovation Center of Autonomous Region for Ecological Protection and Comprehensive Utilization in the Inner Mongolia Section of the Yellow River Basin, Baotou, 014010, PR China
| | - Weiping Li
- College of Energy and Environment, Inner Mongolia University of Science and Technology,Baotou, 014010, PR China; Collaborative Innovation Center of Autonomous Region for Ecological Protection and Comprehensive Utilization in the Inner Mongolia Section of the Yellow River Basin, Baotou, 014010, PR China
| | - Wenhuan Yang
- College of Energy and Environment, Inner Mongolia University of Science and Technology,Baotou, 014010, PR China; Collaborative Innovation Center of Autonomous Region for Ecological Protection and Comprehensive Utilization in the Inner Mongolia Section of the Yellow River Basin, Baotou, 014010, PR China.
| |
Collapse
|
3
|
Liu L, Zhu G, Hu J, Chen H, Zhai Y. An unignorable human health risk posed by antibiotic resistome and microbiome in urban rivers: Insights from Beijing, China. ENVIRONMENTAL RESEARCH 2025; 268:120752. [PMID: 39755199 DOI: 10.1016/j.envres.2025.120752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/19/2024] [Accepted: 01/01/2025] [Indexed: 01/06/2025]
Abstract
Urban rivers are the main water bodies humans frequently come into contact with, so the risks posed are closely monitored. Antibiotic resistance genes (ARGs) residues in reclaimed water pose serious risks to human health. There are urgent needs to improve the understanding of distribution of and risks posed by ARGs in urban rivers. In this study, shotgun metagenomic approach was used to characterize ARGs, mobile genetic elements (MGEs), and virulence factors (VFs) in water and sediment from Xinfeng River in Beijing and to identify microbes, potential antibiotic resistant bacteria, and human pathogens (HPs). MGE, microbial community, VF, and ARG co-occurrences were used to assess the environmental risks posed by ARGs. The results indicated that quinolone was the most abundant ARG type and that tufA and fusA were the two dominant ARG subtypes. Wetland effluent increased ARG abundance in the river, and the effect was detected even 50 m downstream. ARG abundances and distribution in the river had difference in different seasons. The dominant bacteria in the river were Proteobacteria, Bacteroidetes, and Actinobacteria, and 59 HPs were detected. In total, 69 MGEs and 19 VFs were found. Co-occurrence networks indicated that potential antibiotic resistant bacteria, MGEs, VFs, and ARGs in the river significantly correlated, indicating the potential risks posed by ARGs. The results improve our understanding of ARG distribution and environmental risks in urban river water. More attention should be paid to controlling environmental risks posed by ARGs in urban river and reclaimed water.
Collapse
Affiliation(s)
- Linmei Liu
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Ganghui Zhu
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment of the People's Republic of China, Beijing, 100012, China
| | - Jingdan Hu
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Haiyang Chen
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Yuanzheng Zhai
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
4
|
Cai S, Zhao J, Sheng E, Fan L, Shen Z, Li Y. Similar but different assembly processes of bacterial and micro-eukaryotic communities in an urban river. Sci Rep 2025; 15:6974. [PMID: 40011580 DOI: 10.1038/s41598-025-91664-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 02/21/2025] [Indexed: 02/28/2025] Open
Abstract
Bacteria and micro-eukaryotes play important roles in river ecological systems. The processes that govern bacterial and micro-eukaryotic communities in urban rivers are still uncertain. The spatiotemporal characteristics and assembly processes of bacterial and micro-eukaryotic communities in the Xiangjianghe River were explored using 16 S and 18 S rRNA gene amplicon sequencing in the present study. The results indicate that the bacterial and micro-eukaryotic community composition exhibited distinct temporal and spatial variation. The topological characteristics of co-occurrence networks demonstrate that the bacterial and micro-eukaryotic community coexistence patterns vary significantly between the four seasons. Water temperature (WT) and oxidation-reduction potential (ORP) were detected as the most critical factors affecting bacterial and micro-eukaryotic community structure. The stochastic process (dispersal limitation) was the dominant assembly process for bacteria and micro-eukaryotes in all seasons. Deterministic and stochastic processes influenced the bacteria and micro-eukaryotes differently. Compared to bacteria, the values of niche breadth were relatively lower, and the proportion of deterministic processes was relatively higher in micro-eukaryotes. These results expand our understanding of spatiotemporal patterns, assembly mechanisms, and influencing factors of bacterial and micro-eukaryotic communities in urban rivers.
Collapse
Affiliation(s)
- Shenwen Cai
- College of Resources and Environment, Zunyi Normal University, Zunyi, 563006, China.
| | - Jun Zhao
- College of Resources and Environment, Zunyi Normal University, Zunyi, 563006, China
| | - Enguo Sheng
- College of Resources and Environment, Zunyi Normal University, Zunyi, 563006, China
| | - Leilei Fan
- College of Resources and Environment, Zunyi Normal University, Zunyi, 563006, China
| | - Ziwei Shen
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Yunfeng Li
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China.
| |
Collapse
|
5
|
Yang Y, Chen L, Wan N, Xu A, Ding N, Song Z. Deciphering Planktonic Bacterial Community Assembly in the Storage Reservoir of the Long-Distance Water Diversion Project. Microorganisms 2025; 13:465. [PMID: 40005830 PMCID: PMC11858334 DOI: 10.3390/microorganisms13020465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/15/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
Storage reservoirs are crucial components of long-distance water diversion projects, where water diversion may lead to changes in microbial diversity and community structure. Seasonal variations also drive alterations in microbial communities. However, the way that microbes assemble under the combined effects of water diversion and seasonal variations in the storage reservoir has not been extensively studied. Jihongtan Reservoir is the terminal storage reservoir of the Yellow River to Qingdao Water Diversion Project (YQWD), which had an average annual water diversion period exceeding 290 days in recent years. In this study, 16S rDNA amplicon sequencing was used to investigate the seasonal dynamics and assembly of planktonic bacterial communities during the water diversion period in Jihongtan Reservoir. The results indicate that planktonic bacteria were able to maintain stable diversity across all four seasons, while the community structure underwent significant seasonal succession. Water temperature (WT) was found to be the primary driving environmental factor influencing the seasonal dynamic of planktonic bacterial communities. Co-occurrence network patterns of planktonic bacterial communities varied across different seasons, particularly in spring and winter. The spring network displayed the most complexity, showcasing the highest connectivity and greater stability. In contrast, the winter network was simpler, exhibiting lower local connectivity but higher global connectivity and lower stability. The analysis of the neutral community model and null model revealed that the relative importance of deterministic and stochastic processes in governing planktonic bacterial community assembly varies seasonally. Stochastic processes (dispersal limitation) are more prominent in spring, summer, and autumn, while deterministic processes (heterogeneous selection) play a greater role in winter. This study is essential for gaining a comprehensive understanding of the effects of water diversion projects and offers valuable references for the assessment of other similar projects.
