1
|
Zhao D, Cai J, Shen S, Liu Q, Lan Y. Nature-based solutions: Assessing the carbon sink potential and influencing factors of urban park plant communities in the temperate monsoon climate zone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175347. [PMID: 39117208 DOI: 10.1016/j.scitotenv.2024.175347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/12/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
As nature-based solutions, urban park plant communities play a pivotal role in regulating urban carbon cycles, alleviating global climate change, and fostering sustainable urban development. However, the factors influencing the carbon sink efficiency of plant communities in urban parks within temperate monsoon climate zones have not been fully investigated. This study used multivariate heterogeneous data to evaluate plant communities' carbon storage (CS) and annual carbon sequestration (ACS) in 25 urban parks across different biotope types in Jinan, a city located in China's temperate monsoon climate zone. The driving mechanisms affecting carbon sink efficacy were revealed using Spearman correlation, regression, principal component analyses, and structural equation modeling. Results demonstrated that: 1) Closed broadleaf multi-layer green space has significant carbon sink potential compared to other vegetation structures. 2) The carbon sink efficiency of the plant communities negatively correlated with the sky view factor and planting layout density. Three-dimensional green quantity (3DGQ), the ratio of trees and shrubs, species richness, and vertical structures positively correlated with plant communities' carbon storage and sequestration. 3) Whether increasing 3DGQ, the ratio of trees and shrubs, or the total number of individuals of all species, there is a certain threshold bottleneck in enhancing the carbon sink benefits of plant communities. 4) Plant community structure, species composition, and species diversity influenced carbon sink efficiency, collectively forming the first principal component. The 3DGQ affected carbon sink efficiency as the second principal component. Synergistic effects existed among these driving factors, jointly explained 64.3 % and 90.1 % of the CS and ACS of plant communities, respectively. Optimization design strategies for different plant communities in urban parks were proposed.
Collapse
Affiliation(s)
- Dan Zhao
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
| | - Jun Cai
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
| | - Shijia Shen
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
| | - Qianchi Liu
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
| | - Yuqian Lan
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
2
|
Xie L, Palmroth S, Yin C, Oren R. Extramatrical mycelial biomass is mediated by fine root mass and ectomycorrhizal fungal community composition across tree species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175175. [PMID: 39111434 DOI: 10.1016/j.scitotenv.2024.175175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/16/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
In many ecosystems, a large fraction of gross primary production is invested in mycorrhiza. Ectomycorrhizal (ECM) mycelium is involved in regulating soil carbon and nutrient cycling. However, little is known about how mycelial biomass, production and turnover differ depending on ECM fungal community composition and associated tree species. We quantified fine root biomass and length using soil cores, and mycelial traits (biomass, production, and turnover) using mesh-bags and ergosterol analysis, and identified ECM exploration types by Illumina MiSeq sequencing of four ECM-dominated tree species (Picea asperata, Larix gmelinii, Quercus aquifolioides and Betula albosinensis) in subalpine forest. The ECM fungal community composition separated between needle-leaved and broadleaved species, and between evergreen and deciduous species. The ratio of mycelial to fine root biomass was similar across the species regardless of genus-scale community composition and the relative abundance of exploration types. Compared to the other species, Q. aquifolioides displayed higher fine root biomass and mycelial biomass and production, dominated by contact-short exploration type. Mycelial turnover rate tended to be lowest in P. asperata, dominated by medium-long exploration type. Much higher production of mycelium and only slightly higher turnover rate in Q. aquifolioides suggests that its steady-state mycelial biomass would be higher than of the other species. Moreover, compared to the two deciduous species, with similar production but somewhat lower turnover rate, the standing crop of mycelium in P. asperata may stabilize at a higher value. Our findings, that exploration type may affect production and turnover, highlight the importance of characterizing ECM fungal communities by exploration types when estimating the contribution of mycelium biomass to forest carbon sink and storage.