Collapse
Affiliation(s)
- Yingying Yang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China; (Y.Y.)
| | - Liguo Chen
- Shandong Water Transfer Project Operation and Maintenance Center, Jinan 250199, China
| | - Nianxin Wan
- Jihongtan Reservoir Management Station of Shandong Water Transfer Project Operation and Maintenance Center, Qingdao 266111, China
| | - Ailing Xu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China; (Y.Y.)
| | - Ning Ding
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China; (Y.Y.)
| | - Zhiwen Song
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China; (Y.Y.)
| |
Collapse
|
6
|
Nong X, Lai C, Chen L, Wei J. A novel coupling interpretable machine learning framework for water quality prediction and environmental effect understanding in different flow discharge regulations of hydro-projects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175281. [PMID: 39117235 DOI: 10.1016/j.scitotenv.2024.175281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024]
Abstract
Machine learning models (MLMs) have been increasingly used to forecast water pollution. However, the "black box" characteristic for understanding mechanism processes still limits the applicability of MLMs for water quality management in hydro-projects under complex and frequently artificial regulation. This study proposes an interpretable machine learning framework for water quality prediction coupled with a hydrodynamic (flow discharge) scenario-based Random Forest (RF) model with multiple model-agnostic techniques and quantifies global, local, and joint interpretations (i.e., partial dependence, individual conditional expectation, and accumulated local effects) of environmental factor implications. The framework was applied and verified to predict the permanganate index (CODMn) under different flow discharge regulation scenarios in the Middle Route of the South-to-North Water Diversion Project of China (MRSNWDPC). A total of 4664 sampling cases data matrices, including water quality, meteorological, and hydrological indicators from eight national stations along the main canal of the MRSNWDPC, were collected from May 2019 to December 2020. The results showed that the RF models were effective in forecasting CODMn in all flow discharge scenarios, with a mean square error, coefficient of determination, and mean absolute error of 0.006-0.026, 0.481-0.792, and 0.069-0.104, respectively, in the testing dataset. A global interpretation indicated that dissolved oxygen, flow discharge, and surface pressure are the three most important variables of CODMn. Local and joint interpretations indicated that the RF-based prediction model provides a basic understanding of the physical mechanisms of environmental systems. The proposed framework can effectively learn the fundamental environmental implications of water quality variations and provide reliable prediction performance, highlighting the importance of model interpretability for trustworthy machine learning applications in water management projects. This study provides scientific references for applying advanced data-driven MLMs to water quality forecasting and a reliable methodological framework for water quality management and similar hydro-projects.
Collapse
Affiliation(s)
- Xizhi Nong
- College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China; State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China; Centre for Urban Sustainability and Resilience, Department of Civil, Environmental and Geomatic Engineering, University College London, London WC1E 6BT, UK; School of Computing and Engineering, University of West London, London W5 5RF, UK
| | - Cheng Lai
- College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China
| | - Lihua Chen
- College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China.
| | - Jiahua Wei
- State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
7
|
Ding J, Yang W, Liu X, Zhao J, Fu X, Zhang F, Liu H. Hydraulic conditions control the abundance of antibiotic resistance genes and their potential host microorganisms in a frequently regulated river-lake system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174143. [PMID: 38908594 DOI: 10.1016/j.scitotenv.2024.174143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
Antibiotic resistance genes (ARGs) are a growing problem that is widespread in river-lake ecosystems, where they pose a threat to the aquatic environment's health and public safety. These systems serve as critical nodes in water management, as they facilitate the equitable allocation of water resources through long-term and frequent water diversions. However, hydrological disturbances associated with water-regulation practices can influence the dynamics of their potential host microorganisms and associated resistance genes. Consequently, identifying the key ARGs and their resistance mechanisms in heavily regulated waters is vital for safeguarding human health and that of river-lake ecosystems. In this study, we examined the impact of water-regulation factors on ARGs and their hosts within a river-lake continuum using 16S rRNA and metagenomic sequencing. We found that a significant increase in ARG abundance during regulation periods (p < 0.05), especially in the aquatic environment. Key resistance genes were macB, tetA, evgS, novA, and msbA, with increased efflux pinpointed as their principal resistance mechanism. Network analysis identified Flavobacteriales, Acinetobacter, Pseudomonas, Burkholderiaceae, and Erythrobacter as key potential host microorganisms, which showed increased abundance within the water column during regulation periods (p < 0.05). Flow velocity and water depth both drove the host microorganisms and critical ARGs. Our findings underscore the importance of monitoring and mitigating the antibiotic resistance risk during water transfers in river-lake systems, thereby supporting informed management and conservation strategies.
Collapse
Affiliation(s)
- Jiewei Ding
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Wei Yang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Xinyu Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Jiayue Zhao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xianting Fu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Fangfei Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Haifei Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
8
|
Yang Y, Ci F, Xu A, Zhang X, Ding N, Wan N, Lv Y, Song Z. Seasonal Dynamics of Eukaryotic Microbial Communities in the Water-Receiving Reservoir of the Long-Distance Water Diversion Project, China. Microorganisms 2024; 12:1873. [PMID: 39338548 PMCID: PMC11433762 DOI: 10.3390/microorganisms12091873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/06/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
Inter-basin water transfer projects, such as the Yellow River to Qingdao Water Diversion Project (YQWD), are essential for addressing water scarcity, but impact local aquatic ecosystems. This study investigates the seasonal characteristics of eukaryotic microbial communities in the Jihongtan Reservoir, the main water-receiving body of YQWD, over a one-year period using 18S rDNA amplicon sequencing. The results showed that the eukaryotic microbial diversity did not exhibit significant seasonal variation (p > 0.05), but there was a notable variance in the community structure (p < 0.05). Arthropoda and Paracyclopina, representing the most dominant phylum and the most dominant genus, respectively, both exhibited the lowest abundance during the winter. The Chlorophyta, as the second-dominant phylum, demonstrates its higher abundance in the spring and winter. The Mantel test and PLS-PM (Partial Least Squares Path Modeling) revealed that water temperature (WT), dissolved oxygen (DO), and pH influenced the seasonal dynamic of eukaryotic microbial communities significantly, of which WT was the primary driving factor. In addition to environmental factors, water diversion is likely to be an important influencing factor. The results of the co-occurrence network and robustness suggested that the spring network is the most complex and exhibits the highest stability. Moreover, keystone taxa within networks have been identified, revealing that these key groups encompass both abundant and rare species, with specificity to different seasons. These insights are vital for understanding the seasonal variation of microbial communities in the Jihongtan Reservoir during ongoing water diversions.
Collapse
Affiliation(s)
- Yingying Yang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Fangfang Ci
- Qingdao Branch of Shandong Water Transfer Project Operation and Maintenance Center, Qingdao 266525, China
| | - Ailing Xu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Xijian Zhang
- Binzhou Branch of Shandong Water Transfer Project Operation and Maintenance Center, Binzhou 256600, China
| | - Ning Ding
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Nianxin Wan
- Qingdao Branch of Shandong Water Transfer Project Operation and Maintenance Center, Qingdao 266525, China
| | - Yuanyuan Lv
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Zhiwen Song
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| |
Collapse
|
9
|
Hou X, Hu X, Li Y, Zhang H, Niu L, Huang R, Xu J. From disruption to adaptation: Response of phytoplankton communities in representative impounded lakes to China's South-to-North Water Diversion Project. WATER RESEARCH 2024; 261:122001. [PMID: 38964215 DOI: 10.1016/j.watres.2024.122001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/08/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024]
Abstract
Impounded lakes are often interconnected in large-scale water diversion projects to form a coordinated system for water allocation and regulation. The alternating runoff and transferred water can significantly impact local ecosystems, which are initially reflected in the sensitive phytoplankton. Nonetheless, limited information is available on the temporal dynamics and assembly patterns of phytoplankton community in impounded lakes responding to continuous and periodic water diversion. Herein, a long-term monitoring from 2013 to 2020 were conducted to systematically investigate the response of phytoplankton community, including its characteristics, stability, and the ecological processes governing community assembly, in representative impounded lakes to the South-to-North Water Diversion Project (SNWDP) in China. In the initial stage of the SNWDP, the phytoplankton diversity indices experienced a decrease during both non-water diversion periods (8.5 %∼21.2 %) and water diversion periods (5.6 %∼12.2 %), implying a disruption in the aquatic ecosystem. But the regular delivery of high-quality water from the Yangtze River gradually increased phytoplankton diversity and mediated ecological assembly processes shifting from stochastic to deterministic. Meanwhile, reduced nutrients restricted the growth of phytoplankton, pushing species to interact more closely to maintain the functionality and stability of the co-occurrence network. The partial least squares path model revealed that ecological process (path coefficient = 0.525, p < 0.01) and interspecies interactions in networks (path coefficient = -0.806, p < 0.01) jointly influenced the keystone and dominant species, ultimately resulting in an improvement in stability (path coefficient = 0.878, p < 0.01). Overall, the phytoplankton communities experienced an evolutionary process from short-term disruption to long-term adaptation, demonstrating resilience and adaptability in response to the challenges posed by the SNWDP. This study revealed the response and adaptation mechanism of phytoplankton communities in impounded lakes to water diversion projects, which is helpful for maintaining the lake ecological health and formulating rational water management strategies.
Collapse
Affiliation(s)
- Xing Hou
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China; Institute of Water Science and Technology, Hohai University, Nanjing, 210098, PR China
| | - Xiaodong Hu
- Jiangsu Hydraulic Research Institute, Nanjing, 210017, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China.
| | - Huanjun Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China.
| | - Rui Huang
- Jiangsu Hydraulic Research Institute, Nanjing, 210017, PR China
| | - Jixiong Xu
- Jiangsu Hydraulic Research Institute, Nanjing, 210017, PR China
| |
Collapse
|
10
|
Asif A, Koner S, Chen JS, Hussain A, Huang SW, Hussain B, Hsu BM. Uncovering the microbial community structure and physiological profiles of terrestrial mud volcanoes: A comprehensive metagenomic insight towards their trichloroethylene biodegradation potentiality. ENVIRONMENTAL RESEARCH 2024; 258:119457. [PMID: 38906444 DOI: 10.1016/j.envres.2024.119457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 06/04/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Mud volcanoes are dynamic geological features releasing methane (CH4), carbon dioxide (CO2), and hydrocarbons, harboring diverse methane and hydrocarbon-degrading microbes. However, the potential application of these microbial communities in chlorinated hydrocarbons bioremediation purposes such as trichloroethylene (TCE) has not yet been explored. Hence, this study investigated the mud volcano's microbial diversity functional potentiality in TCE degradation as well as their eco-physiological profiling using metabolic activity. Geochemical analysis of the mud volcano samples revealed variations in pH, temperature, and oxidation-reduction potential, indicating diverse environmental conditions. The Biolog Ecoplate™ carbon substrates utilization pattern showed that the Tween 80 was highly consumed by mud volcanic microbial community. Similarly, MicroResp® analysis results demonstrated that presence of additive C-substrates condition might enhanced the cellular respiration process within mud-volcanic microbial community. Full-length 16 S rRNA sequencing identified Proteobacteria as the dominant phylum, with genera like Pseudomonas and Hydrogenophaga associated with chloroalkane degradation, and methanotrophic bacteria such as Methylomicrobium and Methylophaga linked to methane oxidation. Functional analysis uncovered diverse metabolic functions, including sulfur and methane metabolism and hydrocarbon degradation, with specific genes involved in methane oxidation and sulfur metabolism. These findings provide insights into the microbial diversity and metabolic capabilities of mud volcano ecosystems, which could facilitate their effective application in the bioremediation of chlorinated compounds.