Collapse
Affiliation(s)
- Lulu Xie
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu 610041, PR China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, PR China
| | - Sari Palmroth
- Nicholas School of the Environment & Pratt School of Engineering, Duke University, Durham, NC 27708, USA; Department of Forest Sciences, University of Helsinki, FI-00014, Finland
| | - Chunying Yin
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu 610041, PR China.
| | - Ram Oren
- Nicholas School of the Environment & Pratt School of Engineering, Duke University, Durham, NC 27708, USA; Department of Forest Sciences, University of Helsinki, FI-00014, Finland
| |
Collapse
|
3
|
Xu Y, Ge X, Gao G, Yang Y, Hu Y, Li Z, Zhou B. Microbial pathways driving stable soil organic carbon change in abandoned Moso bamboo forests in southeast China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118890. [PMID: 37659374 DOI: 10.1016/j.jenvman.2023.118890] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/18/2023] [Accepted: 08/27/2023] [Indexed: 09/04/2023]
Abstract
Mineral-associated organic carbon (MOC) is a stable component of the soil carbon (C) pool, critical to realize carbon sequestration and coping with climate change. Many Moso bamboo (Phyllostachys edulis) forests in subtropical and tropical areas that used to be intensively managed have been left unmanaged. Still, studies on MOC changes occurring during the transition from intensive management to unmanagement are lacking. Besides, the understanding of the role of microorganisms in MOC accumulation is far from satisfactory. Based on the combination of field investigation and laboratory analysis of 40 Moso bamboo forest sampling plots with different unmanaged chronosequence's in southeast China, we observed the MOC content in Moso bamboo forests left unmanaged for 2-5 years had decreased, whereas that in forests left unmanaged for 11-14 years had increased compared with that in intensively managed forests. Specifically, the MOC contents in forests left unmanaged for 11-14 years were significantly higher than in those under intensive management or unmanaged for 2-5 years. Moreover, we found that microorganisms drove MOC change through two different pathways: (i) more microorganisms led to more soil nutrients, which led to more amino sugars, ultimately resulting in the accumulation of MOC, and (ii) microorganisms promoted the accumulation of MOC by influencing the content of metal oxides (poorly crystalline aluminum oxides and free aluminum oxides). We believe that ignoring the interaction between microorganisms and metal oxides may lead to uncertainty in evaluating the relative contribution of microbial residues to MOC.
Collapse
Affiliation(s)
- Yaowen Xu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China; Qianjiangyuan Forest Ecosystem Research Station, National Forestry and Grassland Administration of China, Hangzhou, 311400, China
| | - Xiaogai Ge
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China; Qianjiangyuan Forest Ecosystem Research Station, National Forestry and Grassland Administration of China, Hangzhou, 311400, China
| | - Ge Gao
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China; Qianjiangyuan Forest Ecosystem Research Station, National Forestry and Grassland Administration of China, Hangzhou, 311400, China
| | - Yuhao Yang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China; Qianjiangyuan Forest Ecosystem Research Station, National Forestry and Grassland Administration of China, Hangzhou, 311400, China; College of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Yutao Hu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China; Qianjiangyuan Forest Ecosystem Research Station, National Forestry and Grassland Administration of China, Hangzhou, 311400, China; College of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Zhengcai Li
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China; Qianjiangyuan Forest Ecosystem Research Station, National Forestry and Grassland Administration of China, Hangzhou, 311400, China.
| | - Benzhi Zhou
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China; Qianjiangyuan Forest Ecosystem Research Station, National Forestry and Grassland Administration of China, Hangzhou, 311400, China.
| |
Collapse
|
4
|
Ke Y, Li H, Luo T, Chen B, Wang Q, Jiang X, Liu W. Reforestation Increases the Aggregate Organic Carbon Concentration Induced by Soil Microorganisms in a Degraded Red Soil, Subtropical China. Microorganisms 2023; 11:2008. [PMID: 37630568 PMCID: PMC10457963 DOI: 10.3390/microorganisms11082008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/26/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
In the process of biological carbon (C) sequestration during reforestation in degraded red soil, due to the decomposition of soil microorganisms, the interaction between soil organic carbon (SOC) and aggregates has an important effect on soil C sequestration. In this study, six common reforestation models and three soil layers were selected in a degraded red soil area of the central subtropical region to determine the composition of soil aggregates and the distribution of SOC in soil aggregates. Based on the results of the soil physicochemical properties and microbial community composition biomass, we assessed the changes in aggregate-associated organic C storage during fluctuations in the stability of the aggregates. After reforestation, the SOC stock increased by 131.28-140.00%. Compared with the three pure forests and broad-leaved mixed forests, coniferous and broad-leaved mixed forests showed the largest proportion of macroaggregates (85.48-89.37%) and higher SOC accumulation. Soil microbial biomass mainly affected the decomposition process of SOC by affecting the stability of the soil aggregates, and the effect of bacteria was more significant. Coniferous and broad-leaved mixed forests can provide more soil microorganisms and C sources than pure forest, thus promoting macroaggregate formation and stability and related organic C storage. This reforestation model has greater C sequestration potential.