Collapse
Affiliation(s)
- Aslia Asif
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan; Doctoral Program in Science, Technology, Environment, and Mathematics, National Chung Cheng University, Chiayi County, Taiwan
| | - Suprokash Koner
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan
| | - Jung-Sheng Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Ashiq Hussain
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan; Doctoral Program in Science, Technology, Environment, and Mathematics, National Chung Cheng University, Chiayi County, Taiwan
| | - Shih-Wei Huang
- Center for Environmental Toxin and Emerging Contaminant, Cheng Shiu University, Kaohsiung, Taiwan; Institute of Environmental Toxin and Emerging Contaminant, Cheng Shiu University, Kaohsiung, Taiwan
| | - Bashir Hussain
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan
| | - Bing-Mu Hsu
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan.
| |
Collapse
|
11
|
Sun R, Wei J, Zhang S, Pei H. The dynamic changes in phytoplankton and environmental factors within Dongping Lake (China) before and after the South-to-North Water Diversion Project. ENVIRONMENTAL RESEARCH 2024; 246:118138. [PMID: 38191041 DOI: 10.1016/j.envres.2024.118138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/17/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024]
Abstract
Dongping Lake is one of the most important regulation and storage lakes along the eastern route of the South-to-North Water Diversion Project in China, the water quality condition of which directly influences the safety of water diverting, because it serves as a Yangtze River water redistribution control point. However, the changes in algae, and in environmental factors affecting their community structures, before and after the water diversion project are rarely reported. In this study, the temporal variations of phytoplankton abundance were examined based on monthly samples collected at three stations from May 2010 to April 2022. The total abundance of algae greatly decreased after the water diversion project was implemented, with a relatively stable biodiversity and evenness before and after the water translocation. Multiple statistical methods were used together with the water quality indices (WQIs) and the nutrient status index (TSIM) to evaluate overall water condition and analyse relationships among environmental factors. The WQIs demonstrated a general "Good" water quality with a seasonal differentiation, and that water conditions during water transfer periods were better than during non-water transfer periods, which may be ascribed to the improved hydraulic conditions and purified water environment during water transfer periods. Redundancy analysis showed that water temperature, ammonia nitrogen, water transparency, and total phosphorus were the most important environmental factors, with relatively decreased contribution rates towards phytoplankton communities after the water translocation. Importantly, some dominant phytoplankton genera of Chlorophyta, Bacillariophyceae, and Cyanophyceae were similarly affected by water transparency, and nitrogen and phosphorus nutrients in summer after the water translocation. These research findings helped us gain a comprehensive understanding of the changing patterns of water quality and microalgae and their relationships before and after the water diversion project, providing a guidance for future lake management in regulating hydraulic conditions and improving water quality of Dongping Lake.
Collapse
Affiliation(s)
- Rong Sun
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Jielin Wei
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Shasha Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Haiyan Pei
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China; School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China; Shandong Provincial Engineering Center on Environmental Science and Technology, Jinan, 250061, China; Institute of Eco-Chongming (IEC), Shanghai, 202162, China.
| |
Collapse
|
12
|
Chen X, Xu G, Xiong P, Peng J, Fang K, Wan S, Wang B, Gu F, Li J, Xiong H. Dry and wet seasonal variations of the sediment fungal community composition in the semi-arid region of the Dali River, Northwest China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:123694-123709. [PMID: 37993647 DOI: 10.1007/s11356-023-31042-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/09/2023] [Indexed: 11/24/2023]
Abstract
Microbial communities play an important role in water quality regulation and biogeochemical cycling in freshwater ecosystems. However, there has been a lack of research on the seasonal variation of sediment microorganisms in the sediments of small river basins in typical semi-arid region. In this study, high-throughput DNA sequencing was used to investigate the fungal community and its influencing factors in the sediment of the Dali River in the dry and wet seasons. The results showed that there were obvious seasonal differences in fungal alpha diversity. The diversity and richness of fungi in the dry season were greater than that in the wet season, but the evenness of fungi in the dry season was lower than that in the wet season. In addition, Ascomycota and Basidiomycota were the most important phyla in the Dali River fungal community, but their distributions showed clear seasonal differences. In the dry season, the relative abundance of Ascomycota and Basidiomycota were 12.34-46.42% and 17.59-27.20%, respectively. In the wet season, the relative abundances of these two phyla were 24.33-36.56% and 5.75-12.26%, respectively. PICRUSt2 was used to predict the metabolic function of fungal community in the sediment, and it was found that at the first level, the proportion of biosynthesis in the dry season was higher than that in the wet season. The ecological network structure showed that the fungal community in the wet season was more complex and stable than that in the dry season. The characteristic fungi in the dry season sediment were chytrid fungi in the family Rhizophydiaceae and the order Rhizophydiales, whereas those in the wet season sediment were in the orders Eurotiales and Saccharomycetales. Canonical correspondence analysis (CCA) showed that the physicochemical properties of water and sediment together explained a greater proportion of the dry-season fungal community changes than of the wet-season changes. In the dry season, temperature and ammonia nitrogen in the water were the main factors affecting the change of fungal community, whereas in the wet season, total nitrogen concentration of the water, electrical conductivity, total organic carbon and available phosphorus of the sediment, pH, and temperature were the main factors affecting the changes in fungal community composition. The results of this study enhanced our understanding of microbial communities in semi-arid river ecosystems, and highlight the importance of the management and protection in river ecosystems.
Collapse
Affiliation(s)
- Xin Chen
- Key Laboratory of National Forestry Administration on Ecological Hydrology and Disaster Prevention in Arid Regions, Xi'an University of Technology, Xi'an, 710048, Shaanxi, China
| | - Guoce Xu
- Key Laboratory of National Forestry Administration on Ecological Hydrology and Disaster Prevention in Arid Regions, Xi'an University of Technology, Xi'an, 710048, Shaanxi, China.
| | - Ping Xiong
- Shaanxi Forestry Survey and Planning Institute, Xi'an, 710082, Shaanxi, China
| | - Jianbo Peng
- Shaanxi Forestry Survey and Planning Institute, Xi'an, 710082, Shaanxi, China
| | - Kang Fang
- Key Laboratory of National Forestry Administration on Ecological Hydrology and Disaster Prevention in Arid Regions, Xi'an University of Technology, Xi'an, 710048, Shaanxi, China
| | - Shun Wan
- Key Laboratory of National Forestry Administration on Ecological Hydrology and Disaster Prevention in Arid Regions, Xi'an University of Technology, Xi'an, 710048, Shaanxi, China
| | - Bin Wang
- Key Laboratory of National Forestry Administration on Ecological Hydrology and Disaster Prevention in Arid Regions, Xi'an University of Technology, Xi'an, 710048, Shaanxi, China
| | - Fengyou Gu
- Key Laboratory of National Forestry Administration on Ecological Hydrology and Disaster Prevention in Arid Regions, Xi'an University of Technology, Xi'an, 710048, Shaanxi, China
| | - Jing Li
- Key Laboratory of National Forestry Administration on Ecological Hydrology and Disaster Prevention in Arid Regions, Xi'an University of Technology, Xi'an, 710048, Shaanxi, China
| | - Haijing Xiong
- Key Laboratory of National Forestry Administration on Ecological Hydrology and Disaster Prevention in Arid Regions, Xi'an University of Technology, Xi'an, 710048, Shaanxi, China
| |
Collapse
|
13
|
Liu B, Tian Z, Xie P, Guo F, Zhang W, Zhang J, Wu J, Zhu X, Song Z, Hu H, Zhu Y. Temporal and spatial dynamic changes of planktonic bacteria community structure in Li River, China: a seasonal survey. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:111244-111255. [PMID: 37814045 DOI: 10.1007/s11356-023-30166-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023]
Abstract
A combined temporal and spatial research approach helps us to evaluate the ecological status of a river scientifically and comprehensively. To understand the response mechanisms of bacteria in the Li River to different environments, we conducted a 1-year study (2020-2021) and collected water samples from 18 sections of the river in October, January, April, and August. 16S sequencing was used to study the composition and structure of bacterial communities in Li River at different temporal and spatial scales. The results showed that NO3--N, TP, T, pH, and DO were significantly different on spatial and temporal scales. Alpha diversity of planktonic bacteria in Li River fluctuated significantly with the season, reaching its highest in summer. Proteobacteria remained the most dominant phylum in all seasons, but the differential microorganisms varied between seasons. Although the abundance of metabolic functions of planktonic bacteria did not show significant differences between seasons, we found that DO, TP, T, and COD were the key environmental factors affecting bacterial metabolism. In addition, the co-occurrence network analysis showed that the autumn network had a higher number of nodes and edges and exhibited a high degree of complexity, while the summer network had the highest degree of modularity and exhibited greater stability. These results deepen our knowledge of the response mechanisms of river microorganisms to temporal and spatial changes and provide a scientific reference for the study of river ecosystems.
Collapse
Affiliation(s)
- Biao Liu
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China.
| | - Zeyuan Tian
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
- School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Penghao Xie
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Feng Guo
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Wenjun Zhang
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Junxia Zhang
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Junfeng Wu
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Xinfeng Zhu
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Zhongxian Song
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Hongwei Hu
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Yichun Zhu
- School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| |
Collapse
|
14
|
Zhang Y, Wang M, Cheng W, Huang C, Ren J, Zhai H, Niu L. Temporal and Spatial Variation Characteristics and Influencing Factors of Bacterial Community in Urban Landscape Lakes. MICROBIAL ECOLOGY 2023; 86:2424-2435. [PMID: 37272971 DOI: 10.1007/s00248-023-02249-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/23/2023] [Indexed: 06/06/2023]
Abstract
Urban landscape lakes are closely related to human activity, but there are limited studies on their bacterial community characteristics and risks to human health. In this study, four different types of urban landscape lakes in Xi'an were selected, and the bacterial community structures in different seasons were analyzed by Illumina Nova high-throughput sequencing technology. Seasonal variations in bacterial communities were analyzed by linear discriminant analysis, STAMP difference analysis, and nonmetric multidimensional scaling. Redundancy analysis was used to investigate the influencing factors. Furthermore, the metabolic functions of bacterial communities were predicted by Tax4Fun. There were clear seasonal differences in the α-diversity of bacteria, with bacterial diversity being higher in winter than in summer in the four urban landscape lakes, and the diversity of different water sources was different; the distributions of Proteobacteria, Actinobacteria, Chloroflexi, and Verrucomicrobia had significant seasonal differences; and the dominant bacteria at the genus level had obvious temporal and spatial differences. Furthermore, a variety of environmental factors had an impact on bacterial communities, and temperature, DO, and nitrogen were the primary factors affecting the seasonal variation in bacteria. There are also significant seasonal differences in the metabolic functions of bacterial communities. These results are helpful for understanding the current status of bacteria in the aquatic environments of such urban landscape lakes.
Collapse
Affiliation(s)
- Yutong Zhang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China
- Institute of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, China
| | - Min Wang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China.
- Institute of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, China.
| | - Wen Cheng
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China.
- Institute of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, China.
| | - Chen Huang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China
- Institute of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, China
| | - Jiehui Ren
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China
- Institute of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, China
| | - Hongqin Zhai
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China
- Institute of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, China
| | - Li Niu
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China
- Institute of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, China
| |
Collapse
|
15
|
Dai J, Sha H, Wu X, Wu S, Zhang Y, Wang F, Gao A, Xu J, Tian F, Zhu S, Ptak M. Pulses outweigh cumulative effects of water diversion from river to lake on lacustrine phytoplankton communities. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:3025-3039. [PMID: 36136253 DOI: 10.1007/s10653-022-01383-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 09/01/2022] [Indexed: 06/01/2023]
Abstract
Due to the allochthonous input of nutrients and species, the cumulative effects of water diversion on water-receiving lakes deserve attention. Taking the water diversion project from the Yangtze River to Lake Taihu (WDYT) as an example, we explored the temporal effects of WDYT on the phytoplankton community and physicochemical habitat of Lake Taihu in autumn and winter from 2013 to 2018. Although the short-term diversion significantly increased the risk of importing nutrients, the relatively high quality of the diversion water compared with other inflow rivers had improved the water quality of the water-receiving lake region. The seasonal water diversion significantly increased phytoplankton diversity and community network complexity and reshaped the lacustrine community to be diatom-dominated with their relative proportions of 24.1-64.9% during water diversion periods. The contributions of physicochemical habitat changes induced by water diversion to variations in phytoplankton communities were 24.0-28.0%. The differences in phytoplankton diversity, community composition and physicochemical habitat in the water-receiving lake region between the diversion and non-diversion years were more evident than those between the non-diversion years in the same season, when comparing the multivariate dispersion indices among them. However, the lacustrine phytoplankton community during non-diversion periods still has not been essentially altered after several years of diversion, so the pulse effects of short-term water diversion were more obvious than the long-term cumulative impacts. Better control of allochthonous nutrients, appropriate increase in inflow water, adhering to the long-term operation, should be effective to enhance ecological benefits of such water diversion projects.