Collapse
Affiliation(s)
- Yunfang Ke
- Jiangxi Provincial Key Laboratory of Silviculture, Jiangxi Agricultural University, Nanchang 330045, China; (Y.K.)
- College of Forestry/College of Art and Landscape, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Hui Li
- Jiangxi Provincial Key Laboratory of Silviculture, Jiangxi Agricultural University, Nanchang 330045, China; (Y.K.)
- College of Forestry/College of Art and Landscape, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Tianyu Luo
- Jiangxi Provincial Key Laboratory of Silviculture, Jiangxi Agricultural University, Nanchang 330045, China; (Y.K.)
- College of Forestry/College of Art and Landscape, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Baodong Chen
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiong Wang
- Jiangxi Provincial Key Laboratory of Silviculture, Jiangxi Agricultural University, Nanchang 330045, China; (Y.K.)
- College of Forestry/College of Art and Landscape, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xueru Jiang
- Jiangxi Provincial Key Laboratory of Silviculture, Jiangxi Agricultural University, Nanchang 330045, China; (Y.K.)
- College of Forestry/College of Art and Landscape, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Wei Liu
- Jiangxi Provincial Key Laboratory of Silviculture, Jiangxi Agricultural University, Nanchang 330045, China; (Y.K.)
- College of Forestry/College of Art and Landscape, Jiangxi Agricultural University, Nanchang, 330045, China
- Key Laboratory of Poyang Lake Watershed Agricultural Resources and Ecology of Jiangxi Province, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
5
|
Huang J, Chen Q, Wang Q, Gao J, Yin Y, Guo H. Future carbon storages of ecosystem based on land use change and carbon sequestration practices in a large economic belt. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:90924-90935. [PMID: 37464211 DOI: 10.1007/s11356-023-28555-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 06/28/2023] [Indexed: 07/20/2023]
Abstract
Assessments of ecosystem carbon storage are needed to form the scientific basis for carbon policies. Due to lack of data, there are few accurate, large-scale, and long-term predictions of ecosystem carbon storage. This study used the Distributed Land-Use Change Prediction (DLUCP) model with ten socioeconomic and two climate change scenarios for a total of 20 combinations that take into account population increase, technology innovation, climate change, and Grain for Green Project to make high-resolution predictions of land use change in the Yangtze River Economic Belt. Low and high carbon sequestration practices were considered to predict future carbon densities. Land use change data, carbon densities data, and the InVEST model were used to predict changes in ecosystem carbon storage from now to 2070. The results show a slight increase (1.88-4.17%) in carbon storage in the study area only based on land use change. Grain for Green Project has the largest impact on carbon storage among population increase, technology innovation, climate scenarios, and Grain for Green Project, which increases carbon storage by 4.17%. After the implementation of carbon sequestration practices, there is an increase in carbon storages from 28.51 to 56.77% in the study area from now to 2070, and increasing carbon storages of forest in each stream and carbon storage of cropland in downstream are efficient ways to achieve carbon neutralization.
Collapse
Affiliation(s)
- Jing Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Qi Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Qingrui Wang
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jiameng Gao
- College of Information Sciences and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Ying Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
- Joint International Research Centre for Critical Zone Science by University of Leeds and Nanjing University, Nanjing University, Nanjing, 210023, China.
- Technology Innovation Center for Ecological Monitoring & Restoration Project on Land (arable), Ministry of Natural Resources, Geological Survey of Jiangsu Province, Nanjing, 210018, China.
- Quanzhou Institute for Environment Protection Industry, Nanjing University, Quanzhou, 362000, China.