Collapse
Affiliation(s)
- Jiangyu Dai
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing, 210029, China
| | - Haifei Sha
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing, 210029, China
| | - Xiufeng Wu
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing, 210029, China.
| | - Shiqiang Wu
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing, 210029, China
| | - Yu Zhang
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing, 210029, China
| | - Fangfang Wang
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing, 210029, China
| | - Ang Gao
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing, 210029, China
| | - Jiayi Xu
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing, 210029, China
| | - Fuwei Tian
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing, 210029, China
| | - Senlin Zhu
- College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Mariusz Ptak
- Department of Hydrology and Water Management, Adam Mickiewicz University, B. Krygowskiego 10, 61-680, Poznań, Poland
| |
Collapse
|
16
|
Qu X, Olden JD, Xia W, Liu H, Xie Z, Hughes RM, Chen Y. Hydrology and water quality shape macroinvertebrate patterns and facilitate non-native species dispersals in an inter-basin water transfer system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 329:117111. [PMID: 36566728 DOI: 10.1016/j.jenvman.2022.117111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 12/09/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Understanding biotic assemblage variations resulting from water diversions and other pressures is critical for aquatic ecosystem conservation, but hampered by limited research. Mechanisms driving macroinvertebrate assemblages were determined across five lakes along China's South-to-North Water Diversion Project, an over 900-km water transfer system connecting four river basins. We assessed macroinvertebrate patterns from 59 sites in relation to water quality, climatic, spatial, and hydrologic factors. Macroinvertebrate density, biomass, and species richness increased from upriver to downriver lakes, and were higher during the water transfer period than in the non-water transfer period. Non-native species including Nephtys sp., Paranthura japonica, Potamillacf acuminata, Capitekkidae spp. and Novaculina chinensis, were distributed along the entire study system, some become dominant in upriver lakes. High species turnover occurred in two upriver lakes. Hydrology and water quality are critical factors in shaping these macroinvertebrate patterns. Hydrological disturbance by water transfer boosted macroinvertebrate abundance during the water transfer period while facilitated non-native species dispersals and increased biotic homogenization. This study indicates the need for: 1) an effective ecosystem monitoring system; 2) unified system management standards; 3) external pollution controls; and 4) limiting the dispersal of non-native species.
Collapse
Affiliation(s)
- Xiao Qu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Julian D Olden
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Wentong Xia
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, 570228, China
| | - Han Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhicai Xie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Robert M Hughes
- Amnis Opes Institute, Corvallis, OR, USA; Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Corvallis, OR, USA
| | - Yushun Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
17
|
Zhu Z, Li X, Bu Q, Yan Q, Wen L, Chen X, Li X, Yan M, Jiang L, Chen G, Li S, Gao X, Zeng G, Liang J. Land-Water Transport and Sources of Nitrogen Pollution Affecting the Structure and Function of Riverine Microbial Communities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2726-2738. [PMID: 36746765 DOI: 10.1021/acs.est.2c04705] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The characterization of variations in riverine microbiota that stem from contaminant sources and transport modes is important for understanding biogeochemical processes. However, the association between complex anthropogenic nitrogen pollution and bacteria has not been extensively investigated owing to the difficulties faced while determining the distribution of nitrogen contaminants in watersheds. Here, we employed the Soil and Water Assessment Tool alongside microbiological analysis to explore microbial characteristics and their responses to complex nitrogen pollution patterns. Significant variations in microbial communities were observed in sub-basins with distinct land-water pollution transport modes. Point source-dominated areas (PSDAs) exhibited reduced microbial diversity, high number of denitrification groups, and increased nitrogen cycling compared with others. The negative relative deviations (-3.38) between the measured and simulated nitrate concentrations in PSDAs indicated that nitrate removal was more effective in PSDAs. Pollution sources were also closely associated with microbiota. Effluents from concentrated animal feeding operations were the primary factors relating to the microbiota compositions in PSDAs and balanced areas. In nonpoint source-dominated areas, contaminants from septic tanks become the most relevant sources to microbial community structures. Overall, this study expands our knowledge regarding microbial biogeochemistry in catchments and beyond by linking specific nitrogen pollution scenarios to microorganisms.
Collapse
Affiliation(s)
- Ziqian Zhu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P. R. China
| | - Xin Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P. R. China
| | - Qiurong Bu
- National Engineering Research Centre of Advanced Technologies and Equipment for Water Environmental Pollution Monitoring, Changsha 410205, P. R. China
| | - Qingcheng Yan
- National Engineering Research Centre of Advanced Technologies and Equipment for Water Environmental Pollution Monitoring, Changsha 410205, P. R. China
| | - Liqun Wen
- National Engineering Research Centre of Advanced Technologies and Equipment for Water Environmental Pollution Monitoring, Changsha 410205, P. R. China
| | - Xiaolei Chen
- National Engineering Research Centre of Advanced Technologies and Equipment for Water Environmental Pollution Monitoring, Changsha 410205, P. R. China
| | - Xiaodong Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P. R. China
| | - Ming Yan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P. R. China
| | - Longbo Jiang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P. R. China
| | - Gaojie Chen
- School of Mathematics, Hunan University, Changsha 410082, P. R. China
| | - Shuai Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P. R. China
| | - Xiang Gao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P. R. China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P. R. China
| | - Jie Liang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P. R. China
| |
Collapse
|
18
|
Lü J, Wang S, Liu B, Song X. Spatiotemporal heterogeneity of nitrogen transformation potentials in a freshwater estuarine system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160335. [PMID: 36414069 DOI: 10.1016/j.scitotenv.2022.160335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/31/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Under the influence of water diversion, the microbial community composition of estuarine waters and sediments might have complex spatiotemporal variations. Microbial interactions with N are significant for lake water quality. Therefore, the largest lake receiving seasonal water diversion in the North China Plain was selected as the study area. Based on 16S rRNA high-throughput sequencing and metagenomic sequencing techniques, this study analysed temporal (June-December) and spatial (estuary-pelagic zone) changes in the microbial community and functional gene composition of water and sediment. The results showed that the water microbial community composition had temporality, while sediment microbes had spatiality. The main causes of temporality in the aquatic microbial community were temperature and nitrate-N concentration, while those of sediment were flow velocity and N content. Additionally, there were complex interactions between microbial communities and N. In water, temporal variation in the relative abundance of N-related functional genes might have indirectly contributed to inorganic N composition in June (nitrite-N > ammonia-N > nitrate-N) and August (nitrite-N > nitrate-N > ammonia-N). High nitrate-N concentrations in December influenced the microbial community composition. In sediment, the estuary had higher N functional genes than the pelagic estuary, creating a relatively active N cycle and reducing total N levels in the estuary. This study revealed a potentially overlooked N sink and a flow velocity threshold that has great impacts on microbial community composition. This research contributes to a deeper understanding of the estuarine N cycle under the influence of water diversions, with implications for the calculation of global N balances and the management of lake water environments.
Collapse
Affiliation(s)
- Jiali Lü
- Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China; Sino-Danish College of University of Chinese Academy of Sciences, Beijing 101408, China; Sino-Danish Centre for Education and Research, Beijing 101408, China; Key Laboratory of Water Cycle & Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen 999017, Denmark
| | - Shiqin Wang
- Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China; Xiongan Institute of Innovation, Chinese Academy of Science, China.
| | - Binbin Liu
- Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China; Xiongan Institute of Innovation, Chinese Academy of Science, China
| | - Xianfang Song
- Sino-Danish College of University of Chinese Academy of Sciences, Beijing 101408, China; Sino-Danish Centre for Education and Research, Beijing 101408, China; Key Laboratory of Water Cycle & Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
19
|
Ma Y, Hua Z, Wang P, Yu L, Lu Y, Wang Y, Dong Y. Differences in bacterial community composition, structure and function between sediments in waterways and non-navigable channels in a plain river network area. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:45910-45923. [PMID: 36708482 DOI: 10.1007/s11356-023-25535-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/20/2023] [Indexed: 01/29/2023]
Abstract
Bacterial communities greatly help maintain the balance of river ecosystems and are highly sensitive to changes in environmental conditions. Plain river network areas (PRNs) are characterized by dense river networks, low-lying terrain, and slow water flow, where the bottom sediment is frequently disturbed by ship navigation due to the limited water depth and width of waterways, providing a unique ecological niche for bacterial growth. Hence, understanding how bacterial communities in PRNs respond to changes in hydrodynamic conditions, physicochemical parameters, and pollutants under ship navigation is essential to maintaining the stability of inland waterway ecosystems. The Taihu Lake Basin, a typical PRN, was selected to explore the differences in bacterial community composition, structure and function between sediments in waterways (WS) and non-navigable channels (NS). The results indicate that the sediment from NS possessed more diverse and complex bacterial communities than WS. NMDS and ANOSIM analyses further verified the significant differences in bacterial community structure between WS and NS. Combined with LEfSe, we observed the highly differential taxonomy between WS and NS from phylum to order. Moreover, a comparison of beta diversity dissimilarity indices revealed that although species replacement dominated both the WS and NS beta-diversity patterns, species loss caused the differences in the overall beta diversity between them. Variance partitioning analysis revealed that physicochemical parameters (clay content, pH, ORP, and others) and ship traffic volume (STV) were the main driving factors for bacterial community distribution between WS and NS, while pollutants (heavy metals, perfluoroalkyl acids, and others) had a relatively minor influence. PICRUSt2 analysis revealed that the changes in pH, ORP, and STV under ship navigation might inhibit the bacterial ability to metabolize carbohydrates. The results reveal the comprehensive effects of ship navigation disturbance on sediment bacterial communities in the PRN and contribute to further understanding of inland waterway ecosystems.
Collapse
Affiliation(s)
- Yixin Ma
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development On Shallow Lakes, Hohai University, Nanjing, 210098, People's Republic of China.,Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, People's Republic of China.,College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Zulin Hua
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development On Shallow Lakes, Hohai University, Nanjing, 210098, People's Republic of China.,Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, People's Republic of China.,College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Peng Wang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development On Shallow Lakes, Hohai University, Nanjing, 210098, People's Republic of China. .,Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, People's Republic of China. .,College of Environment, Hohai University, Nanjing, 210098, People's Republic of China.
| | - Liang Yu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development On Shallow Lakes, Hohai University, Nanjing, 210098, People's Republic of China.,Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, People's Republic of China.,College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Ying Lu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development On Shallow Lakes, Hohai University, Nanjing, 210098, People's Republic of China.,Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, People's Republic of China.,College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Yifan Wang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development On Shallow Lakes, Hohai University, Nanjing, 210098, People's Republic of China.,Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, People's Republic of China.,College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Yueyang Dong
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development On Shallow Lakes, Hohai University, Nanjing, 210098, People's Republic of China.,Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, People's Republic of China.,College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| |
Collapse
|
20
|
Smal H, Ligęza S, Pranagal J, Gmitrowicz-Iwan J. Speciation and risk assessment of Zn, Pb, and Cd in bottom sediments of two small upland dam reservoirs, Poland. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 322:116041. [PMID: 36041307 DOI: 10.1016/j.jenvman.2022.116041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/09/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Sediments of two small dam reservoirs in Poland, Zalew Zemborzycki (ZZ) and Brody Iłżeckie (BI), were studied. Sediments from both reservoirs were sampled at 17 sites in the transects perpendicular to the shoreline, at the river inflow and the frontal dam and analysed using the BCR procedure for speciation of zinc (Zn), lead (Pb) and cadmium (Cd). The risk assessment code (RAC) and the individual contamination factor (ICF) were determined. In BI, the sediments were removed from the considerable part of the reservoir, creating an opportunity to study the effect of dredging on the speciation of trace metals. Trace metals partitioning was differentiated according to the transect/site and in the case of BI sediments also on the transect location in the dredged or undredged part of the reservoir. Considering ZZ sediments, the order of fractions for Zn, Pb and Cd according to a decreasing overall mean percentage contribution to total metal content was the same: F4 (residual) >F3 (oxidisable) >F2 (reducible) >F1 (acid soluble). In sediments of ZZ at most sites, the RAC for Zn, Pb and Cd revealed low or medium risk and ICF low or moderate contamination. For BI sediments, the order of fractions for Pb was similar while for Zn and Cd quite the opposite compared to the sediments of ZZ and it was: Pb-F4>F3>F1>F2, Zn-F1>F3>F2>F4, Cd-F1>F2>F3>F4. For BI sediments, RAC values for Zn, on average, indicated high and very high ecological risk; for Pb low and moderate risk and for Cd - high risk in the initial part and dredged part and according to the average value in the reservoir, while a medium risk in undredged part sediments. The ICF index showed high contamination with Cd for all BI sediments. The sequential analysis showed that Pb is poorly mobile as in sediments of both reservoirs residual fractions accounted, on average, for about 60% of the total content.