| |
Collapse
|
6
|
Yang F, Zhong Y, Han G, Li X, Luo L, Cai X, Long X, Li T, Huang L. Effect of different vegetation restoration on soil organic carbon dynamics and fractions in the Rainy Zone of Western China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 331:117296. [PMID: 36642043 DOI: 10.1016/j.jenvman.2023.117296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/20/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Vegetation restoration on purple soil (Eutric Leptic Regosols) slopes aiming at reducing soil erosion in the Rainy Zone of Western China has significantly altered soil organic carbon (SOC) storage and distribution. A better understanding of the effects of different vegetation restoration types on SOC dynamics and fractions is critical in devising better policy to protect or enhance SOC stocks to improve soil quality and ecosystem function. In the present study, total, labile, and non-labile organic carbon (TOC, LC, and NLC), and carbon management index (CMI) of Cryptomeria fortunei (CF), mixed C. fortunei and Betula luminifera (MF), Neosinocalamus affinis (NA), and Camellia sinensis (CS) were compared with those of Zea mays field (ZM) on purple soil slopes in the Rainy Zone of Western China in order to develop more effective ways to implement vegetation restoration in the future. Different vegetation restoration types (CF, MF, NA and CS) increased TOC stock by 47.79%-118.31% and NLC stock by 56.61%-129.52% in the 0-50 cm soil layer compared with that of ZM. The direction and magnitude of changes in LC stock and CMI, however, depended strongly on the vegetation restoration type. Compared with ZM, CF had the largest increase of LC stock and CMI, whereas NA had the largest decrease of LC stock and CMI in the 0-50 cm soil layer. The LC:TOC ratio in four reforested species all declined significantly compared with that of ZM (p < 0.01), indicating decreased SOC activity after afforestation. The vegetation type and soil depth together explained more than 90% of the changes of TOC and its fractions in the plantations on purple soil slopes. Our study demonstrates that transforming the ZM into the CS is optimal to achieve the sustainable development goal, whereas transforming the ZM into the NA reduces the SOC activity and availability.
Collapse
Affiliation(s)
- Fan Yang
- Laboratory of Simulation on Soil Process, College of Geography and Resources Science, Neijiang Normal University, Neijiang 641100, China
| | - Yujian Zhong
- Laboratory of Simulation on Soil Process, College of Geography and Resources Science, Neijiang Normal University, Neijiang 641100, China
| | - Guangzhong Han
- Laboratory of Simulation on Soil Process, College of Geography and Resources Science, Neijiang Normal University, Neijiang 641100, China
| | - Xiuzhi Li
- Laboratory of Simulation on Soil Process, College of Geography and Resources Science, Neijiang Normal University, Neijiang 641100, China
| | - Li Luo
- Laboratory of Simulation on Soil Process, College of Geography and Resources Science, Neijiang Normal University, Neijiang 641100, China
| | - Xiaomin Cai
- Laboratory of Simulation on Soil Process, College of Geography and Resources Science, Neijiang Normal University, Neijiang 641100, China
| | - Xinyu Long
- Laboratory of Simulation on Soil Process, College of Geography and Resources Science, Neijiang Normal University, Neijiang 641100, China
| | - Tangli Li
- Laboratory of Simulation on Soil Process, College of Geography and Resources Science, Neijiang Normal University, Neijiang 641100, China
| | - Laiming Huang
- Yellow River Delta Modern Agricultural Engineering Laboratory, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Science, Beijing 100049, China.
| |
Collapse
|
7
|
Dar AA, Parthasarathy N. Ecological drivers of soil carbon in Kashmir Himalayan forests: Application of machine learning combined with structural equation modelling. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 330:117147. [PMID: 36610192 DOI: 10.1016/j.jenvman.2022.117147] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/06/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Soil carbon (SC) heterogeneity in mountain ecosystems is ascertained by a complex interdependency of topography, climate, edaphic features, and biotic elements, which may incite uncertainties in regional SC estimation. However, quantitative evaluations of the interplay between SC and these determinants as well as underlying possible link networks, are uncommon. Using the data set of SC along with soil properties at 0-10 and 10-20 cm depths from 135 plots under three coniferous forests, we aimed to ascertain SC heterogeneity and to elucidate how these interactions affect the SC storage, operating data-driven models (Least Absolute Shrinkage and Selection Operator [LASSO] regression and structural equation modeling [SEM]) to identify the dominant explanatory factors affecting the distribution of SC in Kashmir Himalayan forests. Average SC stocks at 0-10 cm and 10-20 cm depth intervals range from 32.41 Mg ha-1 in sub-alpine (SA) forest to 48.50 Mg ha-1 in mixed conifer (MC) forest. The findings show that SC declines significantly from 0 - 10 cm to 10-20 cm strata, consistent with other soil physico-chemical determinants other than bulk density. SEM renders better model fit (0-10 cm: R2 = 0.61; 10-20cm: R2 = 0.46) with lesser uncertainties compared to LASSO (0-10 cm: R2 = 0.55; 10-20cm: R2 = 0.37). Soil properties and topography play a key role in modulating SC stocks, with total nitrogen (TN), soil moisture (SM), and elevation being principal drivers with contrasting effects on SC storage, while climate and vegetation parameters are of lesser influence. The relative effect of majority of explanatory drivers reduces with depth while that of temperature increases. Our analyses indicate that shifts in floristic composition could have long-lasting implications on soil structure and C storage, providing valuable data for C sink management.
Collapse
Affiliation(s)
- Ashaq Ahmad Dar
- Department of Ecology and Environmental Sciences, School of Life Sciences, Pondicherry University, Puducherry, 605 014, India
| | - Narayanaswamy Parthasarathy
- Department of Ecology and Environmental Sciences, School of Life Sciences, Pondicherry University, Puducherry, 605 014, India.
| |
Collapse
|
8
|
Effects of Nitrogen Addition on Microbial Carbon Use Efficiency of Soil Aggregates in Abandoned Grassland on the Loess Plateau of China. FORESTS 2022. [DOI: 10.3390/f13020276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Soil microbial carbon use efficiency (CUE) plays a crucial role in terrestrial C cycling. However, how microbial CUE responds to nitrogen addition and its mechanisms in soil aggregates from abandoned grassland systems remains poorly understood. In this study, we designed a nitrogen (N) addition experiment (0 (N0), 10 (N1), 20 (N2), 40 (N3), 80 (N4) kg N ha−1yr−1) from abandoned grassland on the Loess Plateau of China. Subsequently, the enzymatic stoichiometry in soil aggregates was determined and modeled to investigate microbial carbon composition and carbon utilization. The vegetation and soil aggregate properties were also investigated. Our research indicated that soil microbial CUE changed from 0.35 to 0.53 with a mean value of 0.46 after N addition in all aggregates, and it significantly varied in differently sized aggregates. Specifically, the microbial CUE was higher and more sensitive in macro-aggregates after N addition than in medium and micro-aggregates. The increasing microbial CUE in macro-aggregates was accompanied by an increase in soil organic carbon and microbial biomass carbon, indicating that N addition promoted the growth of microorganisms in macro-aggregates. N addition significantly improved the relative availability of nitrogen in all aggregates and alleviated nutrient limitation in microorganisms, thus promoting microbial CUE. In conclusion, our study indicates that soil microbial CUE and its influencing factors differ among soil aggregates after N addition, which should be emphasized in future nutrient cycle assessment in the context of N deposition.
Collapse
|
9
|
Tuo Y, Rong N, Hu J, Zhao G, Wang Y, Zhang Z, Qi Z, Li Y, Zhang B. Exploring the Relationships between Macrofungi Diversity and Major Environmental Factors in Wunvfeng National Forest Park in Northeast China. J Fungi (Basel) 2022; 8:jof8020098. [PMID: 35205853 PMCID: PMC8880546 DOI: 10.3390/jof8020098] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 01/27/2023] Open
Abstract
In this paper, we analyze the macrofungi communities of five forest types in Wunvfeng National Forest Park (Jilin, China) by collecting fruiting bodies from 2019–2021. Each forest type had three repeats and covered the main habitats of macrofungi. In addition, we evaluate selected environmental variables and macrofungi communities to relate species composition to potential environmental factors. We collected 1235 specimens belonging to 283 species, 116 genera, and 62 families. We found that Amanitaceae, Boletaceae, Russulaceae, and Tricholomataceae were the most diverse family; further, Amanita, Cortinarius, Lactarius, Russula, and Tricholoma were the dominant genera in the area. The macrofungi diversity showed increasing trends from Pinus koraiensis Siebold et Zuccarini forests to Quercus mongolica Fischer ex Ledebour forests. The cumulative species richness was as follows: Q. mongolica forest A > broadleaf mixed forest B > Q. mongolica, P. koraiensis mix forest D (Q. mongolica was the dominant species) > Q. mongolica and P. koraiensis mix forest C (P. koraiensis was the dominant species) > P. koraiensis forest (E). Ectomycorrhizal fungi were the dominant functional group; they were mainly in forest type A and were influenced by soil moisture content and Q. mongolica content (p < 0.05). The wood-rotting fungus showed richer species diversity than other forest types in broadleaf forests A and B. Overall, we concluded that most fungal communities preferred forest types with a relatively high Q. mongolica content. Therefore, the deliberate protection of Q. mongolica forests proves to be a better strategy for maintaining fungal diversity in Wunvfeng National Forest Park.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yu Li
- Correspondence: (Y.L.); (B.Z.)
| | | |
Collapse
|