Collapse
Affiliation(s)
- Halina Smal
- Institute of Soil Science, Engineering and Environment Management, University of Life Sciences in Lublin, Leszczyńskiego St. 7, 20-069, Lublin, Poland
| | - Sławomir Ligęza
- Institute of Soil Science, Engineering and Environment Management, University of Life Sciences in Lublin, Leszczyńskiego St. 7, 20-069, Lublin, Poland.
| | - Jacek Pranagal
- Institute of Soil Science, Engineering and Environment Management, University of Life Sciences in Lublin, Leszczyńskiego St. 7, 20-069, Lublin, Poland
| | - Joanna Gmitrowicz-Iwan
- Institute of Soil Science, Engineering and Environment Management, University of Life Sciences in Lublin, Leszczyńskiego St. 7, 20-069, Lublin, Poland
| |
Collapse
|
21
|
Lü J, Wang S, Liu B, Zheng W, Tan K, Song X. Slight flow volume rises increase nitrogen loading to nitrogen-rich river, while dramatic flow volume rises promote nitrogen consumption. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:157013. [PMID: 35772543 DOI: 10.1016/j.scitotenv.2022.157013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/10/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Concentrated rainfall and water transfer projects result in slight and dramatic increases in flow volume over short periods of time, causing nitrogen recontamination in the water-receiving areas of nitrogen-rich rivers. This study coupled hydrodynamic and biochemical reaction models to construct a model for quantifying diffusive transport and transformation fluxes of nitrogen across the water-sediment interface and analysed possible changes in the relative abundance of microbial functional genes using high-throughput sequencing techniques. In this study, the processes of ammonium (NH4+-N) and nitrate (NO3--N) nitrogen release and sedimentation with resuspended particles, as well as mineralisation, nitrification, and denitrification processes were investigated at the water-sediment interface in the Fu River during slight and dramatic increases in flow volume caused by concentrated rainfall and water diversion projects. Specifically, a slight flow volume rise increased the release of NH4+-N from the sediment, inhibited sedimentation of NO3--N, decreased the mineralisation rate, increased the nitrification rate, and had little effect on the denitrification process, ultimately increasing the nitrogen load to the river water. A dramatic increase in flow volume simultaneously increased NH4+-N and NO3--N exchange fluxes, inhibited the mineralisation process, promoted nitrification-denitrification processes, and increased inorganic nitrogen consumption in the river. This study provides a solution for the re-pollution of rivers that occurs during the implementation of reservoir management and water diversion projects. Furthermore, these results indicate a potential global nitrogen sink that may have been overlooked.
Collapse
Affiliation(s)
- Jiali Lü
- Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China; Sino-Danish College of University of Chinese Academy of Sciences, Beijing 101408, China; Sino-Danish Centre for Education and Research, Beijing 101408, China; Key Laboratory of Water Cycle & Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Shiqin Wang
- Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China; Xiongan Institute of Innovation, Chinese Academy of Science, China.
| | - Binbin Liu
- Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China; Xiongan Institute of Innovation, Chinese Academy of Science, China
| | - Wenbo Zheng
- Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China
| | - Kangda Tan
- Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China
| | - Xianfang Song
- Sino-Danish College of University of Chinese Academy of Sciences, Beijing 101408, China; Sino-Danish Centre for Education and Research, Beijing 101408, China; Key Laboratory of Water Cycle & Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
22
|
Liu Y, Pan B, Zhu X, Zhao X, Sun H, He H, Jiang W. Patterns of microbial communities and their relationships with water quality in a large-scale water transfer system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 319:115678. [PMID: 35842990 DOI: 10.1016/j.jenvman.2022.115678] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 07/01/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Revealing the patterns and their mechanisms of microbial community in water transfer projects, especially in inter-basin water transfer projects, is the premise of biohazard warning, water quality monitoring and sustainable management of water resources. Using a river and impounded lakes from the eastern route of South-to-North Water Transfer project as a model system, we studied the diversity and assembly patterns of bacterial communities in artificially connected ecosystems and their influencing factors. Our results showed that water quality improved during the water transfer period (WTP). Further, the latitudinal pattern of bacterioplankton was reversed, which was mainly due to the change of evenness caused by water transfer and had no significant correlation with water quality parameters. Importantly, the spatial heterogeneity of the bacterial communities decreased during the WTP, and the differences in the communities between the impounded lakes and river was more significant in the non-water transfer period (NWTP) than in the WTP, which was the result of water transfer and water quality. Overall, bacterial community was largely shaped by stochastic processes. The bacterial communities had a higher migration rate during the WTP than during the NWTP. We believe that the water transfer increased the risk of biological homogenization while improving water quality. Combined, our work systematically discusses the microbial community pattern and mechanism in the inter-basin water transfer project, providing theoretical support for inter-basin water transfer project planning management and ecological environment protection.
Collapse
Affiliation(s)
- Yaping Liu
- State Key Laboratory of Eco-hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, Shaanxi, PR China
| | - Baozhu Pan
- State Key Laboratory of Eco-hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, Shaanxi, PR China.
| | - Xinzheng Zhu
- State Key Laboratory of Eco-hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, Shaanxi, PR China
| | - Xiaohui Zhao
- State Key Laboratory of Eco-hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, Shaanxi, PR China
| | - He Sun
- College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Haoran He
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Wanxiang Jiang
- College of Life Sciences, Zaozhuang University, Zaozhuang 277160, Shandong, PR China
| |
Collapse
|
23
|
Hu X, Hu M, Zhu Y, Wang G, Xue B, Shrestha S. Phytoplankton community variation and ecological health assessment for impounded lakes along the eastern route of China's South-to-North Water Diversion Project. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 318:115561. [PMID: 35738123 DOI: 10.1016/j.jenvman.2022.115561] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 05/22/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Interbasin water diversion projects have been proven to effectively alleviate water resource shortages in areas along water diversion lines, but few studies have focused on ecological health in impounded lakes compared with research on water quality and pollutants. Herein, monitoring data were collected during the nonwater diversion period (NWDP) and the water diversion period (WDP) from 2018 to 2019, and the index of biological integrity (IBI) method based on phytoplankton communities was used to evaluate the ecological health of the impounded lakes (Nansi Lake and Dongping Lake) along the eastern route of the South-to-North Water Diversion Project. The results demonstrated that water diversion improved the water quality of the impounded lakes during the WDP, especially total nitrogen and ammonia nitrogen. Meanwhile, the water diversion affected the phytoplankton community structure and diversity, and network analysis further revealed water diversion could be beneficial to the ecological health of impounded lakes. Furthermore, the P-IBI showed that the overall ecological health assessment was "good" during the WDP. Water diversion substantially improved the ecological health status and stability of the impounded lakes during the dry season. Finally, the direct correlations between the water quality parameters and the P-IBI were weak, and water quality parameters could indirectly affect the P-IBI by changing the phytoplankton community structure. These findings will enhance our understanding of the ecological health of the impounded lakes of the South-to-North Water Diversion Project. Furthermore, this study will provide a reference to support the ecosystem security of impounded lakes in other large water diversion projects.
Collapse
Affiliation(s)
- Xiaoyi Hu
- Key Laboratory of Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Man Hu
- Key Laboratory of Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yi Zhu
- Key Laboratory of Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Guoqiang Wang
- Key Laboratory of Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Baolin Xue
- Key Laboratory of Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Sangam Shrestha
- Water Engineering and Management, Asian Institute of Technology, Pathum Thani, 12120, Thailand
| |
Collapse
|